A SEMI	HA & ON ICONDU	AEGA CTOR		30V .		AO4800B annel MOSFET
General Descri	ption			Product Summa	iry	
The AO4800B uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters.				V_{DS} $I_{D} (at V_{GS}=10V)$ $R_{DS(ON)} (at V_{GS}=10V)$ $R_{DS(ON)} (at V_{GS}=4.5)$ $R_{DS(ON)} (at V_{GS}=2.5)$ 100% UIS Tested 100% R _g Tested	30V 6.9A < 27mΩ < 32mΩ < 50mΩ	
Top View	SOIC-8 Bottom Vie	ew		Top View	0 D1	O D2
	Pin1	FTTT	S2 ⊑ G2 ⊑ S1 ⊑ G1 ⊑	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Absolute Maximum			S2 = G2 = S1 = G1 =	1 8 D2 2 7 D2 3 6 D1 0- 4 5 D1 G1	0 S1	2 5 S2
Absolute Maximum Parameter	Ratings T _A =2		S2 c G2 c S1 c G1 c therwise n Symbol	1 8 D2 2 7 D2 3 6 D1 4 5 D1 6 Maximu	0 S1	2 5 S2
Absolute Maximum Parameter Drain-Source Voltage	Ratings T _A =2		S2 c G2 c S1 c G1 c therwise n Symbol V _{DS}	1 8 D2 2 7 D2 3 6 D1 4 5 D1 oted Maximu 30	0 S1	2 0 S2
Absolute Maximum Parameter	Ratings T _A =2		S2 c G2 c S1 c G1 c therwise n Symbol	1 8 D2 2 7 D2 3 6 D1 4 5 D1 oted Maximu 30 ±12	0 S1	2 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$		S2 c G2 c S1 c G1 c therwise n Symbol V _{DS}	1 8 D2 2 7 D2 3 6 D1 4 5 D1 6 Maximu 30 ±12 6.9 5.8	0 S1	2 0 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$		S2 c G2 c S1 c G1 c therwise n Symbol V _{DS} V _{GS}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 S1	2 0 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$		S2 cG2 cS1 cG1 ctherwise nSymbolVDSVGSID	1 8 D2 2 7 D2 3 6 D1 4 5 D1 6 Maximu 30 ±12 6.9 5.8	0 S1	2 0 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ T_C		S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	1 8 D2 2 7 D2 3 6 D1 4 5 D1 6 9 5.8 30	0 S1	2 0 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L=	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$ $T_A=25^{\circ}C$		S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 S1	2 V S2 V V A A M M J
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$		S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 S1	2 0 S2
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L=	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ $T_A=25^{\circ}C$ $T_A=25^{\circ}C$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$		S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	1 8 D2 2 7 D2 3 6 D1 0	um	2 0 S2 Units V V A A M M J
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L= Power Dissipation ^B Junction and Storage	Ratings $T_A=2$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ T_C $T_A=25^{\circ}C$ $T_A=25^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$ $T_A=70^{\circ}C$		S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	1 8 D2 2 7 D2 3 6 D1 0- 4 5 D1 G1	um	2 Units V V A A M M W
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L= Power Dissipation ^B Junction and Storage	Ratings $T_A=25$ $T_A=25$ °C $T_A=70$ °C $T_A=70$ °C $T_A=25$ °C $T_A=70$ °C	Range	S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	um	2 Units V V A A M M M C
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L= Power Dissipation ^B Junction and Storage Thermal Characteris Pa	Ratings $T_A=25$ °C $T_A=25$ °C $T_A=70$ °C t^C $T_A=25$ °C $T_A=25$ °C $T_A=25$ °C $T_A=70$ °C T	Range	S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	1 8 D2 2 7 D2 3 6 D1 4 5 D1 G1 oted Maximu 30 ±12 6.9 5.8 30 14 10 2 1.3 -55 to 1	um 50 Max	2 0 S2 Units V V A A M M M C Units
Absolute Maximum Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Pulsed Drain Current Avalanche Current ^C Avalanche energy L= Power Dissipation ^B Junction and Storage	Ratings $T_A=25$ °C $T_A=25$ °C $T_A=70$ °C t C $T_A=25$ °C $T_A=25$ °C $T_A=70$ °C T_A	Range	S2 = G2 = G2 = G1 = G1 = G1 = G1 = G1 = G	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	um	2 V S2 V V A A M M M V V V V V V V V V V V V V

