

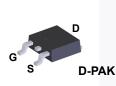
Is Now Part of

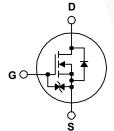
ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and ovary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and easonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or una


FCD900N60Z N-Channel SuperFET[®] II MOSFET 600 V, 4.5 A, 900 mΩ


Features

- 650 V @ T₁ = 150°C
- Typ. R_{DS(on)} = 820 mΩ
- Ultra Low Gate Charge (Typ. Q_g = 13 nC)
- Low Effective Output Capacitance (Typ. C_{oss(eff.)} = 49 pF)
- 100% Avalanche Tested
- · ESD Improved Capacity
- RoHS Compliant

Applications

- LCD / LED / PDP TV and Monitor Lighting
- Solar Inverter
- Charger

SuperFET[®] II MOSFET is Fairchild Semiconductor's brand-new high voltage super-junction (SJ) MOSFET family that is utilizing

charge balance technology for outstanding low on-resistance

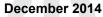
and lower gate charge performance. This technology is tailored

to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently,

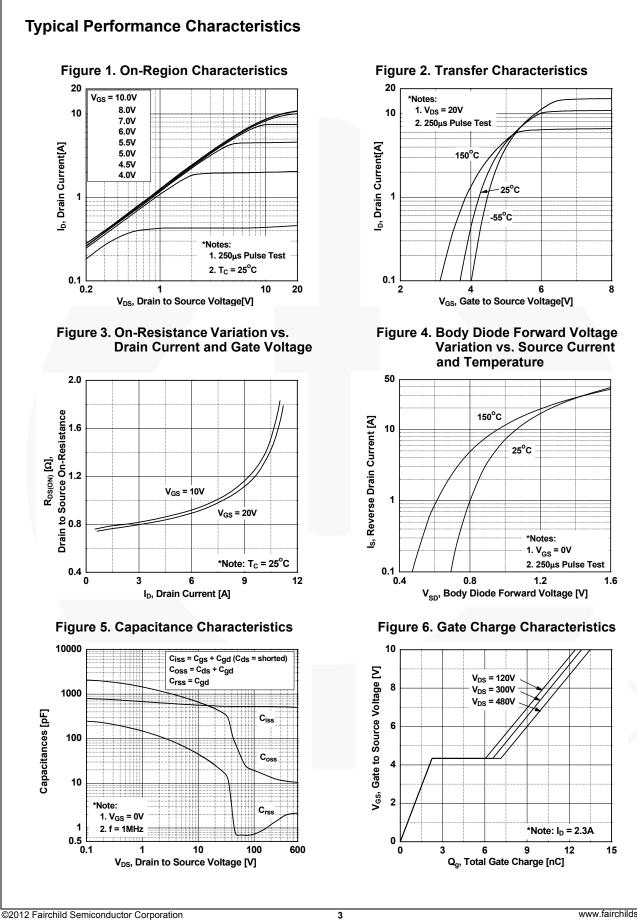
SuperFET II MOSFET is very suitable for the switching power

applications such as PFC, server/telecom power, FPD TV

power, ATX power and industrial power applications.


Description

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.


Symbol		Parameter		FCD900N60Z	Unit	
V _{DSS}	Drain to Source Voltage	rain to Source Voltage		600	V	
V _{GSS}		- DC		±20	V	
	Gate to Source Voltage	- AC (f > 1Hz)	±30	V	
I _D Drain Curre	Desis Ourset	- Continuous (T _C = 25 ^o C)		4.5		
	Drain Current	- Continuous (T _C = 100 ^o C)		3.5	A	
DM	Drain Current	- Pulsed	(Note 1)	13.5	Α	
AS	Single Pulsed Avalanche Energy (Note 2)		47.5	mJ		
AR	Avalanche Current (Note 1)		(Note 1)	1	Α	
AR	Repetitive Avalanche Energy (Note 1)		0.52	mJ		
dv/dt	MOSFET dv/dt		100	Mag		
	Peak Diode Recovery dv/dt (Note 3)		20	V/ns		
P _D	Devuer Discinction	(T _C = 25°C)		52	W	
	Power Dissipation	- Derate Above 25°C		0.42	W/ºC	
Γ _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C		
ΓL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		300	°C		

