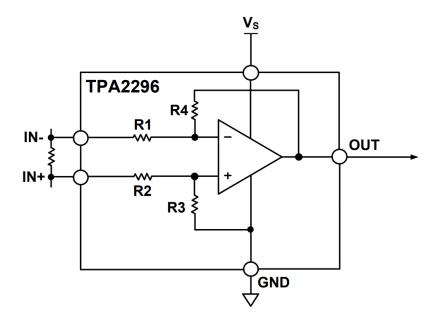


Features

- Small Voltage Offset: ±0.5 mV
- Wide Common-Mode Voltage: −0.1V to 70 V
- Wide CMRR through Common Voltage: 100 dB
- Supply Voltage: 3.0 V to 18 V
- · Accuracy and Zero-Drift Performance
 - ±0.5% Gain Error (Max, −40°C ~125°C)
 - 0.6µV/°C Offset Drift (Max, −40°C ~125°C)
 - 5ppm/°C Gain Drift (Max, −40°C ~125°C)
- Three Gain Options for Voltage Output
 - TPA2296T: 20 V/V, 50 V/V, 100 V/V,
- Qualified for Automotive Applications with AEC-Q100 Reliability Test:
 - TPA2296T-S5TR-S

Applications

- Current Sensing (High-Side/Low-Side)
- Battery Chargers & Power Management
- Automotive & Industrial Control
- Base Stations & Telecom Equipment


Description

The TPA2296 family is high-voltage, high-side current sense amplifier with voltage output. The TPA2296 can sense drops across shunts at common-mode voltages from -0.1 V up to 70 V. The TPA2296 is available with three output voltage scales: 20 V/V, 50 V/V, and 100 V/V, with up to 0.5-MHz bandwidth.

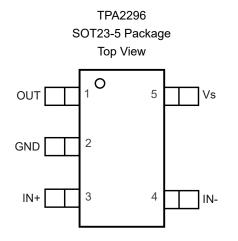
The TPA2296 operates from a single 3.0-V to 18-V supply and offers breakthrough performance throughout the -40° C to $+125^{\circ}$ C temperature range. It features a zero-drift core, which leads to an offset drift of $0.6\mu\text{V}/^{\circ}$ C throughout the operating temperature range and the common-mode voltage range.

The TPA2296 is offered in 6-pin and 5-pin SOT23 packages.

Functional Block Diagram

Table of Contents

Features	1
Applications	1
Description	1
Functional Block Diagram	1
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	8
Typical Performance Characteristics (continued)	
Detailed Description	10
Overview	10
Application and Implementation	11
Application Information	11
Tape and Reel Information	12
Package Outline Dimensions	13
SOT23-6	13
SOT23-5	14
Order Information	15
IMPORTANT NOTICE AND DISCLAIMER	



Revision History

Date	Revision	Notes				
2020-08-17	Rev.A.0	Released version				
2020-10-17	Rev.A.1	Added Vos test condition				
2021-10-16	Rev.A.2	Jpdated figure of step response				
2022-05-01	Rev.A.3	Updated order information and package outline dimensions				
2023-11-23	Rev.A.4	Updated part number status: TPA2296F-S6TR-S				
2024-04-17	Rev.A.5	The following updates are all about the new datasheet formats or typo, the actual product remains unchanged. Updated to new format of datasheet. Updated tape and reel information. Added part nubmer: TPA2296T-S5TR-S.				

Pin Configuration and Functions

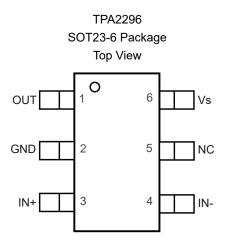


Table 1. Pin Functions: TPA2296

P	in	Nome	Description
SOT23-5	SOT23-6	Name	Description
4	4	IN-	Negative Input
2	2	GND	Ground
1	1	OUT	Output
5	6	Vs	Power supply
3	3	IN+	Positive Input.
	5	NC	No Connect

Specifications

Absolute Maximum Ratings (1)

Parameter	Min	Max	Unit
Supply Voltage		40	V
Input Common Voltage (Continuous)	-0.3	75	V
Input Common Voltage (Survival)	-0.3	80	V
Input Current: IN+, IN- (2)	-10	10	mA
Operating Temperature Range	-40	125	°C
Maximum Working Junction Temperature		150	°C
Storage Temperature Range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θја	Ө лс	Unit
SOT23-6	250	81	°C/W
SOT23-5	250	81	°C/W

⁽²⁾ The inputs are protected by ESD protection diodes to the power supply.

