

Is Now Part of

ON Semiconductor®

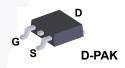
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

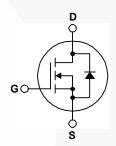
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsi

November 2015

FQD2N60C / FQU2N60C


N-Channel QFET[®] MOSFET 600 V, 1.9 A, 4.7 Ω

Features


- 1.9 A, 600 V, $R_{DS(on)}$ = 4.7 Ω (Max.) @ V_{GS} = 10 V, I_D = 0.95 A
- Low Gate Charge (Typ. 8.5 nC)
- · Low Crss (Typ. 4.3 pF)
- 100% Avalanche Tested
- · RoHS Compliant

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FQD2N60CTM / FQU2N60CTU	Unit
V_{DSS}	Drain-Source Voltage		600	V
I _D	Drain Current - Continuous (T _C = 25°C)		1.9	Α
	- Continuous (T _C = 100°C)		1.14	Α
I _{DM}	Drain Current - Pulsed	(Note 1)	7.6	Α
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)		120	mJ
I _{AR}	Avalanche Current (Note 1)		1.9	Α
E _{AR}	Repetitive Avalanche Energy (Note 1)		4.4	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P_{D}	Power Dissipation (T _A = 25°C)*		2.5	W
	Power Dissipation (T _C = 25°C)		44	W
	- Derate above 25°C		0.35	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
T _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	FQD2N60CTM / FQU2N60CTU	Unit
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case, Max.	2.87	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (minimum pad of 2 oz copper), Max.	110	°C/W
	Thermal Resistance, Junction-to-Ambient (* 1 in² pad of 2 oz copper), Max.	50	

©2003 Fairchild Semiconductor Corporation FQD2N60C / FQU2N60C Rev. 1.4

www.fairchildsemi.com

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FQD2N60C	FQD2N60CTM	D-PAK	330 mm	16 mm	2500 units
FQU2N60C	FQU2N60CTU	I-PAK	Tube	N/A	70 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Cha	aracteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	600			V
ΔBV _{DSS} / ΔT _J	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, Referenced to 25°C		0.6		V/°C
1	Zero Gate Voltage Drain Current	V _{DS} = 600 V, V _{GS} = 0 V			1	μΑ
I _{DSS}		V _{DS} = 480 V, T _C = 125°C			10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V _{GS} = -30 V, V _{DS} = 0 V			-100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$	2.0		4.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 0.95 A	\	3.6	4.7	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 40 V, I _D = 0.95 A		5.0		S
	ic Characteristics			400	005	L
C _{iss}	Input Capacitance	$V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$		180	235	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		20	25	pF
C _{rss}	Reverse Transfer Capacitance			4.3	5.6	pF
Switchi	ing Characteristics					
t _{d(on)}	Turn-On Delay Time	V _{DD} = 300 V, I _D = 2 A,		9	28	ns
t _r	Turn-On Rise Time	$R_G = 25 \Omega$		25	60	ns
t _{d(off)}	Turn-Off Delay Time			24	58	ns
t _f	Turn-Off Fall Time	(Note 4)	/	28	66	ns
Qg	Total Gate Charge	V _{DS} = 480 V, I _D = 2 A,		8.5	12	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V	/	1.3		nC
Q_{gd}	Gate-Drain Charge	(Note 4)		4.1		nC
Drain-S	Source Diode Characteristics a	nd Maximum Ratings				
I _S	Maximum Continuous Drain-Source Diode Forward Current				1.9	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				7.6	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S = 1.9 A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 2 A,	-	230	- 1	ns
Q _{rr}	Reverse Recovery Charge	dl _F / dt = 100 A/μs		1.0		μС

NOTES:

^{1.} Repetitive Rating : Pulse width limited by maximum junction temperature.

^{2.} L = 56 mH, I $_{AS}$ = 2 A, V $_{DD}$ = 50 V, R $_{G}$ = 25 Ω , starting T $_{J}$ = 25°C.

^{3.} $I_{SD} \le 2$ A, di/dt ≤ 200 A/ μ s, $V_{DD} \le BV_{DSS,}$ starting T_J = 25°C.

^{4.} Essentially independent of operating temperature.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