Thermal Characteristics

Symbol	Parameter	FCD900N60Z	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	2.4	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	100	°C/W

DPAK 25°C unless of oltage ure eakdown ent Forward Reverse iistance	Tape and Reel Tape and Reel otherwise noted. Test Conditio $V_{GS} = 0 V$, $I_D = 10 mA$, T $V_{GS} = 0 V$, $I_D = 10 mA$, T $I_D = 10 mA$, Referenced $V_{GS} = 0 V$, $I_D = 4.5 A$ $V_{DS} = 480 V$, $V_{GS} = 0 V$ $V_{BS} = 480 V$, $V_{CS} = 0 V$ $V_{GS} = 20 V$, $V_{DS} = 0 V$ $V_{GS} = -20 V$, $V_{DS} = 0 V$ $V_{GS} = 10 V$, $I_D = 2.3 A$ $V_{DS} = 25 V$, $V_{GS} = 0 V$, $V_{DS} = 25 V$, $V_{GS} = 0 V$, $V_{DS} = 380 V$, $V_{GS} = 0 V$,	$T_{\rm J} = 25^{\circ}{\rm C}$ $T_{\rm J} = 150^{\circ}{\rm C}$ to 25 ^o C	Min. 600 650 - - - 2.5 - - 2.5 - - - - - - - - - - - - -	6 mm Typ. - 0.67 700 - - - 0.82 4.6 543	2500 Max. - - - - 5 20 10 -10 - 10 - 10 - 10 - - 0.90 -	units Unit V/°C V/°C V/°C V ν υΑ uA uA V uA
oltage ure eakdown ent Forward Reverse	$\begin{tabular}{ c c c c } \hline Test Conditio \\ \hline V_{GS} = 0 \ V, \ I_D = 10 \ mA, \ T \\ \hline V_{GS} = 0 \ V, \ I_D = 10 \ mA, \ T \\ \hline I_D = 10 \ mA, \ Referenced \\ \hline V_{GS} = 0 \ V, \ I_D = 4.5 \ A \\ \hline V_{DS} = 480 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 480 \ V, \ T_C = 125^{00} \\ \hline V_{GS} = 20 \ V, \ V_{DS} = 0 \ V \\ \hline V_{GS} = -20 \ V, \ V_{DS} = 0 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 2.3 \ A \\ \hline V_{DS} = 20 \ V, \ I_D = 2.3 \ A \\ \hline V_{DS} = 25 \ V, \ V_{GS} = 0 \ V, \\ \hline - f = 1 \ MHz \\ \hline \end{tabular}$	$T_{\rm J} = 25^{\circ}{\rm C}$ $T_{\rm J} = 150^{\circ}{\rm C}$ to 25 ^o C	600 650 - - - - - 2.5 - - -	- - - - - - - - - - - - - - - - - - -	- - - 5 20 10 -10 3.5	V 20°/V V V V Au Au Au Ω
oltage ure eakdown ent Forward Reverse	$\begin{tabular}{ c c c c } \hline Test Conditio \\ \hline V_{GS} = 0 \ V, \ I_D = 10 \ mA, \ T \\ \hline V_{GS} = 0 \ V, \ I_D = 10 \ mA, \ T \\ \hline I_D = 10 \ mA, \ Referenced \\ \hline V_{GS} = 0 \ V, \ I_D = 4.5 \ A \\ \hline V_{DS} = 480 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 480 \ V, \ T_C = 125^{00} \\ \hline V_{GS} = 20 \ V, \ V_{DS} = 0 \ V \\ \hline V_{GS} = -20 \ V, \ V_{DS} = 0 \ V \\ \hline V_{GS} = 10 \ V, \ I_D = 2.3 \ A \\ \hline V_{DS} = 20 \ V, \ I_D = 2.3 \ A \\ \hline V_{DS} = 25 \ V, \ V_{GS} = 0 \ V, \\ \hline - f = 1 \ MHz \\ \hline \end{tabular}$	$T_{\rm J} = 25^{\circ}{\rm C}$ $T_{\rm J} = 150^{\circ}{\rm C}$ to 25 ^o C	600 650 - - - - - 2.5 - - -	- - - - - - - - - - - - - - - - - - -	- - - 5 20 10 -10 3.5	V 20°/V V V V Au Au Au Ω
