

ACST2

Overvoltage protected AC switch

Datasheet - production data

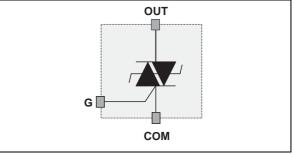
Features

- Triac with overvoltage crowbar technology
- High noise immunity: static dV/dt > 500 V/µs
- TO-220FPAB insulated package:
 - complies with UL standards (File ref: E81734)
 - Insulation voltage : 2000 VRMS

Benefits

- Enables equipment to meet IEC 61000-4-5
- High off-state reliability with planar technology
- Needs no external overvoltage protection
- Reduces component count
- Interfaces directly with the micro-controller
- High immunity against fast transients described in IEC 61000-4-4 standards

Applications


- AC on/off static switching in appliances and industrial control systems
- Driving low power highly inductive loads like solenoid, pump, fan, and micro-motor

Description

The ACST2 series belongs to the ACS/ACST power switch family. This high performance device is suited to home appliances or industrial systems and drives loads up to 2 A.

This ACST2 switch embeds a Triac structure with a high voltage clamping device to absorb the inductive turn-off energy and withstand line transients such as those described in the IEC 61000-4-5 standards. The component needs a low gate current to be activated ($I_{GT} < 10$ mA) and still shows a high electrical noise immunity complying with IEC standards such as IEC 61000-4-4 (fast transient burst test).

Figure 1. Functional diagram

Table 1. Device summary

Symbol	Value	Unit
I _{T(RMS)}	2	A
V _{DRM} /V _{RRM}	800	V
I _{GT}	10	mA

DocID13304 Rev 5

www.st.com

This is information on a product in full production.

1 Characteristics

Symbol	Paramete	r		Value	Unit
1	On state rms surrent (full size ways)	TO-220FPAB	T _c = 105 °C	2	А
I _{T(RMS)}	On-state rms current (full sine wave)	DPAK	T _c = 110 °C	Z	
I	Non repetitive surge peak on-state current	F = 60 Hz	t = 16.7 ms	8.4	А
I _{TSM}	(full cycle sine wave, T _J initial = 25 °C)	F = 50 Hz	t = 20 ms	8.0	
l²t	I ² t Value for fusing	I^2 t Value for fusing $t_p = 10 \text{ ms}$			
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r = 100 \text{ ns}$	F = 120 Hz	Tj = 125 °C	50	A/µs
V _{PP} ⁽¹⁾	Non repetitive line peak mains voltage ⁽¹⁾	2	kV		
P _{G(AV)}	Average gate power dissipation	Average gate power dissipation Tj = 125 °C			
P _{GM}	Peak gate power dissipation ($t_p = 20 \ \mu s$)		Tj = 125 °C	10	W
I _{GM}	Peak gate current (t _p = 20 μs)	1.6	А		
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	-40 to +150 -40 to +125	°C		
Τ _Ι	Maximum lead soldering temperature durin	260	°C		
V _{INS(RMS)}	Insulation RMS voltage (60 seconds)		TO-220FPAB	2000	V

Table 2. Absolute maximum	n ratings	(limiting values)
---------------------------	-----------	-------------------

1. According to test described in IEC 61000-4-5 standard and Figure 17

Table 3. Electrical characteristics ($T_j = 25$ °C, unless otherwise specified)

Symbol	Test conditions Quadrant			Value	Unit
$I_{GT}^{(1)}$	V_{OUT} = 12 V, R _L = 33 Ω	- -	MAX	10	mA
V _{GT}	V_{OUT} = 12 V, R _L = 33 Ω	- -	MAX	1.1	V
V _{GD}	$V_{OUT} = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 125 \text{ °C}$ I - II - III		MIN	0.2	V
I _H ⁽²⁾	I _{OUT} = 100 mA			10	mA
1	$I_{G} = 1.2 \times I_{GT}$	I - III	MAX	25	mA
IL IL	$I_G = 1.2 \times I_{GT}$	II	MAX	35	
dV/dt ⁽²⁾	$V_{OUT} = 67\% V_{DRM}$ gate open, T _j = 125 °C	MIN	500	V/µs	
(dl/dt)c (2)	$(dV/dt)c = 15 V/\mu s, T_j = 125 °C$	MIN	0.5	A/ms	
V _{CL}	$I_{CL} = 0.1 \text{ mA}, t_p = 1 \text{ ms}, T_j = 25 \text{ °C}$		MIN	850	V