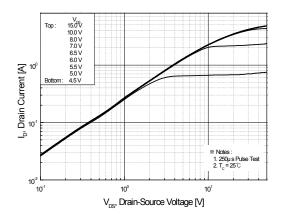


Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage

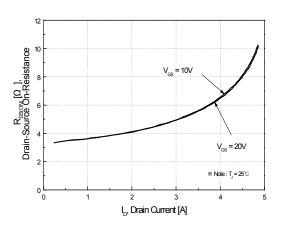


Figure 5. Capacitance Characteristics

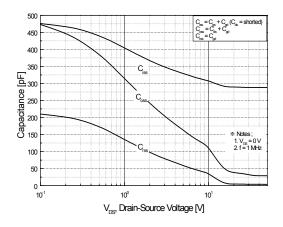


Figure 2. Transfer Characteristics

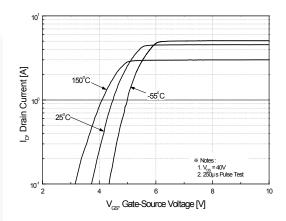


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

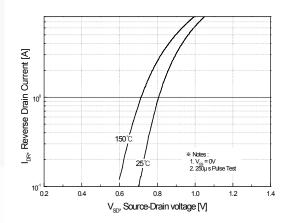


Figure 6. Gate Charge Characteristics

www.fairchildsemi.com

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

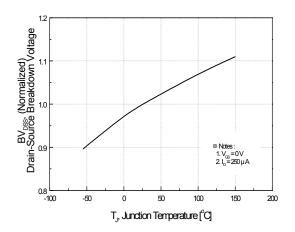


Figure 9. Maximum Safe Operating Area

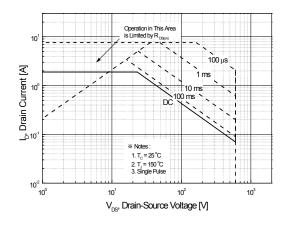


Figure 8. On-Resistance Variation vs. Temperature

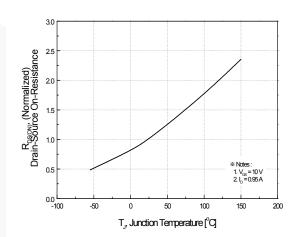


Figure 10. Maximum Drain Current vs. Case Temperature

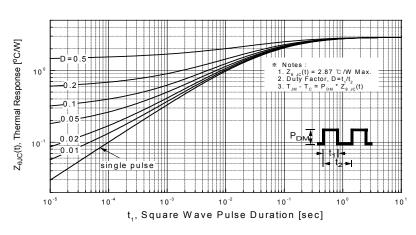



Figure 11. Transient Thermal Response Curve

www.fairchildsemi.com

Figure 12. Gate Charge Test Circuit & Waveform