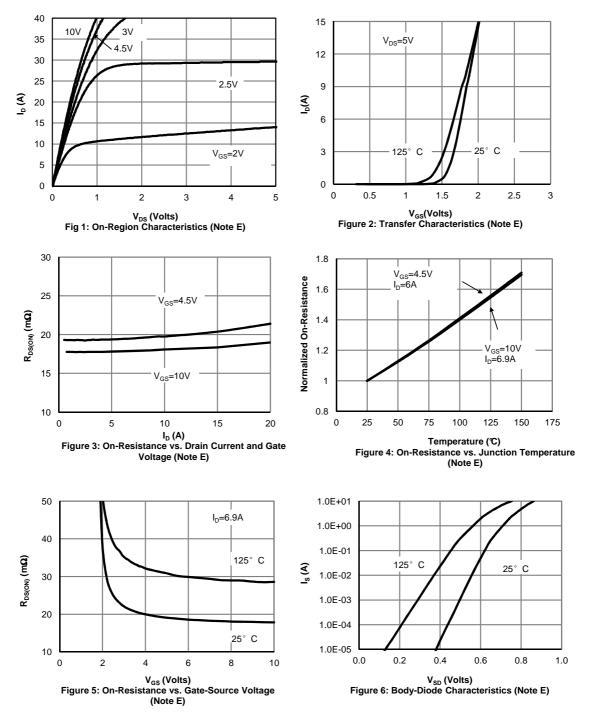
Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC	PARAMETERS	-					
BV_{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V
1	Zoro Coto Voltago Droin Current	V _{DS} =30V, V _{GS} =0V				1	۵
IDSS	Zero Gate Voltage Drain Current		TJ=55℃			5	μA
I _{GSS}	Gate-Body leakage current	$V_{DS}=0V$, $V_{GS}=\pm 12V$				100	nA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$		0.7	1.1	1.5	V
I _{D(ON)}	On state drain current	V _{GS} =4.5V, V _{DS} =5V		30			Α
		V _{GS} =10V, I _D =6.9A			17.8	27	
Reason	Static Drain-Source On-Resistance		T _J =125℃		28	40	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =6A			19	32	mΩ
		V _{GS} =2.5V, I _D =5A		24	50	mΩ	
9 _{FS}	Forward Transconductance	V _{DS} =5V, I _D =5A			33		S
V _{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V
ls	Maximum Body-Diode Continuous Curr	ent			2.5	Α	
DYNAMI	C PARAMETERS						
C _{iss}	Input Capacitance				630		pF
C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =15V, f=	1MHz		75		pF
C _{rss}	Reverse Transfer Capacitance				50		pF
R _g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	MHz	1.5	3	4.5	Ω
SWITCH	ING PARAMETERS						
Q _g	Total Gate Charge				6	7	nC
Q _{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V,	I _D =6.9A		1.3		nC
Q_{gd}	Gate Drain Charge				1.8		nC
t _{D(on)}	Turn-On DelayTime				3		ns
t _r	Turn-On Rise Time	V _{GS} =10V, V _{DS} =15V,	$R_L=2.2\Omega$,		2.5		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			25		ns
t _f	Turn-Off Fall Time]			4		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =6.9A, dl/dt=100A/	us		8.5		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =6.9A, dl/dt=100A/	us		2.6		nC