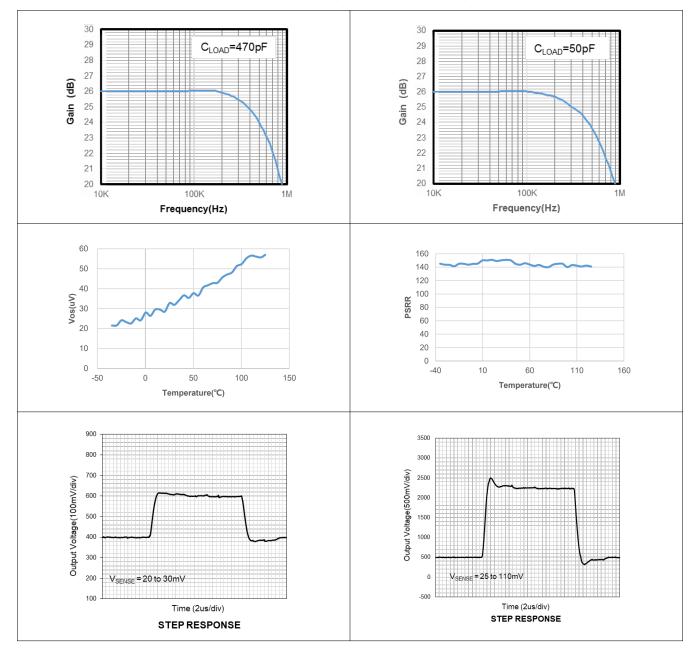
⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

The specifications are at T_A = 25°C, VSENSE = VIN+ VIN = 1mV, V_S = 12V, VIN+ = 70V , unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input						
Vos	Input Offset Voltage	-40°C to 125°C, VIN- = 0 V	-500	±50	500	μV
Vos TC (1)	Input Offset Voltage Drift	-40°C to 125°C			0.6	μV/°C
V _{CM}	Common-mode Input Range	-40°C to 125°C	-0.1		70	V
		-40°C to 125°C, -0.3 V < VIN+ < 70 V, G = 20 V/V	90	110		dB
CMRR	Common Mode Rejection Ratio	-40°C to 125°C, -0.3 V < VIN+ < 70 V, G = 50 V/V	95	115		dB
		-40°C to 125°C, -0.3V < VIN+ < 70 V, G = 100 V/V	100	120		dB
1-	Input Bias Current	-40°C to 125°C, TPA2296F- S6TR-S, TPA2296T-S5TR-S			250	μA
I _B	Input bias current	-40°C to 125°C, All other part number			210	μA
PSRR	Power Supply Rejection Ratio	-40°C to 125°C		110		dB
NOISE , R	eferred to Input)					
en	Input Voltage Noise Density	f = 1 kHz		55		nV/√Hz
Output						
	Gain	TPA2296T, -40°C to 125°C	19.9	20	20.1	V/V
G		TPA2296F, -40°C to 125°C	49.75	50	50.25	V/V
		TPA2296H, -40°C to 125°C	99.5	100	100.5	V/V
GE	Gain Error	-40°C to 125°C	-0.5	±0.1	0.5	%
GE TC	Gain Error Vs Temperature	-40°C to 125°C		3	5	ppm/°C
C _{LOAD}	Maxim Capacitive load	No Oscillation		0.5		nF
V _{OH}	Output Swing from Supply Rail	-40°C to 125°C, Source 1.2 mA		0.15	0.31	V
Vol	Output Swing from GND	-40°C to 125°C		0.01	0.02	V
Frequency	Response					
		TPA2296T, G = 20		400		kHz
BW	Bandwidth	TPA2296F, G = 50		300		kHz
		TPA2296H, G = 100		200		kHz
SR	Slew Rate	V _{SENSE} = VIN+ – VIN– = 500 mV		20		V/µs
Power Sup	oply					
Vs	Supply Voltage		3.0		18	V
IQ	Quiescent Current	-40°C to 125°C		600	1000	μA
Temperatu	ire Range					

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Specified F	Range		-40		125	°C


⁽¹⁾ Maxim specification is calculated with limited sample quantity in the laboratory.