eakdown ent Forward Reverse	$\begin{split} & V_{GS} = 0 \; V, \; I_{D} = 10 \; mA, \; T \\ & I_{D} = 10 \; mA, \; Referenced \\ & V_{GS} = 0 \; V, \; I_{D} = 4.5 \; A \\ & V_{DS} = 480 \; V, \; V_{GS} = 0 \; V \\ & V_{DS} = 480 \; V, \; T_{C} = 125^{\circ} O \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = -20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 10 \; V, \; I_{D} = 2.50 \; \mu A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 25 \; V, \; V_{GS} = 0 \; V, \\ & f = 1 \; MHz \end{split}$	「 _J = 150°C to 25 [°] C	650 - - - - - - - - - - - - - - - - - - -	- - - - - - - - - - - - - - - - - - -	- - 5 20 10 -10 3.5	V/°C V μΑ μΑ μΑ ν Δ
eakdown ent Forward Reverse	$\begin{split} & V_{GS} = 0 \; V, \; I_{D} = 10 \; mA, \; T \\ & I_{D} = 10 \; mA, \; Referenced \\ & V_{GS} = 0 \; V, \; I_{D} = 4.5 \; A \\ & V_{DS} = 480 \; V, \; V_{GS} = 0 \; V \\ & V_{DS} = 480 \; V, \; T_{C} = 125^{\circ} O \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = -20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 10 \; V, \; I_{D} = 2.50 \; \mu A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 25 \; V, \; V_{GS} = 0 \; V, \\ & f = 1 \; MHz \end{split}$	「 _J = 150°C to 25 [°] C	650 - - - - - - - - - - - - - - - - - - -	- 0.67 700 - - - 0.82 4.6	- - 5 20 10 -10 3.5	V/°C V μΑ μΑ μΑ ν Δ
eakdown ent Forward Reverse	$\begin{split} & V_{GS} = 0 \; V, \; I_{D} = 10 \; mA, \; T \\ & I_{D} = 10 \; mA, \; Referenced \\ & V_{GS} = 0 \; V, \; I_{D} = 4.5 \; A \\ & V_{DS} = 480 \; V, \; V_{GS} = 0 \; V \\ & V_{DS} = 480 \; V, \; T_{C} = 125^{\circ} O \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = -20 \; V, \; V_{DS} = 0 \; V \\ & V_{GS} = 10 \; V, \; I_{D} = 2.50 \; \mu A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 20 \; V, \; I_{D} = 2.3 \; A \\ & V_{DS} = 25 \; V, \; V_{GS} = 0 \; V, \\ & f = 1 \; MHz \end{split}$	「 _J = 150°C to 25 [°] C	- - - - 2.5 - - -	700 - - - - 0.82 4.6	- 5 20 10 -10 3.5	V/°C V μΑ μΑ μΑ ν Δ
eakdown ent Forward Reverse	$V_{GS} = 0 \text{ V}, I_D = 4.5 \text{ A}$ $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 480 \text{ V}, T_C = 125^{\circ}(0)$ $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$		- - - 2.5 - -	700 - - - - 0.82 4.6	- 5 20 10 -10 3.5	V Aμ Au Au V Ω
ent Forward Reverse	$V_{DS} = 480 V, V_{GS} = 0 V$ $V_{DS} = 480 V, T_{C} = 125^{\circ}(V_{GS} = 20 V, V_{DS} = 0 V)$ $V_{GS} = 20 V, V_{DS} = 0 V$ $V_{GS} = -20 V, V_{DS} = 0 V$ $V_{GS} = 10 V, I_{D} = 2.3 A$ $V_{DS} = 20 V, I_{D} = 2.3 A$ $V_{DS} = 25 V, V_{GS} = 0 V,$ $f = 1 MHz$		- - - 2.5 - -	- - - 0.82 4.6	5 20 10 -10 3.5	μΑ μΑ μΑ μΑ ν Α
Forward Reverse	$V_{DS} = 480 \text{ V}, \text{T}_{C} = 125^{\circ}\text{G}$ $V_{GS} = 20 \text{ V}, \text{V}_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, \text{V}_{DS} = 0 \text{ V}$ $V_{GS} = 10 $		- - 2.5 - -	0.82 4.6	20 10 -10 3.5	uA uA UA V Ω
Forward Reverse	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$		- - 2.5 - - -	0.82 4.6	10 -10 3.5	uA uA UA V Ω
Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = V_{DS}, I_D = 250 \mu\text{A}$ $V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ $f = 1 \text{ MHz}$		2.5 - -	0.82 4.6	-10 3.5	uA V Ω
istance	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = 10 \ V, I_D = 2.3 \ A$ $V_{DS} = 20 \ V, I_D = 2.3 \ A$ $V_{DS} = 25 \ V, V_{GS} = 0 \ V,$ $f = 1 \ MHz$		2.5 - -	0.82 4.6	3.5	V Ω
	$V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz		-	0.82 4.6		Ω
	$V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz		-	0.82 4.6		Ω
	$V_{GS} = 10 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 20 \text{ V}, I_D = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz		-	0.82 4.6		Ω
	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 2.3 \text{ A}$ $V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz			4.6	-	
	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz					0
2	f = 1 MHz	_		543		
	f = 1 MHz	_		543		
l	f = 1 MHz	_	-		720	pF
}				400	530	pF
	$V_{DO} = 380 \text{ V} \text{ V}_{OO} = 0 \text{ V}$		-	20	30	pF
	105 000 1, 165 0 1,	f = 1 MHz	-	11	-	pF
	V_{DS} = 0 V to 480 V, V_{GS}	= 0 V	-	49	-	pF
	V _{DS} = 380 V, I _D = 2.3 A, V _{GS} = 10 V		-	13	17	nC
			-	2.3	-	nC
		(Note 4)	-	4.8	-	nC
	f = 1 MHz		-	2.4	-	Ω
rn-On Delay Time		<u></u>	10.9	32	ns	
	V_{DD} = 380 V, I _D = 2.3 A, V_{GS} = 10 V, R _G = 4.7 Ω (Note 4)		-	5.3	21	ns
			-	33.6	77	ns
			-	11.9	34	ns
		(,				<u> </u>
	Enward Current				4.5	A
Pulsed Drain to Source Diode Forward Current			_			A
	I		_			V
i voltage				156	1.2	ns
						μC
		Source Diode Forward Current rce Diode Forward Current d Voltage $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 2.3 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_{SD} = 2.3 \text{ A},$ $dI_F/dt = 100 \text{ A}/\mu\text{s}$ temperature.	Source Diode Forward Current Image: Current forward Current Image: VGS = 0 V, ISD = 2.3 A Image: Current forward Current forward Current Image: VGS = 0 V, ISD = 2.3 A Image: Current forward Current forward Current forward Current Image: VGS = 0 V, ISD = 2.3 A Image: Current forward C	Source Diode Forward Current - rce Diode Forward Current - d Voltage $V_{GS} = 0 V, I_{SD} = 2.3 A$ - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - $dI_F/dt = 100 A/\mu s$ - temperature.	Source Diode Forward Currentrce Diode Forward Currentd Voltage $V_{GS} = 0 V$, $I_{SD} = 2.3 A$ - $V_{GS} = 0 V$, $I_{SD} = 2.3 A$,-156 $dI_F/dt = 100 A/\mu s$ -1.3	Source Diode Forward Current - - 4.5 rce Diode Forward Current - - 13.5 d Voltage $V_{GS} = 0 V, I_{SD} = 2.3 A$ - - 1.2 $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 156 - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 1.3 - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 1.3 - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 1.3 - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 1.3 - $V_{GS} = 0 V, I_{SD} = 2.3 A,$ - 1.3 -