A. The value of R_{0JA} is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The

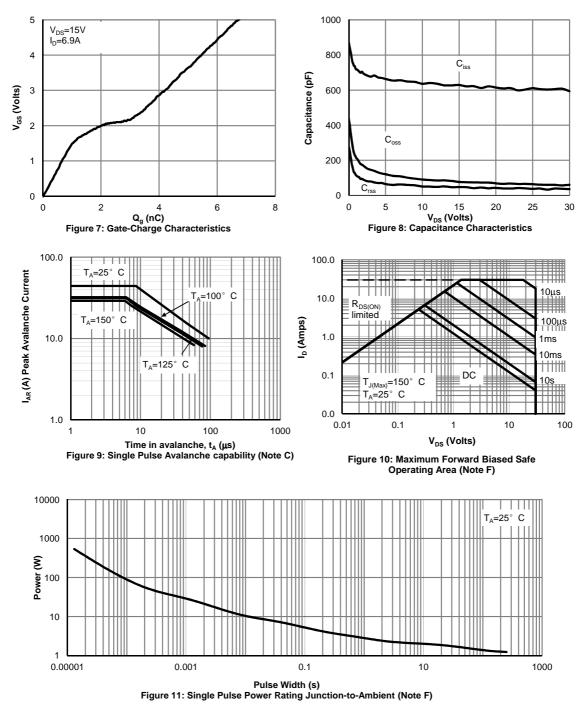
value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^{\circ}$ C, using ≤ 10 s junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^{\circ}$ C. Ratings are based on low frequency and duty cycles to keep initialT₁=25°C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

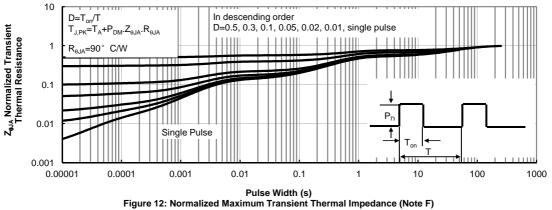

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

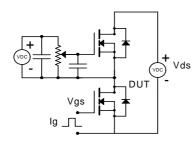
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

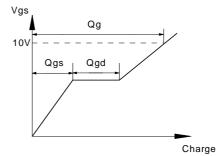


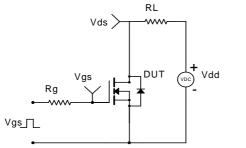
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

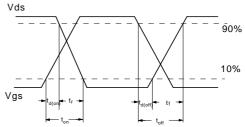


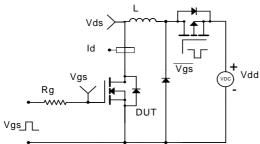
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