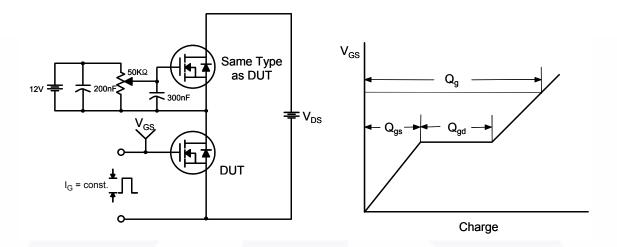
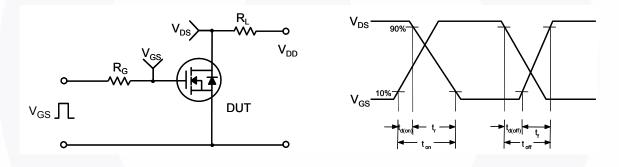
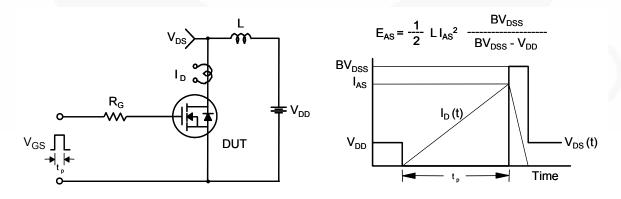
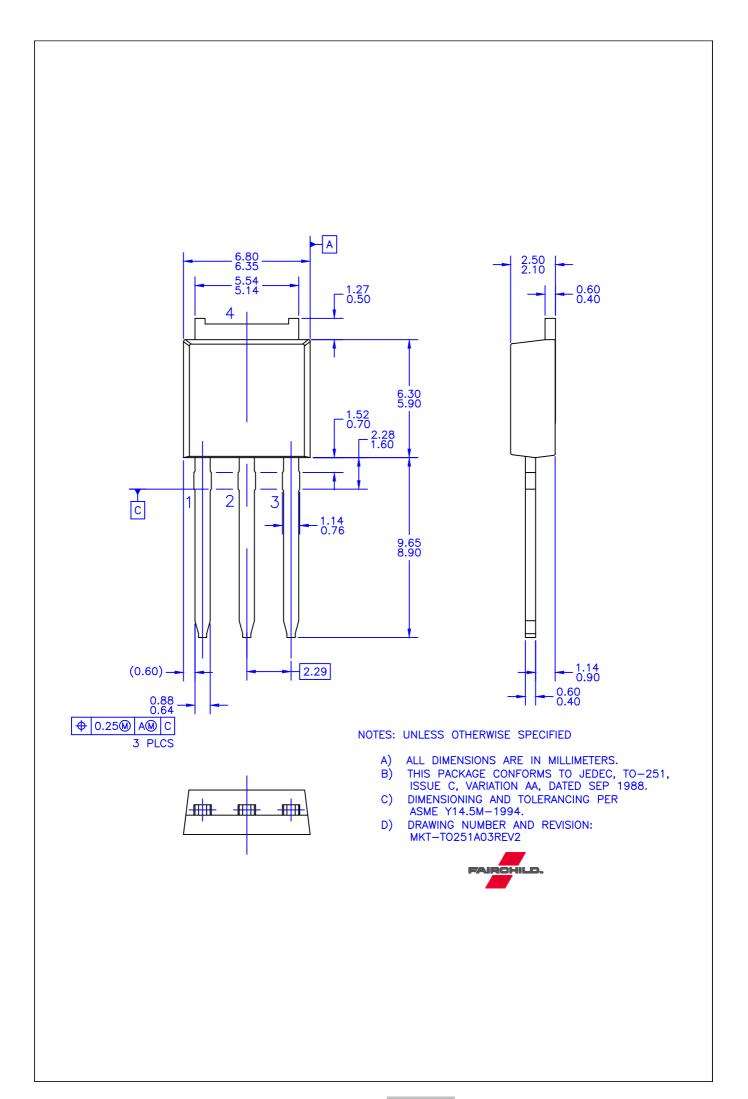
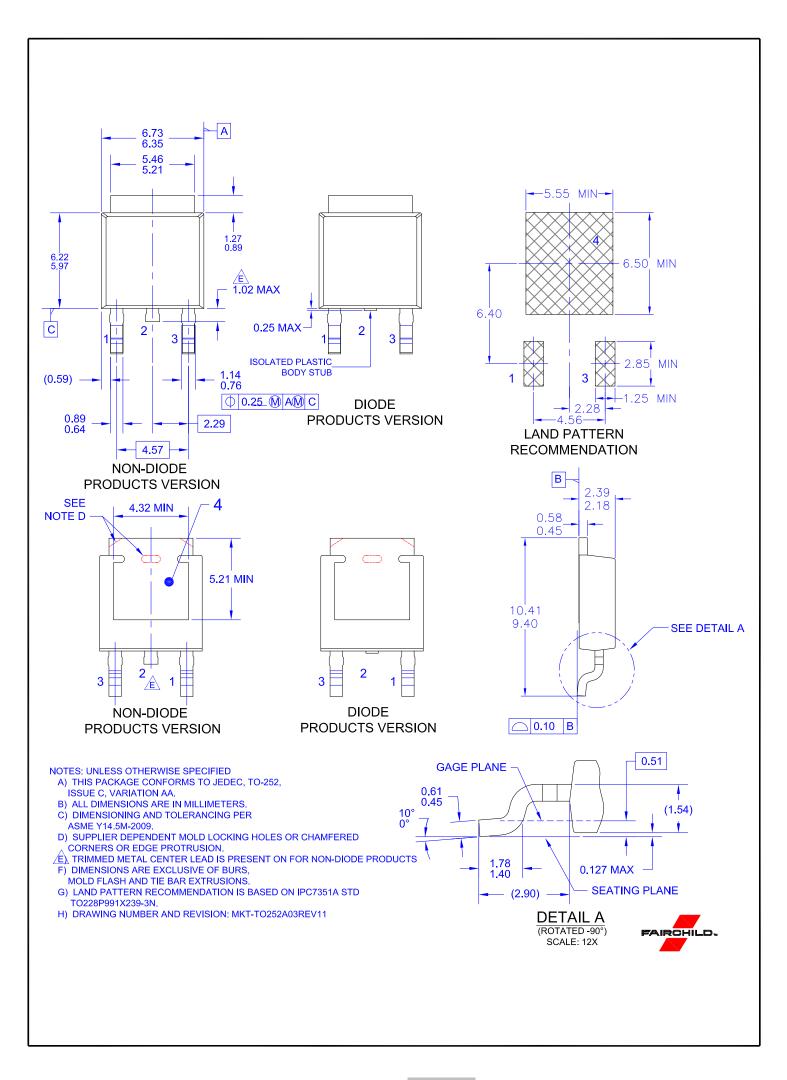


Figure 13. Resistive Switching Test Circuit & Waveforms


Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

©2003 Fairchild Semiconductor Corporation FQD2N60C / FQU2N60C Rev.1.4

Figure 15. Peak Diode Recovery dv/dt Test Circuit & Waveforms DUT I_{SD} & Driver Same Type as DUT F V_{DD} dv/dt controlled by R_G \bullet I_{SD} controlled by pulse period Gate Pulse Width V_{GS} Gate Pulse Period 10V (Driver) I_{FM} , Body Diode Forward Current I_{SD} di/dt (DUT) I_{RM} **Body Diode Reverse Current** V_{DS} (DUT) Body Diode Recovery dv/dt **Body Diode** Forward Voltage Drop

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Phone: 81-3-5817-1050

单击下面可查看定价,库存,交付和生命周期等信息

>>ON Semiconductor(安森美)