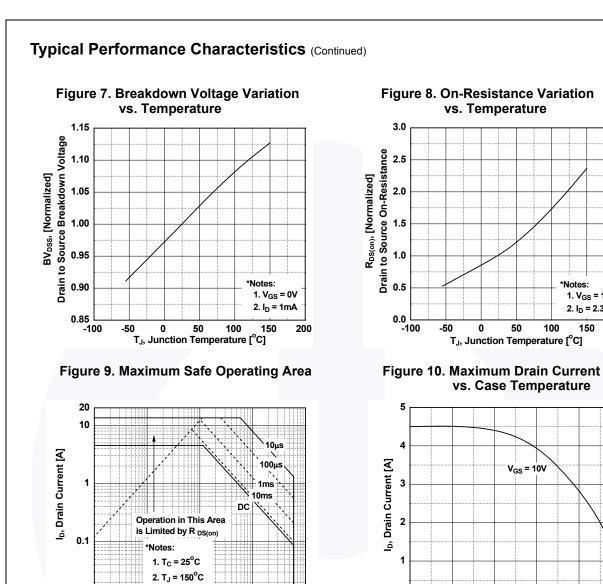
FCD900N60Z Rev. C4

*Notes:

100

50 75 100 T_C, Case Temperature [[°]C]

1. V_{GS} = 10V


2. I_D = 2.3A

150

125

150

200

3. Single Pulse

1

10

V_{DS}, Drain to Source Voltage [V]

Figure 11. Eoss vs. Drain to Source Voltage

100 200 300 400 500 V_{DS}, Drain to Source Voltage [V]