⁽²⁾ RTI = referred to input.


Typical Performance Characteristics

All test conditions: TA = 25°C, V_{SENSE} = VIN+ – VIN– = 1 mV, Vs = 12 V, VIN+ = 24 V, unless otherwise noted.

Typical Performance Characteristics (continued)

Detailed Description

Overview

The TPA2296 family is high-voltage, high-side current sense amplifier with voltage output. The TPA2296 can sense drops across shunts at common-mode voltages from -0.1 V up to 70 V. The TPA2296 is available with three output voltage scales: 20 V/V, 50 V/V, and 100 V/V, with up to 0.5 MHz bandwidth.

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Selecting R_{sense}

The zero-drift offset performance of the TPA2296 offers several benefits. Most often, the primary advantage of the low offset characteristic enables lower full-scale drops across the R_{sense}. For example, non-zero-drift current sense monitors typically require a full-scale range of 100 mV. The TPA2296 family gives equivalent accuracy at a full-scale range on the order of 10 mV. This accuracy reduces R_{sense} dissipation by an order of magnitude with many additional benefits.

Alternatively, some applications must measure current over a wide dynamic range that can take advantage of the low offset on the low end of the measurement. Most often, these applications can use the lower gains of the TPA2296 to accommodate larger R_{sense} drops on the upper end of the scale.

Recommended Component Values

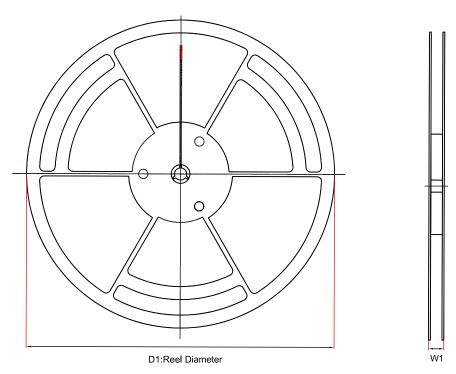
Ideally, the maximum load current develops the full-scale sense voltage across the current-sense resistor. Choose the gain needed to match the maximum output voltage required for the application:

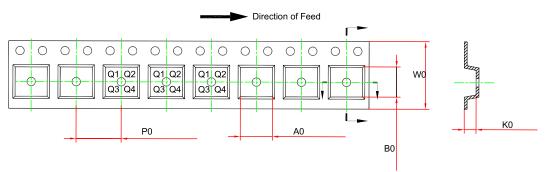
$$V_{\text{out}} = V_{\text{sense}} \times A_{V}$$
 (1)

Where V_{sense} is the full-scale sense voltage, and Av is the gain of the TPA2296.

In applications of monitoring a high current, ensure that R_{sense} can to dissipate its own I^2R power loss. If the resistor's power dissipation exceeds the nominal value, its value may drift, or it may fail altogether. The TPA2296 senses a wide variety of currents with different sense-resistor values.

