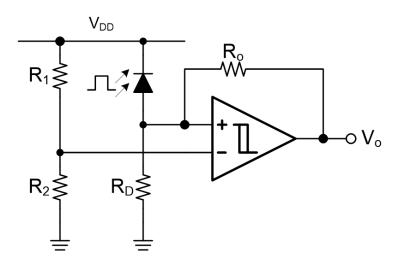


Features

- Power Supply Voltage: 2.5 V to 5.5 V
- Low Supply Current: 50 µA per channel
- High-to-Low Propagation Delay: 120 ns
- Internal Hysteresis Ensures Clean Switching
- Offset Voltage: ±4 mV
- Input Bias Current: 30 pA Typical
- Input Common-Mode Range Extends 100 mV
- Open-Drain Output for Maximum Flexibility

Applications


- Peak and Zero-crossing Detectors
- Threshold Detectors/Discriminators
- Sensing at the Ground or Supply Line
- Logic Level Shifting or Translation
- Window Comparators
- IR Receivers

Description

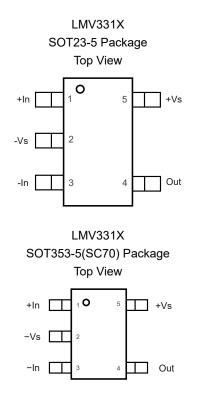
The devices in this series consist of one or two comparators on a single monolithic substrate. The common-mode input voltage range includes ground and power even when operated from a single supply, and the low power supply current drain makes these comparators suitable for battery operation. The devices are designed to directly interface with TTL and CMOS, the outputs can be connected to other open-collector or open-drain outputs to achieve wired-AND relationships.

The devices are specified for the temperature range from -40° C to $+125^{\circ}$ C.

Typical Application Circuit

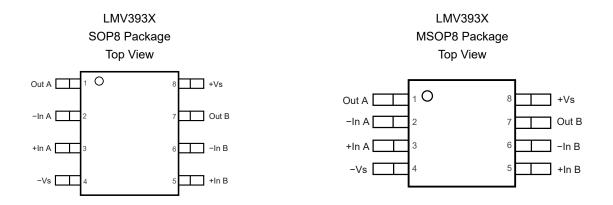
Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	6
Electrical Characteristics	8
Electrical Characteristics (continued)	10
Typical Performance Characteristics	12
Application and Implementation	13
Application Information	13
Typical Application	14
Tape and Reel Information	15
Package Outline Dimensions	
SOT23-5	
SOT353-5	
SOP8	
MSOP8	
Order Information	
IMPORTANT NOTICE AND DISCLAIMER	21



Revision History

I	Date	Revision	Notes
202	3-09-03	Rev.A.0	Initial version.



Pin Configuration and Functions

Pin No.	Name	I/O	Description
4	Out	0	Output
2	-Vs	-	Negative power supply
1	+In	I	Noninverting input
3	-In	I	Inverting input
5	+Vs	-	Positive power supply

Table 2. Pin Functions: LMV393X

Pin No.	Name	I/O	Description
1	Out A	0	Output
2	−In A	I	Inverting input
3	+In A	I	Noninverting input
4	-Vs	-	Negative power supply
5	+In B	I	Noninverting input
6	−In B	I	Inverting input
7	Out B	0	Output
8	+Vs		Positive power supply

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Мах	Unit
	Supply Voltage, $(+V_S) - (-V_S)$		6.5	V
	Input Voltage	(−V _S) – 0.3	6.5	V
	Input Current: +IN, -IN ⁽²⁾	-10	+10	mA
	Output Current: OUT	-10	+10	mA
	Output Short-Circuit Duration ⁽³⁾		Thermal protection	
TJ	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-40	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500 mV beyond the negative power supply, the input current should be limited to less than 10 mA.

(3) A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many comparator are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Parameter		Min	Тур	Max	Unit
Vs	Supply Voltage, $(+V_S) - (-V_S)$	2.5		5.5	V

Thermal Information

Package Type	θ _{JA}	θյς	Unit
SOT353 (SC70-5)	400	150	°C/W
SOT23-5	250	81	°C/W
SOP8	158	43	°C/W

LMV331X / LMV393X

5-V Low-Power Comparators with Open Drain Output

Package Type	θја	θις	Unit
MSOP8	210	45	°C/W

Electrical Characteristics

All test conditions: V_S = 5 V, $R_{PULL-UP}$ = 5.1k, T_A = 25°C, unless otherwise noted.