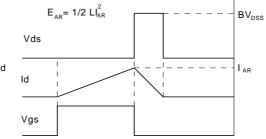

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

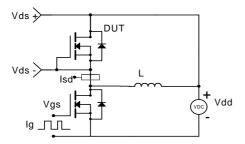


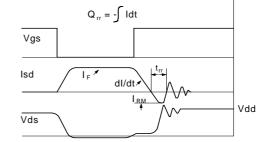



Gate Charge Test Circuit & Waveform

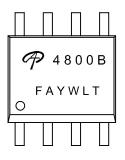



Resistive Switching Test Circuit & Waveforms

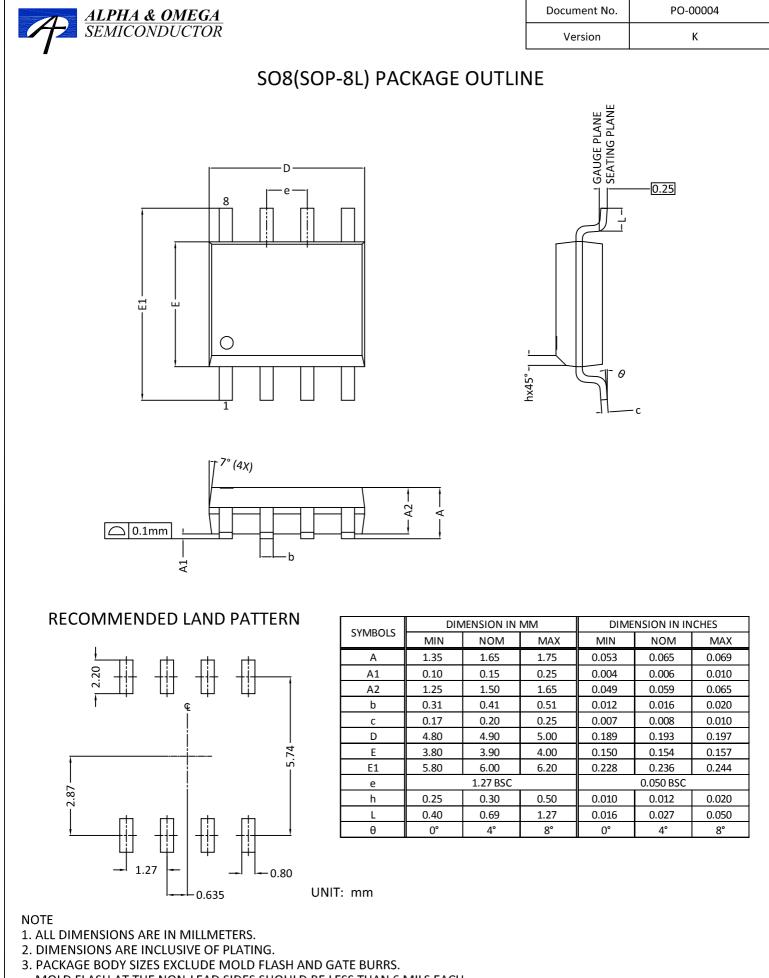



Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

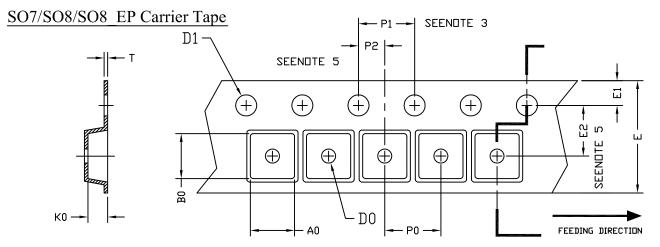


Document No.	PD-00655			
Version	D			
Title	AO4800B Marking Description			

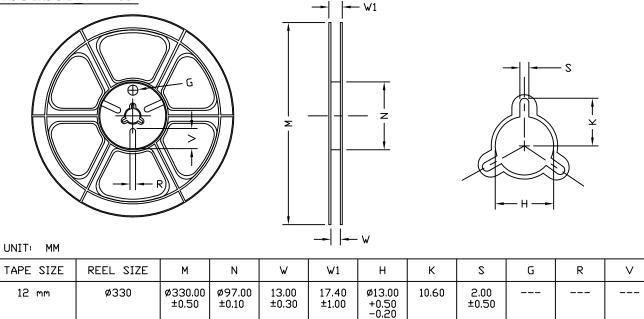

SO8 PACKAGE MARKING DESCRIPTION

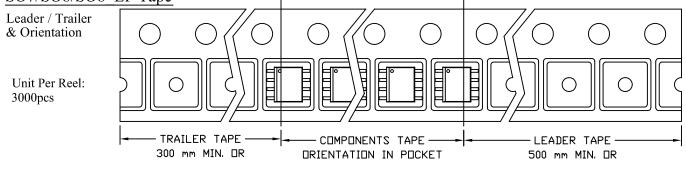
Green product

NOTE:	
LOGO	- AOS Logo
4800B	- Part number code
F	- Fab code
A	- Assembly location code
Y	- Year code
W	- Week code
L&T	- Assembly lot code


PART NO.	DESCRIPTION	CODE
AO4800B	Green product	4800B
AO4800BL	Green product	4800B

- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH. 4. DIMENSION L IS MEASURED IN GAUGE PLANE.
- 5. CONTROLLING DIMENSION IS MILLIMETER.
- CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.