1. Minimum I_{GT} is guaranteed at 5% of I_{GT} max

2. For both polarities of OUT pin referenced to COM pin

2/14

Symbol	Test conditions			Value	Unit
V _{TM} ⁽¹⁾	I _{TM} = 2.8 A, t _p = 500 μs	T _j = 25 °C	MAX	2	V
V _{TO} ⁽¹⁾	Threshold voltage	T _j = 125 °C	MAX	0.9	V
R _D ⁽¹⁾	Dynamic resistance	T _j = 125 °C	MAX	250	m Ω
I _{DRM}		T _j = 25 °C	MAX	10	μA
I _{RRM}	$V_{OUT} = V_{DRM} / V_{RRM}$	T _j = 125 °C		0.5	mA

Table 4. S	Static elect	rical charac	teristics
------------	--------------	--------------	-----------

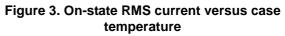

1. For both polarities of OUT pin referenced to COM pin

Table 5. Thermal resistance

Symbol	Para		Value	Unit	
Р	lunction to page (AC)		DPAK	4.5	
R _{th(j-c)}	Junction to case (AC)		TO-220FPAB	7	°C/W
Р	lunction to ambient		TO-220FPAB	60	C/W
R _{th(j-a)} Junction to ambient		$S_{CU}^{(1)} = 0.5 \text{ cm}^2$	DPAK	70	

1. S_{CU} = copper surface under tab

Figure 2. Maximum power dissipation versus on-state RMS current (full cycle)

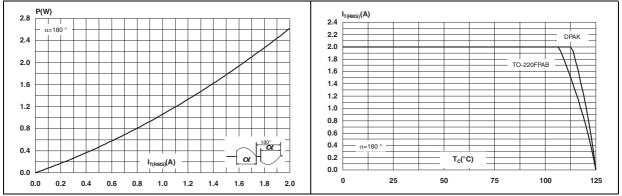


Figure 4. On-state RMS current versus ambient temperature

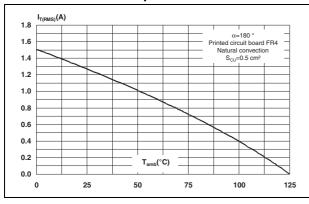
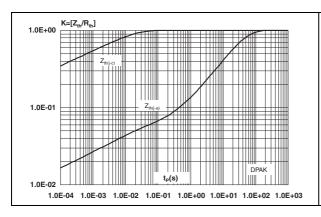



Figure 6. Relative variation of thermal impedance versus pulse duration DPAK

Figure 8. Relative variation of static dV/dt versus junction temperature

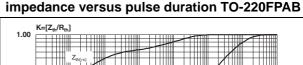


Figure 5. Relative variation of thermal

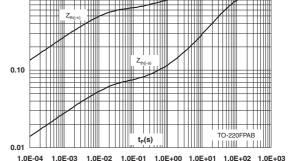
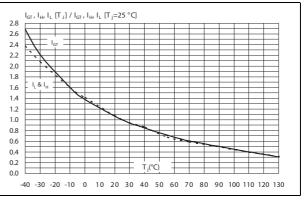
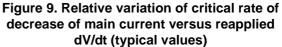
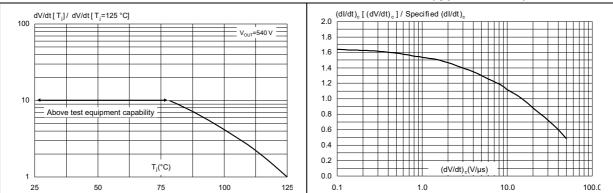
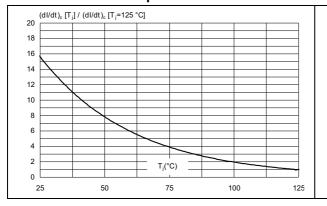