	Parameter	Condit	ions	Min	Тур	Мах	Unit
Power S	Supply						
	Quiescent Current per	V _{CM} = 5 V			50	75	μA
lq	Comparator	V _{CM} = 5 V, T _A = −40°C t	o 125°C			80	μA
		$V_{\rm S}$ = 2.5 V to 5 V, $V_{\rm CM}$ =	0 V	60	80		dB
PSRR	Power Supply Rejection Ratio	V _s = 2.5 V to 5 V, V _{CM} = 125°C	0 V, $T_A = -40^{\circ}C$ to	50			dB
Input Ch	naracteristics						
.,	(1)	V _{CM} = 0 V to 5 V		-4	-0.5	4	mV
Vos	Input Offset Voltage ⁽¹⁾	$V_{CM} = 0 V$ to 5 V, $T_A = -$	40°C to 125°C	-5		5	mV
	Input Offset Voltage Drift ⁽²⁾	T _A = −40°C to 125°C			2		μ V/°C
	(1)	V _{CM} = 0 V to 5 V		1	4.5	10	mV
V _{HYST}	Input Hysteresis Voltage ⁽¹⁾	$V_{CM} = 0 V$ to 5 V, $T_A = -$	40°C to 125°C			15	mV
	Input Hysteresis Voltage Drift ⁽²⁾	T _A = −40°C to 125°C			10		μ V/°C
	V _{CM} = 2.5				30		pА
IB	Input Bias Current ⁽²⁾	V _{CM} = 2.5 V, T _A = -40°C to 125°C				240000	pА
		V _{CM} = 2.5 V			30		pА
los	Input Offset Current ⁽²⁾	V _{CM} = 2.5 V, T _A = −40°C to 125°C				240000	pА
CIN	Input Capacitance ⁽⁴⁾	T _A = 25°C	Differential Common Mode		3.5 6		pF
V _{CM}	Common-mode Input Voltage Range	$T_A = -40^{\circ}$ C to 125°C		(−V _S) − 0.1		(+V _S)+ 0.1	v
		V _{CM} = 0 V to 5 V		60	80		dB
CMRR	Common Mode Rejection Ratio	$V_{CM} = 0 V$ to 5 V, $T_A = -$	40°C to 125°C	50			dB
Output (Characteristics						
	High-level Output Current ⁽²⁾	V _{OH} = 5 V, V _{ID} = 1 V			1		nA
I _{OH}		V _{OH} = 5 V, V _{ID} = 1 V, T _A =	= −40°C to 125°C		100		nA
		I _{OL} = 1 mA, V _{ID} = −1 V			10	20	mV
Vol	Low-Level Output Voltage	I_{OL} = 1 mA, V_{ID} = -1 V, T_A = -40°C to 125°C				50	mV
		V _{OL} = 1.5 V, V _{ID} = -1 V		80	120		mA
IOL	Low-Level Output Current	$V_{OL} = 1.5 V, V_{ID} = -1 V,$	T _A = −40°C to 125°C	50			mA
	Output Short Circuit Current	Sink current,		85	125		mA
Isc	Output Short-Circuit Current	Sink current, T _A = −40°C to 125°C		70			mA

	Parameter	Conditions	Min	Тур	Max	Unit
T _{PLH} Propagation delay time, low-to high	Propagation delay time, low-to	ΔV_{IN} = 1 V, V_{CM} = 0 V, 100mV overdrive, C_{L} = 15pF $^{(2)}$		120	180	ns
	ΔV_{IN} = 1 V, V_{CM} = 0 V, 20mV overdrive, C_{L} = 15pF $^{(2)}$		220		ns	
T _{PHL}	Propagation delay time, high-to low	ΔV_{IN} = 1 V, V_{CM} = 0 V, 100mV overdrive, C_{L} = 15pF $^{(2)}$		110	170	ns
		ΔV_{IN} = 1 V, V_{CM} = 0 V, 20mV overdrive, C_{L} = 15pF $^{(2)}$		222		ns
T _R	Rise time	$C_{L} = 15 pF^{(2)(5)}$		181		ns
TF	Fall time	(2) (5)		0.81		ns

(1) The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

(2) Provided by bench test and design simulation.