SO7/SO8/SO8_EP Tape and Reel Data


UNIT: MM

PACKAGE	A0	B0	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
SO7/SO-8	6.40	5.20	2.10	1.60	1.50	12.00	1.75	5.50	8.00	4.00	2.00	0.25
(12 mm)	±0.10	±0.10	±0.10	±0.10	+0.10	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.05

AOS Semiconductor Product Reliability Report

AO4800B/AO4800BL, rev A

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742

www.aosmd.com

Oct 15, 2007

This AOS product reliability report summarizes the qualification result for AO4800B. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO4800B passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AO4800B uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge. The two MOSFETs make a compact and efficient switch and synchronous rectifier combination for use in buck converters. Standard Product AO4800B is Pb-free (meets ROHS & Sony 259 specifications).

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	30	V		
Gate-Source Voltage	Gate-Source Voltage		±12	V		
Continuous Drain	T _A =25°C		6.9			
Current	T _A =70°C	I _D	5.8	А		
Pulsed Drain Current		I _{DM}	40			
	T _A =25°C		1.9	w		
Power Dissipation T _A =70°C		P _D	1.2			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C		

Thermal Characteristics								
Parameter		Symbol	Тур	Max	Units			
Maximum Junction-to- Ambient	T ≤ 10s	D	55	62.5	°C/W			
Maximum Junction-to- Ambient	Steady- State	R _{θJA}	90	110	°C/W			
Maximum Junction-to-Lead	Steady- State	R _{0JL}	40	48	°C/W			

II. Die / Package Information:

AO4800B AO4800BL (Green Compound) Process Standard sub-micron Standard sub-micron Low voltage N channel process Low voltage N channel process 8 leads SOIC 8 leads SOIC Package Type Lead Frame Copper with Ag spot Copper with Ag spot Die Attach Ag epoxy Ag epoxy S: Cu 2mils; G: Au 1.3mils Bond wire S: Cu 2mils; G: Au 1.3mils Epoxy resin with silica filler Mold Material Epoxy resin with silica filler Filler % (Spherical/Flake) 90/10 100/0 Flammability Rating UL-94 V-0 UL-94 V-0 Backside Metallization Ti / Ni / Ag Ti / Ni / Ag Moisture Level Up to Level 1 * Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO4800B (Standard) & AO4800BL (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow@260°c	0hr	Standard: 7 lots	770 pcs	0
HTGB	Temp = 150°c, Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	1 lot (Note A*)	82 pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c, Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	1 lot (Note A*)	82 pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 3 lots (Note B**)	165 pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7psi, 100%RH	96 hrs	Standard: 4 lots (Note B**)	220 pcs 50+5 pcs / lot	0
Temperature Cycle	-65°c to 150°c , air to air	250 / 500 cycles	Standard: 7 lots (Note B**)	385 pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AO4800B (Standard) & AO4800BL (Green) Continues

DPA	Internal Vision Cross-section	NA	5 5	5 5	0
	X-ray		5	5	
CSAM		NA	5	5	0
Bond Integrity	Room Temp 150°C bake 150°C bake	0hr 250hr 500hr	40 40 40	40 wires 40 wires 40 wires	0
Solderability	245°C	5 sec	15	15 leads	0
Die shear	150°C	Ohr	10	10	0

Note A: The HTGB and HTRB reliability data presents total of available AO4800B and AO4800BL burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AO4800B and AO4800BL comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion):128 MTTF = 891years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO4800B). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate = $\text{Chi}^2 \times 10^9 / [2 (\text{N}) (\text{H}) (\text{Af})] = 1.83 \times 10^9 / [2 (164) (168) (258)] = 128$ MTTF = $10^9 / \text{FIT} = 7.81 \times 10^6 \text{hrs} = 891 \text{years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval N = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = $55^{\circ}C$) Acceleration Factor [**Af**] = **Exp** [Ea / k (1/Tj u – 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

k = Boltzmann's constant, 8.617164 X 10^{-5} eV / K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual. Guaranteed Outgoing Defect Rate: **< 25 ppm** Quality Sample Plan: conform to **Mil-Std-105D** 单击下面可查看定价,库存,交付和生命周期等信息

>>AOS(万代)