

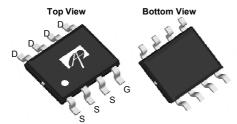
AO4413

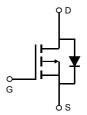
30V P-Channel MOSFET

General Description

 \bullet The AO4413 uses advanced trench technology to provide excellent $R_{\rm DS(ON)},$ and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

• RoHS and Halogen-Free Compliant


Product Summary


 $\begin{array}{lll} V_{DS} & -30V \\ I_{D} \; (at \; V_{GS} = -20V) & -15A \\ R_{DS(ON)} \; (at \; V_{GS} = -20V) & <7m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} = -10V) & <8.5m\Omega \end{array}$

100% UIS Tested 100% R_g Tested

SOIC-8

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Parameter		Symbol	Maximum	Units
Drain-Source Voltage		V _{DS}	-30	V
Gate-Source Voltage	9	V _{GS}	±25	V
Continuous Drain	T _A =25°C	1	-15	
Current	T _A =70°C	'D	-12.8	Α
Pulsed Drain Curren	t ^c	I _{DM}	-120	
Avalanche Current C		I _{AS} , I _{AR}	50	Α
Avalanche energy La	=0.1mH ^C	E _{AS} , E _{AR}	125	mJ
	T _A =25°C	ь	3.1	W
Power Dissipation ^B	T _A =70°C	P_{D}	2	VV
Junction and Storage	e Temperature Range	T _J , T _{STG}	-55 to 150	°C

Thermal Characteristics **Parameter** Symbol Тур Max Units Maximum Junction-to-Ambient t ≤ 10s 31 40 °C/W $R_{\theta JA}$ Maximum Junction-to-Ambient AD Steady-State 59 75 °C/W $R_{\theta JL}$ Maximum Junction-to-Lead Steady-State 16 24 °C/W

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC P	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =-250 μ A, V_{GS} =0V		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-30V, V _{GS} =0V				-1	μΑ
D00			Г _Ј =55°С			-5	p., .
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±25V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250\mu A$		-1.5	-2.5	-3.5	V
$I_{D(ON)}$	On state drain current	V_{GS} =-10V, V_{DS} =-5V		-120			Α
		V _{GS} =-20V, I _D =-15A			5.3	7	mΩ
$R_{DS(ON)}$	Static Drain-Source On-Resistance	T _J	=125°C		7.5	9	11122
		V _{GS} =-10V, I _D =-15A			6.4	8.5	mΩ
g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-15A			35		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.7	-1	V
Is	Maximum Body-Diode Continuous Curr				-4	Α	
DYNAMIC	PARAMETERS						
C _{iss}	Input Capacitance			2310	2890	3500	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1M	lHz	410	585	760	pF
C _{rss}	Reverse Transfer Capacitance	1		280	470	660	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MH:	z	1.9	3.8	5.7	Ω
SWITCHII	NG PARAMETERS						
Q_g	Total Gate Charge			40	51	61	nC
Q_{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-15V, I_D =	15A	10	12	14	nC
Q_{gd}	Gate Drain Charge			10	16	22	nC
t _{D(on)}	Turn-On DelayTime				16		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1.0 Ω , R_{GEN} =3 Ω			12		ns
t _{D(off)}	Turn-Off DelayTime				45		ns
t _f	Turn-Off Fall Time				22		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-15A, dI/dt=100A/μs		14	18	22	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-15A, dI/dt=100A/μs		9	11	13	nC

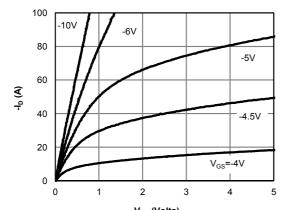
A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The A. The value of $R_{0,A}$ is measured with the device modified of the time 1.25 . Copper, in a san all criminals $R_{0,A}$ is value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using ≤ 10 s junction-to-ambient thermal resistance.