(3) Delay time is measured from mid-point of input to mid-point of output.

(4) Provided by design simulation.

(5) Measured between 10% of $V_{\rm S}$ and 90% of $V_{\rm S}.$

Electrical Characteristics (continued)

All test condition is V_S = 2.5 V, $R_{PULL-UP}$ = 5.1k, T_A = 25°C, unless otherwise noted.

Parameter		Con	Min	Тур	Max	Unit		
Power S	Supply	•						
	Quiescent Current per	V _{CM} = 2.5 V		53	90	μA		
lq	Comparator	V _{CM} = 2.5 V, T _A = -40			100	μA		
Input C	haracteristics					1		
(4)		V _{CM} = 0 V to 2.5 V			-0.5	4	mV	
Vos	Input Offset Voltage ⁽¹⁾	V _{CM} = 0 V to 2.5 V, T	-5		5	mV		
	Input Offset Voltage Drift ⁽²⁾	T _A = −40°C to 125°C			2		μ V/°C	
	Input Hysteresis Voltage ⁽¹⁾	V _{CM} = 0 V to 2.5 V		1	4.5	10	mV	
V _{HYST}		V _{CM} = 0 V to 2.5 V, T	_A = −40°C to 125°C			15	mV	
	Input Hysteresis Voltage Drift ⁽²⁾ $T_A = -40^{\circ}C$ to 125°C				10		µ V/°C	
		V _{CM} = 1.25 V		30		pА		
IB	Input Bias Current ⁽²⁾	V _{CM} = 1.25 V, T _A = -4			240000	pА		
los	Input Offset Current ⁽²⁾	V _{CM} = 1.25 V		2		pА		
		V _{CM} = 1.25 V, T _A = -4			10	pА		
C _{IN}	Input Capacitance ⁽⁴⁾	T _A = 25°C	Differential		3.5		_	
			Common Mode		6		pF	
V _{см}	Common-mode Input Voltage Range	$T_A = -40^{\circ}C$ to $125^{\circ}C$	(−V _S) − 0.1		(+V _S)+ 0.1	v		
		V _{CM} = 0 V to 2.5 V	60	75		dB		
CMRR	Common Mode Rejection Ratio	V _{CM} = 0 V to 2.5 V, T _A = −40°C to 125°C		50			dB	
Output	Characteristics					-		
	Link Louis Outrast Outrast (4)	V _{OH} = 2.5 V, V _{ID} = 1 V			10		nA	
l _{он}	High-level Output Current ⁽⁴⁾	V _{OH} = 2.5 V, V _{ID} = 1 V				nA		
.,	Low-Level Output Voltage	$I_{OL} = 1 \text{ mA}, V_{ID} = -1 \text{ V}$		15	20	m۷		
Vol		$I_{OL} = 1 \text{ mA}, V_{ID} = -1 \text{ V}$			50	m۷		
	Low-Level Output Current ⁽⁴⁾	V_{OL} = 1.5 V, V_{ID} = 1 V		45		mA		
lol		V_{OL} = 1.5 V, V_{ID} = 1 V				mA		
1	Output Short-Circuit Current	Sink current	42	50		mA		
lsc		Sink current, T _A = −40	35			mA		
Switchi	ng Characteristics, $T_A = -40^{\circ}$ C to	125°C ⁽³⁾						
Tplh	Propagation delay time, low-to high	$\Delta V_{IN} = 1 V, V_{CM} = 0 V$ = 15pF ⁽⁴⁾		158	230	ns		

Parameter		Conditions	Min	Тур	Max	Unit
		ΔV_{IN} = 1 V, V _{CM} = 0 V, 20mV overdrive, C _L = 15pF $^{(4)}$		280		ns
T _{PHL}	Propagation delay time, high-to low	ΔV_{IN} = 1 V, V _{CM} = 0 V, 100mV overdrive, C _L = 15pF $^{(4)}$		120	230	ns
		$ \Delta V_{\text{IN}} = 1 \text{ V}, V_{\text{CM}} = 0 \text{ V}, 20 \text{mV} \text{ overdrive, } C_{\text{L}} $		223		ns
T _R	Rise time	$C_{L} = 15 p F^{(4)(5)}$		181		ns
T _F	Fall time	(2) (5)		1.5		ns

(1) The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.