100

100

0.01

2.8

2.4

2.0

1.2

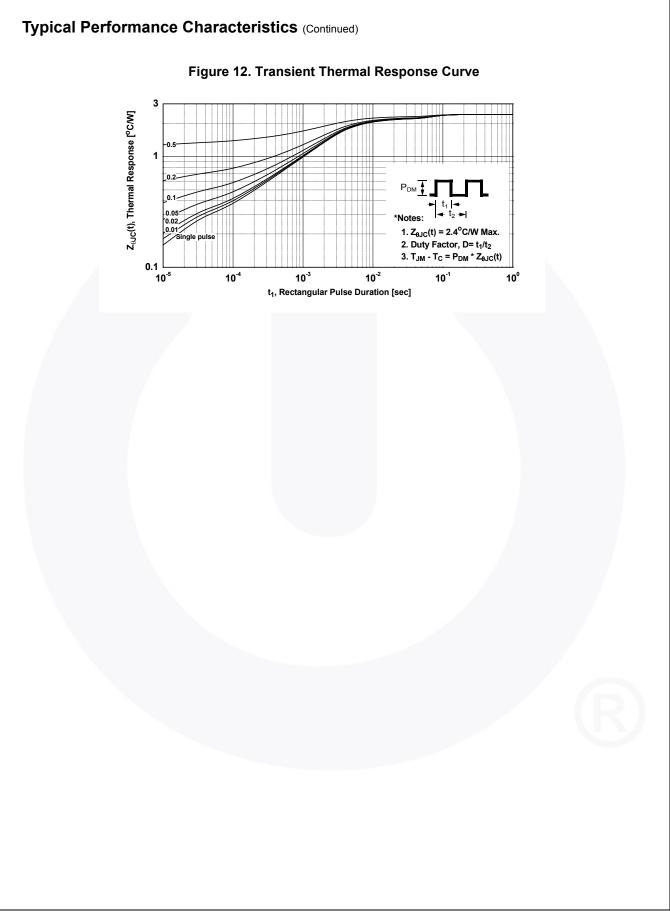
0.8

0.4

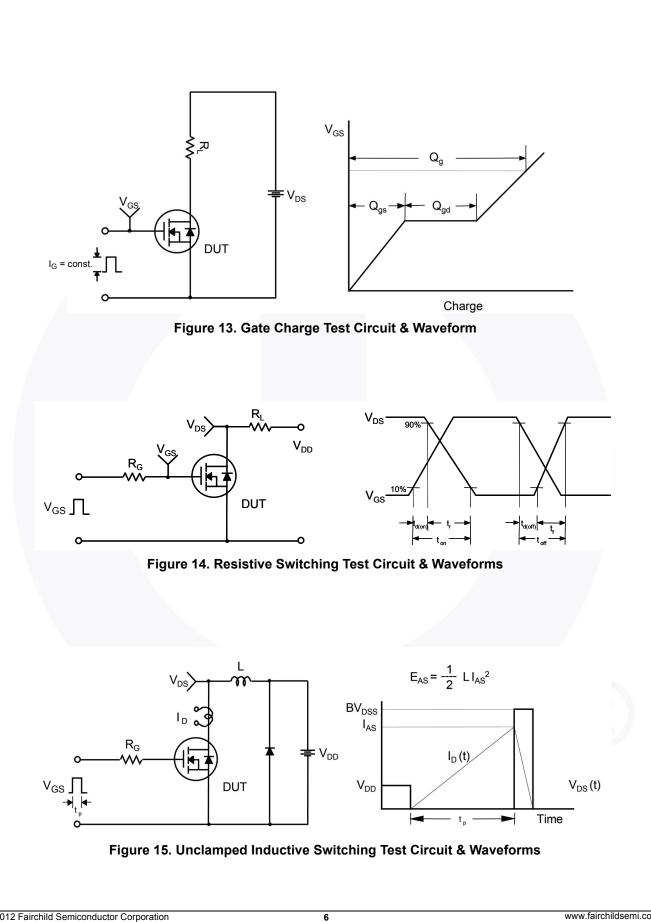
0.0 l⁄2 0

E_{oss}, [µJ] 1.6

0.1

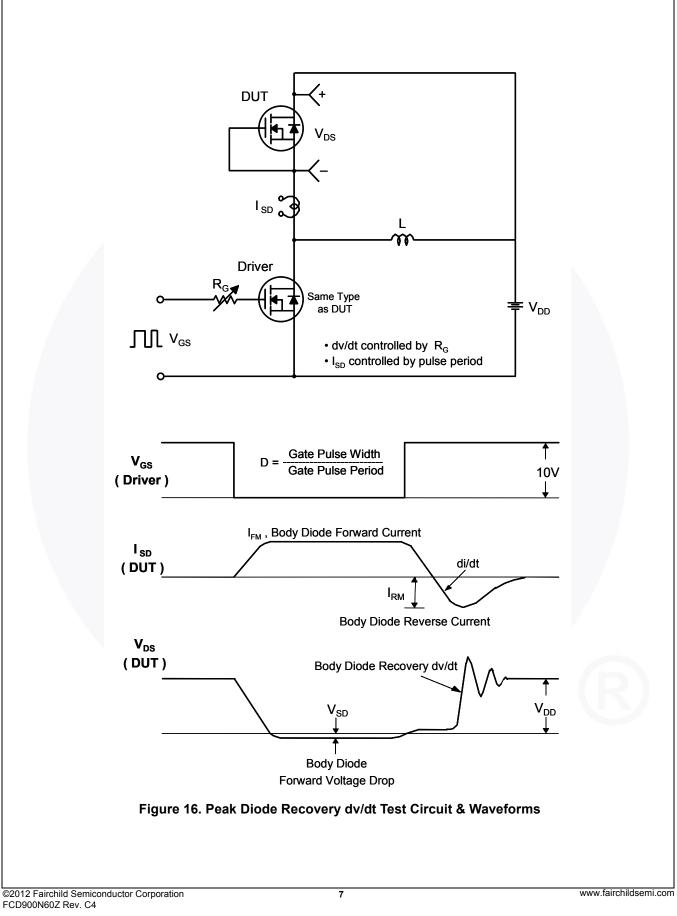

4

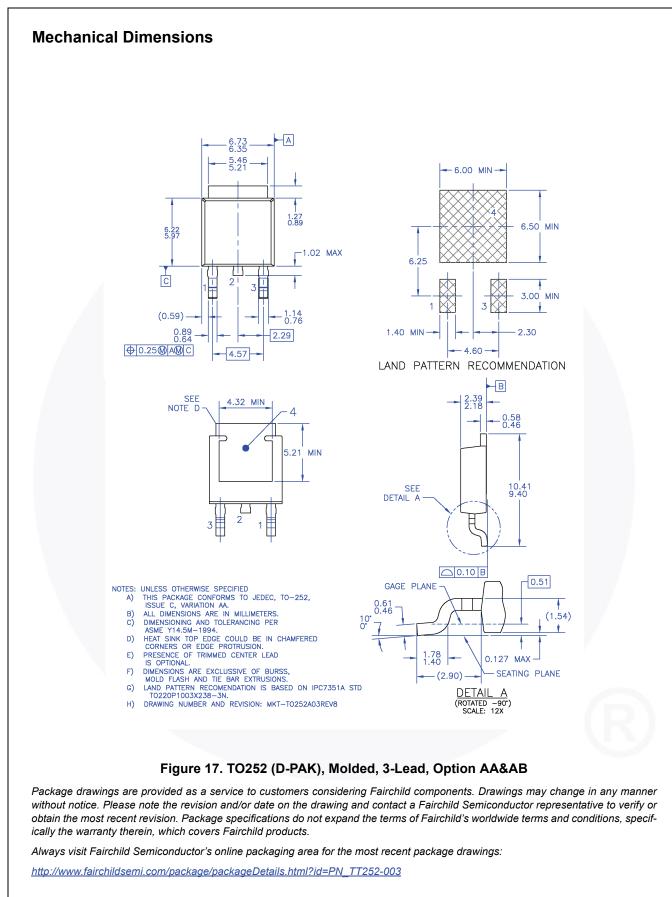
0 ∟ 25


50

1000

600


FCD900N60Z — N-Channel SuperFET[®] II MOSFET



©2012 Fairchild Semiconductor Corporation FCD900N60Z Rev. C4

www.fairchildsemi.com

FCD900N60Z — N-Channel SuperFET[®] II MOSFET

©2012 Fairchild Semiconductor Corporation FCD900N60Z Rev. C4

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AX-CAP®* Green Bit BitSiC™ Green F Build it Now™ Green F CorePOWER™ Gmax™ CorePOWER™ GTO™ CROSSVOLT™ IntelliMA CTI™ ISOPLA Current Transfer Logic™ Marking DEUXPEED® and Bet Dual Cool™ MegaBu	Power Resource SM Power Resource SM Power Resource SM Profile PSTM e-Series™ Profile AXTM NARTM Small Speakers Sound Louder ter™ Small Speakers Sound Louder State	owerXS™ rogrammable Active Droop™ IFET® IS™ uiet Series™ apidConfigure™ TM aving our world, 1mW/W/kW at a time™ ignalWise™ martMax™ MART START™ olutions for Your Success™ PM® TEALTH™ uperFET® uperSOT™-3 uperSOT™-8 uperMOS®	ESYSTEM ®* GENERAL TinyBoost [®] TinyBuck [®] TinyCalc [™] TinyCojc [®] TINYOPTO [™] TinyPWM [™] TinyPWM [™] TinyWire [™] TranSiC [™] TriFault Detect [™] TRUECURRENT [®] * µSerDes [™] WerDes [™] Ultra FRFET [™] Ultra FRFET [™] VOX [™] VisualMax [™] VoltagePlus [™] Xsens [™]
---	---	---	---

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

FCD900N60Z — N-Channel SuperFET[®] II MOSFE

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

单击下面可查看定价,库存,交付和生命周期等信息

>>0N Semiconductor(安森美)