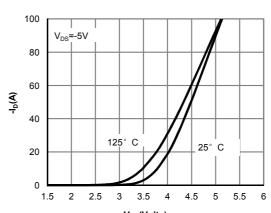
C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

initialT_{.1}=25° C.


D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

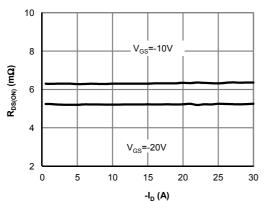
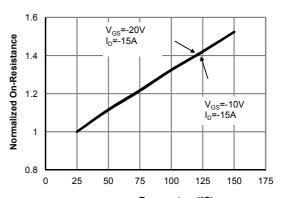
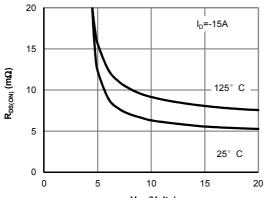
E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max.

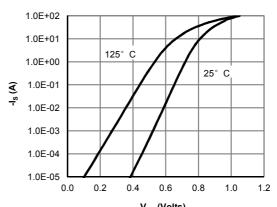

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}$ =150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

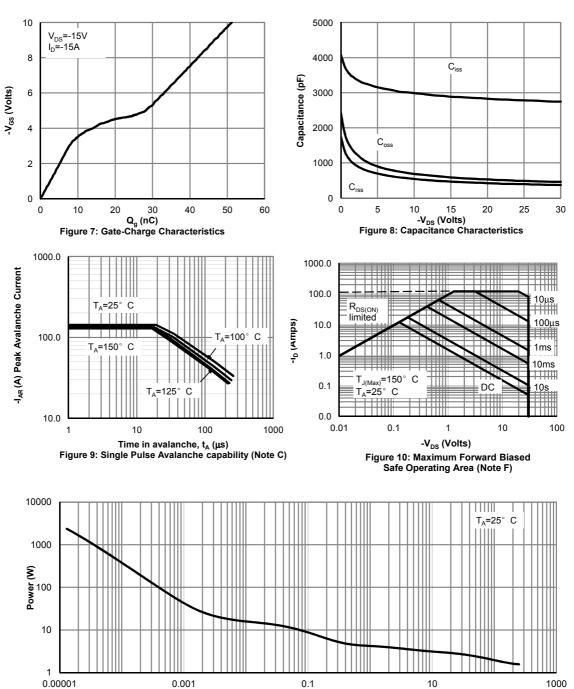
-V_{DS} (Volts) Fig 1: On-Region Characteristics (Note E)

-V_{GS}(Volts)
Figure 2: Transfer Characteristics (Note E)

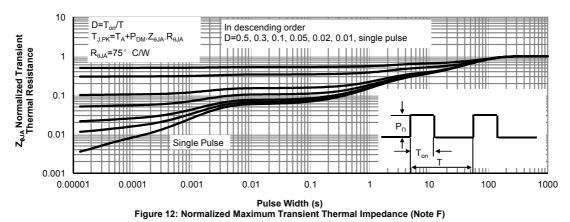





Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

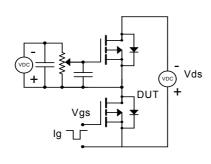
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
(Note E)

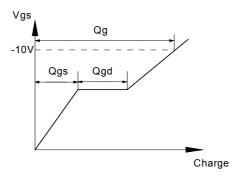

-V_{GS} (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

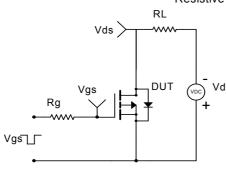
-V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

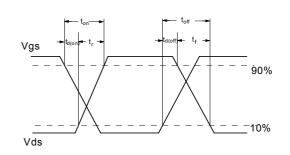

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

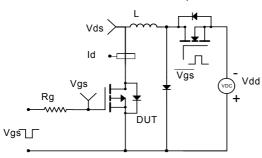
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