(2) Provided by bench test and design simulation.

(3) Delay time is measured from mid-point of input to mid-point of output.


(4) Provided by design simulation.

(5) Measured between 10% of $V_{\rm S}$ and 90% of $V_{\rm S}.$

Typical Performance Characteristics

All test conditions: V_S = 5 V, V_{CM} = 0 V, $R_{pull-up}$ = 5.1K, unless otherwise noted.

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Power Supply Layout and Bypass

The power supply pins of LMV331X and LMV393X families are supposed to have local bypass capacitors (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for good high-frequency performance. It can also use a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large and slow currents. This bulk capacitor can be shared with other analog parts.

Good ground layout improves performance by decreasing the amount of stray capacitance and noise at the comparator's inputs and outputs. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place external components as close to the pins of comparators as possible.

Operation Outside of the Common Input Voltage Range

The following is a list of input voltage situations and the corresponding outcomes:

- 1. When both -IN and +IN are within the common-mode range:
 - a. If the voltage at the -IN pin is higher than the voltage at the +IN pin and the offset voltage, the output is low and the output MOSFET is sinking current.
 - b. If the voltage at the -IN pin is lower than the voltage at the +IN pin and the offset voltage, the output is high impedance.
- 2. When the voltage at the -IN pin is higher than the common-mode voltage range and the voltage at the +IN pin is within the common-mode voltage range, the output is low and the output MOSFET is sinking current.
- 3. When the voltage at the +IN pin is higher than the common-mode voltage range and the voltage at the -IN pin is within the common-mode voltage range, the output is high impedance.
- 4. When the voltage at the -IN and +IN pins are both higher than the common-mode voltage range, the output is in an uncertain state.

Typical Application

IR Receiver

The device is an ideal candidate to be used as an infrared receiver shown in Figure 4. The infrared photo diode creates a current relative to the amount of infrared light present. The current creates a voltage across R_D . When this voltage level crosses the voltage applied by the voltage divider to the inverting input, the output transitions. Optional Ro provides additional hysteresis for noise immunity.