Figure 7. Relative variation of gate trigger, holding and latching current versus junction temperature (typical value)



П

1000

Figure 10. Relative variation of critical rate of decrease of main current versus junction temperature

Figure 12. Non repetitive surge peak on-state current for a sinusoidal pulse with width t_p < 10 ms and corresponding value

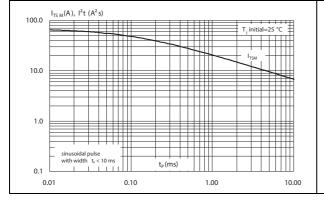
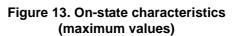



Figure 14. Thermal resistance junction to ambient versus copper surface under tab DPAK

er of cycle

100

Figure 11. Surge peak on-state current versus

number of cycles

Non repet

T_i initial=25

=110

10

DPAK

I_{TSM}(A)

9

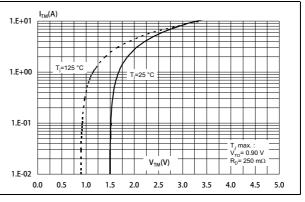
8

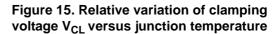
7

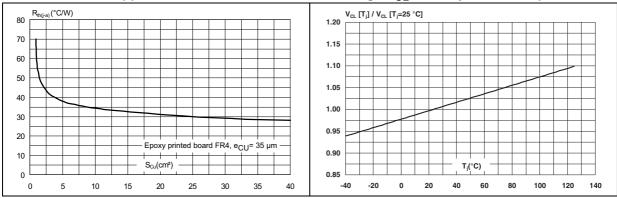
6

5

4

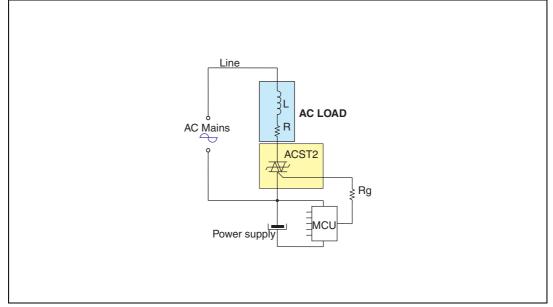

3


2


1

0

1

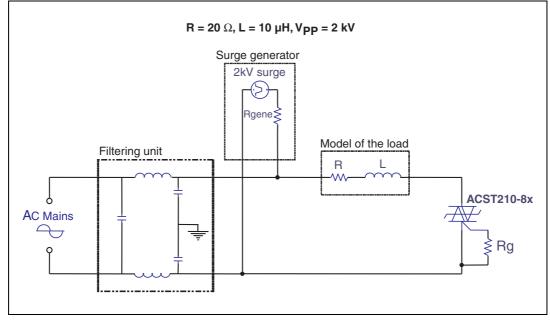


57

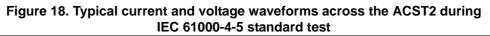
2 Application information

2.1 Typical application description

The ACST2 device has been designed to switch on and off highly inductive or resistive loads such as pump, valve, fan, or bulb lamp. Thanks to its high sensitivity (I_{GT} max = 10 mA), the ACST2 can be driven directly by logic level circuits through a resistor as shown on the typical application diagram. Thanks to its thermal and turn-off commutation performances, the ACST2 switch can drive, without any additional snubber, an inductive load up to 2 A.



2.2 AC line transient voltage ruggedness


In comparison with standard Triacs, which are not robust against surge voltage, the ACST2 is self-protected against over-voltage, specified by the new parameter V_{CL} . In addition, the ACST2 is a sensitive device ($I_{GT} = 10$ mA), but provides a high noise immunity level against fast transients. The ACST2 switch can safely withstand AC line transient voltages either by clamping the low energy spikes, such as inductive spikes at switch off, or by switching to the on state (for less than 10 ms) to dissipate higher energy shocks through the load. This safety feature works even with high turn-on current ramp up.