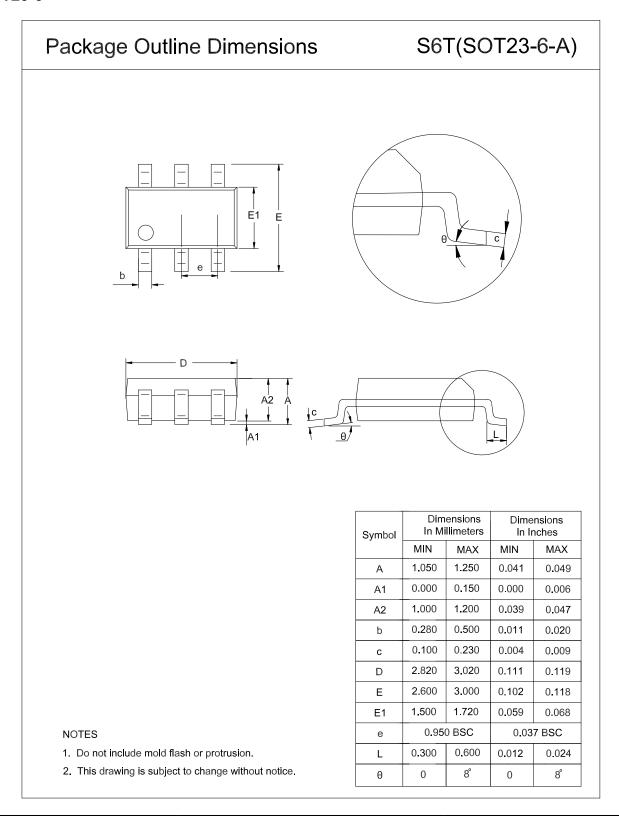
Power Supply Recommendation


The input circuitry of the TPA2296 can accurately measure beyond its power-supply voltage, Vs. For example, the Vs power supply can be 5 V, whereas the load power-supply voltage can be as high as 70 V. However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin.

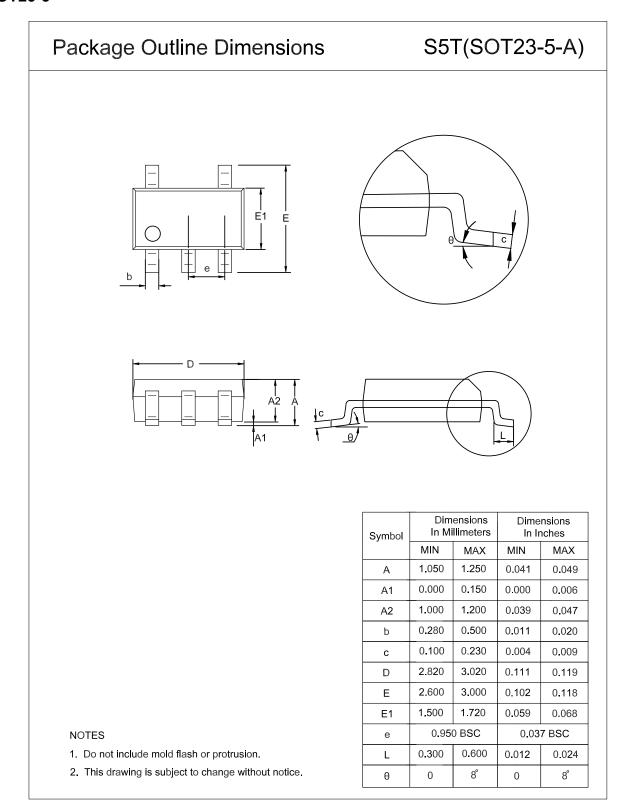

Layout: Kelvin Connection

A typical routing of Kelvin-sensed traces to the inputs of the TPA2296 is needed in the PCB Layout. The Kelvin-sense traces should be as close as possible to the current-sense resistor's solder contact pads. Any additional high-current carrying impedance can cause significant measurement errors because the current resistor has a very low value.

Tape and Reel Information



Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPA2296T-S5TR	SOT23-5	180.0	12.0	3.3	3.25	1.4	4.0	8.0	Q3
TPA2296T-S5TR-S	SOT23-5	180.0	12.0	3.3	3.25	1.4	4.0	8.0	Q3
TPA2296F-S6TR-S	SOT23-6	180.0	12.0	3.3	3.2	1.4	4.0	8.0	Q3
TPA2296H-S5TR-S	SOT23-5	180.0	12.0	3.3	3.25	1.4	4.0	8.0	Q3
TPA2296H-S6TR-S	SOT23-6	180.0	12.0	3.3	3.2	1.4	4.0	8.0	Q3


Package Outline Dimensions

SOT23-6

SOT23-5

Order Information

Order Number	Gain	Package	Marking	MSL	Transport Media, Quantity	Eco Plan
TPA2296T-S5TR	20	SOT23-5	A6T	3	Tape and Reel, 3,000	Green
TPA2296T-S5TR-S (1)	20	SOT23-5	A6T	3	Tape and Reel, 3,000	Green
TPA2296F-S6TR-S	50	SOT23-6	C6F	3	Tape and Reel, 3,000	Green
TPA2296H-S5TR-S	100	SOT23-5	A6H	3	Tape and Reel, 3,000	Green
TPA2296H-S6TR-S	100	SOT23-6	C6H	3	Tape and Reel, 3,000	Green

⁽¹⁾ Qualified for automotive applications with aec-q100 reliability test.

⁽²⁾ Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

单击下面可查看定价,库存,交付和生命周期等信息

>>3PEAK(思瑞浦)