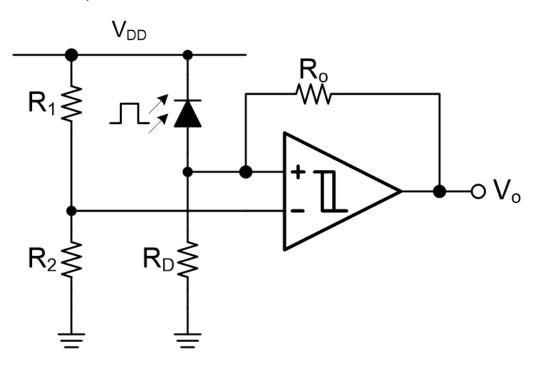
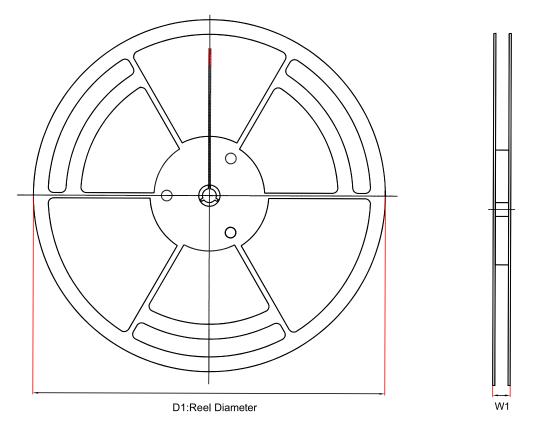
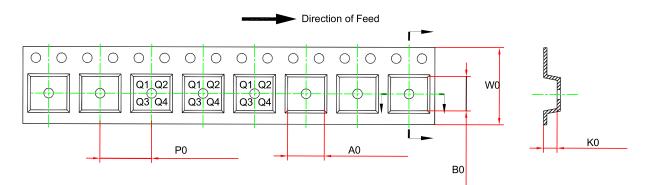
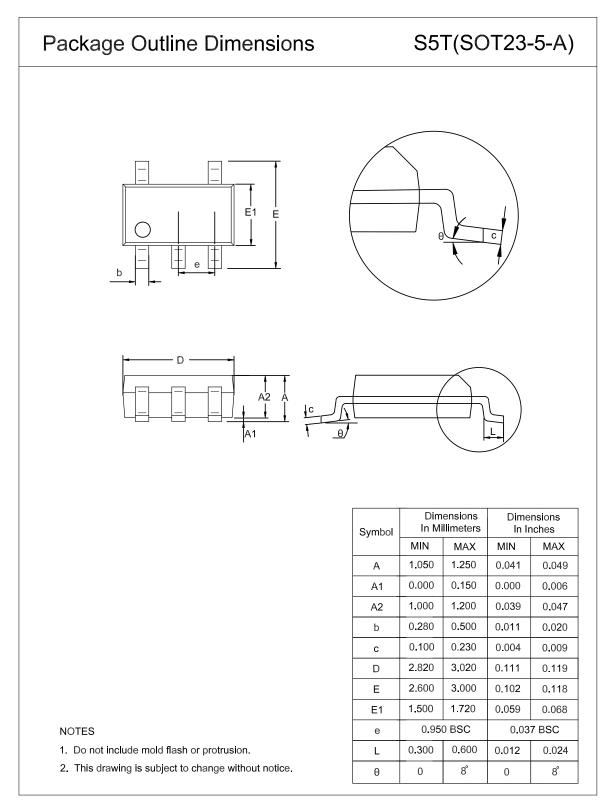
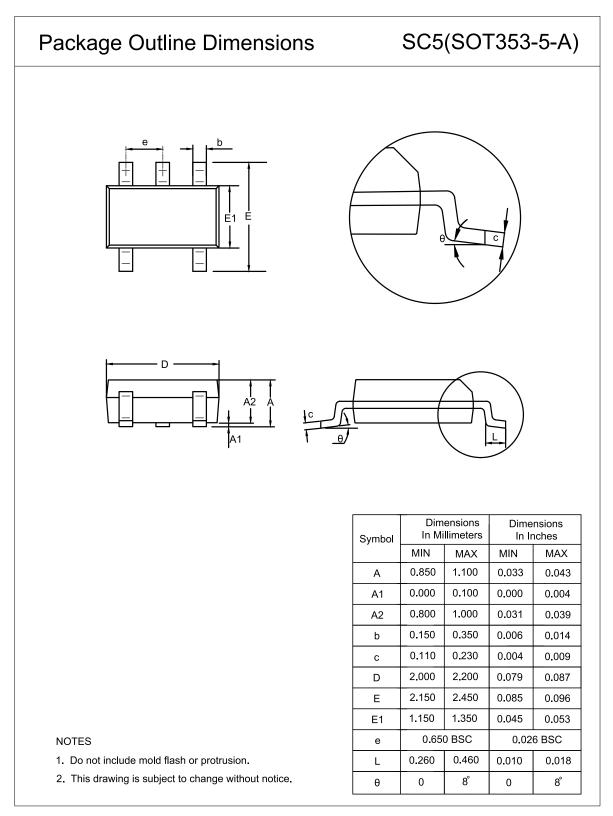