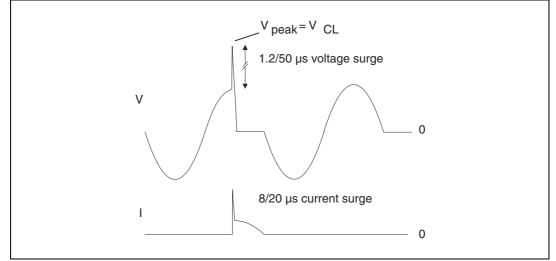

The test circuit of *Figure* 17 represents the ACST2 application, and is used to stress the ACST switch according to the IEC 61000-4-5 standard conditions. With the additional effect of the load which is limiting the current, the ACST switch withstands the voltage spikes up to 2 kV on top of the peak line voltage. The protection is based on an overvoltage crowbar technology. The ACST2 folds back safely to the on state as shown in *Figure* 18. The ACST2 recovers its blocking voltage capability after the surge and the next zero current crossing. Such a non repetitive test can be done at least 10 times on each AC line voltage polarity.

Figure 17. Overvoltage ruggedness test circuit for resistive and inductive loads for IEC 61000-4-5 standards

2.3 Electrical noise immunity

The ACST2 is a sensitive device ($I_{GT} = 10 \text{ mA}$) and can be controlled directly though a simple resistor by a logic level circuit, and still provides a high electrical noise immunity. The intrinsic immunity of the ACST2 is shown by the specified dV/dt equal to 500 V/µs @ 125 °C. This immunity level is 5 to 10 times higher than the immunity provided by an equivalent standard technology Triac with the same sensitivity. In other words, the ACST2 is sensitive, but has an immunity usually available only for non-sensitive device (I_{GT} higher than 35 mA).

3 Package information

- Epoxy meets UL94, V0
- Recommended torque (TO-220FPAB): 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

3.1 TO-220FPAB package information

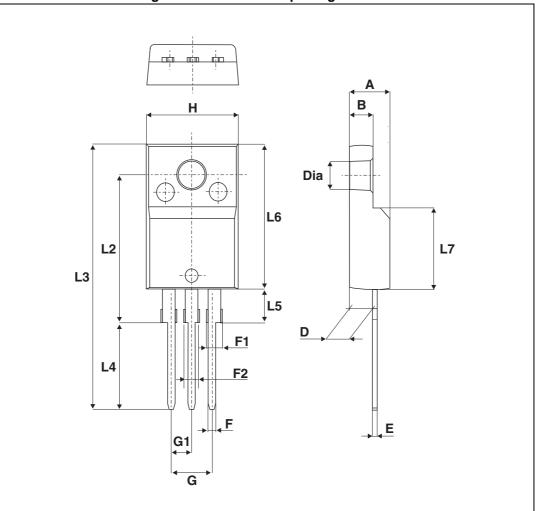


Figure 19. TO-220FPAB package outline

	10		-	age mechanica		
-	Dimensions					
Ref.	Millimeters				Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.4		4.6	0.1730		0.1809
В	2.5		2.7	0.0983		0.1062
D	2.5		2.75	0.0983		0.1081
Е	0.45		0.70	0.0177		0.0275
F	0.75		1	0.0295		0.0393
F1	1.15		1.70	0.0452		0.0669
F2	1.15		1.70	0.0452		0.0669
G	4.95		5.20	0.1947		0.2045
G1	2.4		2.7	0.0944		0.1062
Н	10		10.4	0.3932		0.4090
L2		16			0.6292	
L3	28.6		30.6	1.1247		1.2033
L4	9.8		10.6	0.3854		0.4168
L5	2.9		3.6	0.1140		0.1416
L6	15.9		16.4	0.6252		0.6449