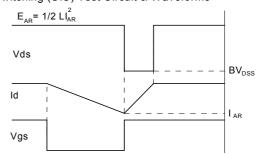


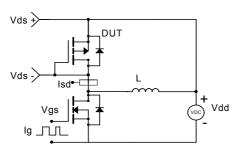

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

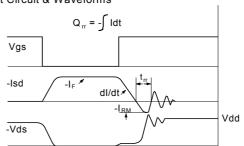



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Document No.	PD-00018
Version	F
Title	AO4413 Marking Description

SO-8 PACKAGE MARKING DESCRIPTION

Green product

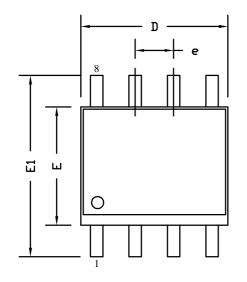
NOTE:

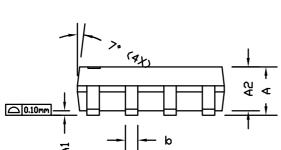
LOGO - AOS Logo

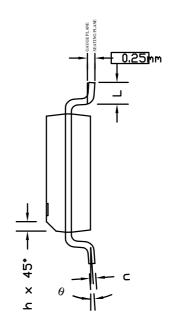
- Part number code

F - Fab code

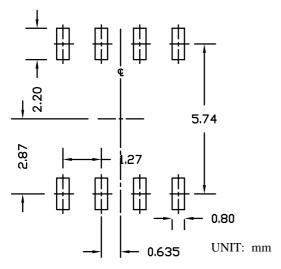
A - Assembly location code


Y - Year code W - Week code L&T - Assembly lot code


PART NO.	DESCRIPTION	CODE
AO4413	Green product	4413
AO4413L	Green product	4413

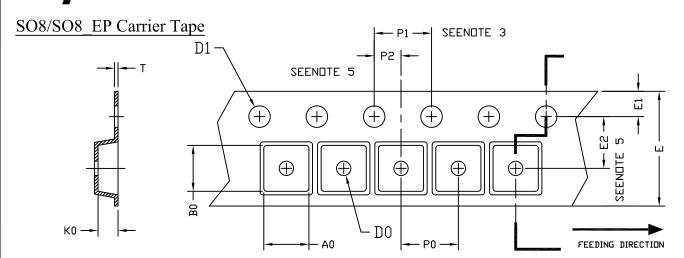


Document No.	PO-00004
Version	Ι


SO8 PACKAGE OUTLINE

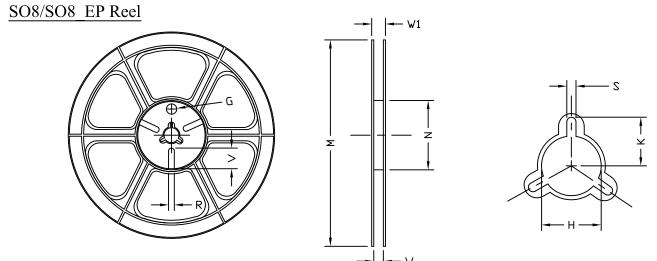
RECOMMENDED LAND PATTERN

SYMBOLS	DIMENSIO	NS IN MILL	IMETERS	DIMENSIONS IN INCHES			
STWIBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.35	1.65	1.75	0.053	0.065	0.069	
A1	0.10	0.15	0.25	0.004	0.006	0.010	
A2	1.25	1.50	1.65	0.049	0.059	0.065	
b	0.31	0.41	0.51	0.012	0.016	0.020	
С	0.17	0.20	0.25	0.007	0.008	0.010	
D	4.80	4.90	5.00	0.189	0.193	0.197	
Е	3.80	3.90	4.00	0.150	0.154	0.157	
e	1	.27 BSC		0.050 BSC			
E1	5.80	6.00	6.20	0.228	0.236	0.244	
h	0.25	0.30	0.50	0.010	0.012	0.020	
L	0.40	0.69	1.27	0.016	0.027	0.050	
θ	0°	4°	8°	0°	4°	8°	