Figure 5. Typical Application Circuit

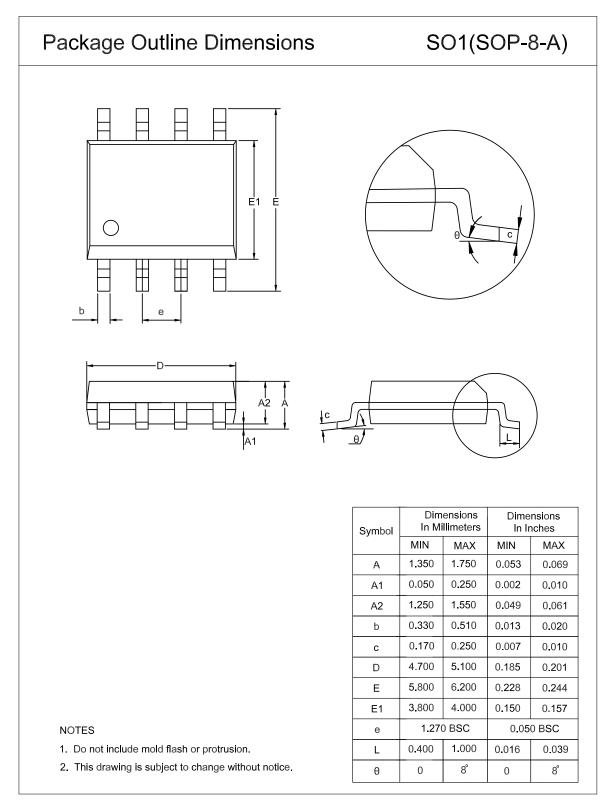
Tape and Reel Information



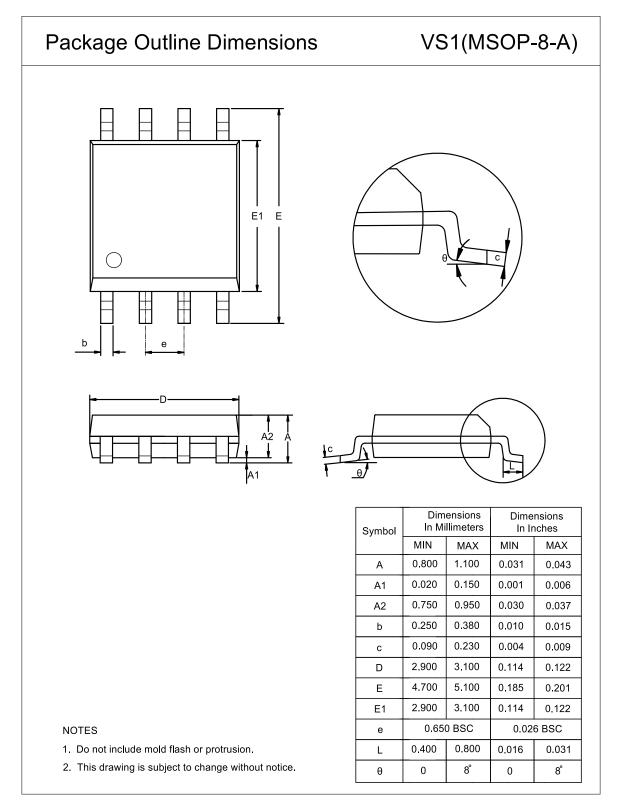
Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
LMV331X-SC5R	SOT353 (SC70-5)	178	12.1	2.4	2.5	1.2	4	8	Q3
LMV393X-VS1R	MSOP8	330	17.6	5.2	3.3	1.3	8	12	Q1
LMV393X-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1
LMV331X-S5TR	SOT23-5	179	12	3.3	3.25	1.4	4	8	Q3


Package Outline Dimensions

SOT23-5



SOT353-5



SOP8

MSOP8

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
LMV331X-SC5R	−40 to 125°C	SOT353 (SC70-5)	A16	MSL1	Tape and Reel,3000	Green
LMV393X-VS1R	−40 to 125°C	MSOP8	V393X	MSL2	Tape and Reel,3000	Green
LMV393X-SO1R	−40 to 125°C	SOP8	V393X	MSL2	Tape and Reel,4000	Green
LMV331X-S5TR	−40 to 125°C	SOT23-5	A16	MSL2	Tape and Reel,3000	Green

(1) The sample will be ready in 1 month.

(2) The sample will be ready in 2 months after manufacture starts.

(3) For future products, contact the 3PEAK factory for more information and samples.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names("Trademarks") contained in this document/material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are results of design simulation or actual tests conducted under designated testing environment. Any differences in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Forward-Looking Statements. The information in this document/material may contain forward-looking statements, except for statements or descriptions of historical facts. These forward-looking statements are based upon our current understanding of our industry, management philosophy and certain assumptions and speculative calculations. These forward-looking statements are subject to risks and uncertainties and our actual results may differ. Please do not rely solely on the above information to make your business decisions.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including, without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights.

LMV331X / LMV393X

5-V Low-Power Comparators with Open Drain Output

This page intentionally left blank

单击下面可查看定价,库存,交付和生命周期等信息

>>3PEAK(思瑞浦)