9.30

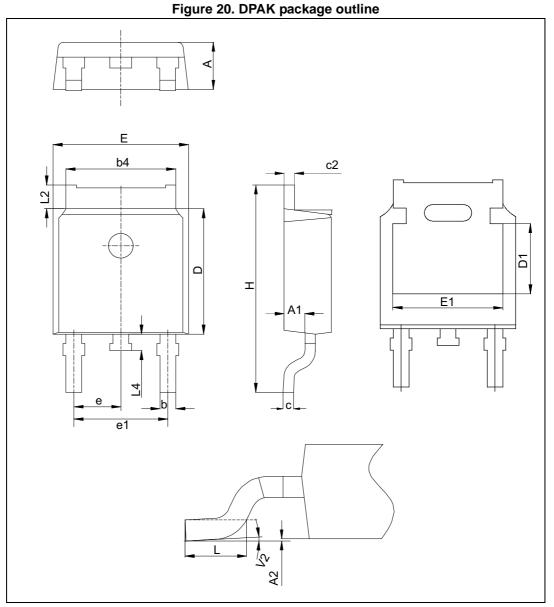
3.20

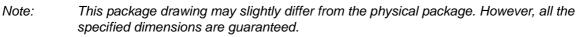
0.3539

0.1180

L7

Dia.

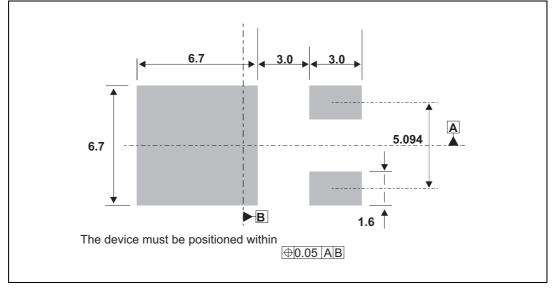

9.00


3.00

0.3657

0.1258

3.2 DPAK package information



			· ·	nsions			
Ref.		Millimeters			Inches		
-	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.18		2.40	0.086		0.094	
A1	0.90		1.10	0.035		0.043	
A2	0.03		0.23	0.001		0.009	
b	0.64		0.90	0.025		0.035	
b4	4.95		5.46	0.195		0.215	
с	0.46		0.61	0.018		0.024	
c2	0.46		0.60	0.018		0.023	
D	5.97		6.22	0.235		0.244	
D1		5.1			0.201		
Е	6.35		6.73	0.250		0.264	
E1		4.32			0.170		
е		2.286			0.09		
e1		4.572			0.18		
Н	9.35		10.40	0.368		0.409	
L	1.00		1.78	0.039		0.070	
L2			1.27			0.05	
L4	0.60		1.02	0.023		0.040	
V2	0°		8°	0°		8°	

Table 7. DPAK package mechanical data

Figure 21. Footprint (dimensions in mm)

4 Ordering information

AC switch	
Topology	
T = Triac	
On-state rms current	
2 = 2 A	
Sensitivity	
10 = 10 mA	
Voltage	
8 = 800 V	
0 - 000 V	
Package	
FP = TO-220FPAB	
B = DPAK	
Delivery mode	
TR = Tape and reel (DPAK)	

Figure 22. Ordering information scheme

Table 8. Ordering information

······································							
Order code	Marking	Package	Weight	Base Qty	Packing mode		
ACST210-8FP		TO-220FPAB	2.4g	50	Tube		
ACST210-8B	ACST2108	DPAK	0.3g	50	Tube		
ACST210-8BTR		DPAK	0.3g	2500	Tape and Reel		

5 Revision history

Date	Revision	Changes
01-Mar-2007	1	Initial release.
13-Apr-2010	2	Updated ECOPACK statement. Reformatted for consistency with other datasheets in this product class.
01-Jul-2010	3	Updated Figure 22.
24-May-2014	4	Updated DPAK package information and reformatted to current standard.
14-Jun-2017	5	Updated features in cover page and <i>Table 2</i> . Updated <i>Figure 8</i> , <i>Figure 9</i> , <i>Figure 10</i> , <i>Figure 14</i> and <i>Section 3</i> . Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

单击下面可查看定价,库存,交付和生命周期等信息

>>STMicroelectronics(意法半导体)