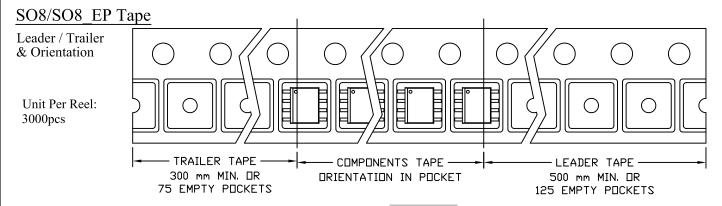

NOTE

- 1. ALL DIMENSIONS ARE IN MILLMETERS.
- 2. DIMENSIONS ARE INCLUSIVE OF PLATING.
- 3. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.


ALPHA & OMEG SEMICONDUCTOR, LTD.

ALPHA & OMEGA SO8/SO8_EP Tape and Reel Data


UNIT: MM

PACKAGE	Α0	В0	K0	D0	D1	E	E1	E2	P0	P1	P2	Т
S□-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05

UNIT: MM

TAPE SIZE	REEL SIZE	М	N	V	W1	Ι	К	S	G	R	>
12 mm	ø330	ø330.00 ±0.50	ø97.00 ±0.10	13.00 ±0.30	17.40 ±1.00	ø13.00 +0.50 -0.20	10.60	2.00 ±0.50			

AOS Semiconductor Product Reliability Report

AO4413, rev E

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc www.aosmd.com

This AOS product reliability report summarizes the qualification result for AO4413. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4413 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation

I. Product Description:

The AO4413 uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

- -RoHS Compliant
- -Halogen Free

Detailed information refers to datasheet.

II. Die / Package Information:

AO4413

Process Standard sub-micron

30V P-Channel MOSFET

Package TypeSO8Lead FrameCuDie AttachAg epoxyBondingCu wire

Mold Material Epoxy resin with silica filler MSL (moisture sensitive level) Level 1 based on J-STD-020

Note * based on information provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO4413

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures	Standard
MSL Precondition	168hr 85°c /85%RH +3 cycle reflow@260°c	-	33 lots	5489pcs	0	JESD22- A113
HTGB	Temp = 150 °c, Vgs=100% of Vgsmax	168hrs 500 hrs 1000 hrs	8 lot 5 lot (Note A*)	1001pcs 77pcs / lot	0	JESD22- A108
HTRB	Temp = 150 °c, Vds=80% of Vdsmax	168hrs 500 hrs 1000 hrs	8 lot 5 lot (Note A*)	1001pcs 77pcs / lot	0	JESD22- A108
HAST	130°c, 85%RH, 33.3 psi, Vgs = 100% of Vgs max	96 hrs	20 lots (Note A*)	1100pcs 55 pcs / lot	0	JESD22- A110
Pressure Pot	121°c, 29.7psi, RH=100%	96 hrs	24lots (Note A*)	1848pcs 77 pcs / lot	0	JESD22- A102
Temperature Cycle	-65°c to 150°c, air to air	250 / 500 cycles	33 lots (Note A*)	2541pcs 77 pcs / lot	0	JESD22- A104

Note A: The reliability data presents total of available generic data up to the published date.

IV. Reliability Evaluation

FIT rate (per billion): 3 MTTF = 44613 years

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4413). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate =
$$\text{Chi}^2 \times 10^9 \text{/} [2 \text{ (N) (H) (Af)}]$$

= $1.83 \times 10^9 \text{/} [2 \times (16 \times 77 \times 500 + 10 \times 77 \times 1000) \times 258] = 3$
MTTF = $10^9 \text{/} \text{FIT} = 3.91 \times 10^8 \text{hrs} = 44613 \text{ years}$

 Chi^2 = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = \mathbf{Exp} [Ea / \mathbf{k} (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj \mathbf{u} = The use junction temperature in degree (Kelvin), K = C+273.16

 $\mathbf{K} = \text{Boltzmann's constant}, 8.617164 \times 10^{-5} \text{eV} / \text{K}$

单击下面可查看定价,库存,交付和生命周期等信息

>>AOS(万代)