

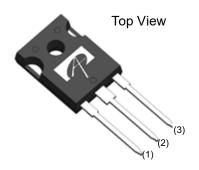
AOK065V120X2

1200V \alpha SiC Silicon Carbide
Power MOSFET

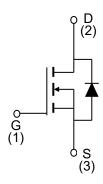
Features

- Proprietary αSiC MOSFET technology
- · Low loss, fast switching speeds with low R_G
- Optimized drive voltage (V_{GS} =15V) for broad driver compatibility
- · Robust body diode and low Qrr

Applications


- Renewable
- Industrial
- EV Charger
- UPS
- Solar Inverters
- SMPSMotor Drives

Product Summary


V _{DS} @ T _{J, max}	1200V
I_{DM}	85A
R _{DS(ON), typ}	65mΩ
Q _{rr}	155nC
E _{OSS} @ 800V	36µJ
100% UIS Tested	

Pin Configuration

Ordering Part Number	per Package Type Form		Shipping Quantity		
AOK065V120X2	TO-247-3L	Tube	30/Tube		

Absolute Maximum Ratings

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol		AOK065V120X2	Units		
V _{DS}	Drain-Source Voltage		1200	V	
V _{GS, MAX}		Maximum	-8/+18		
V _{GS,OP,TRANS}	Gate-Source Voltage	Max Transient ^(A)	-8/+20	V	
$V_{GS,OP}$		Recommended Operating (B)	-5/+15		
	Continuous Drain Current	T _C = 25°C	40.3		
I _D		T _C = 100°C	29.6	Α	
I _{DM}	Pulsed Drain Current ^(C)		85	1	
E _{AS}	Single Pulsed Avalanche Energy ^(D)		250	mJ	
P_{D}	Power Dissipation ^(C)		187.5	W	
T _J , T _{STG}	Junction and Storage Temperature Range		-55 to 175	°C	
T _L	Maximum lead temperature for soldering purpose, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	AOK065V120X2	Units
R _{θJA}	Maximum Junction-to-Ambient (E,F)	40	°C/W
R _{θJC}	Maximum Junction-to-Case (G)	0.8	°C/W

Electrical Characteristics

 $(T_A = 25^{\circ}C, unless otherwise noted)$

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC	·						
V	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V, T _J =25°C I _D =250μA, V _{GS} =0V, T _J =150°C		1200			V
V _{(BR)DSS}	Diain-Source Breakdown Voltage				1200		V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =1200V, V _{GS} =0V	1			1	μA
I _{GSS}	Gate-Source Leakage Current	V _{DS} =0V, V _{GS} =+15/-5	δV			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =10mA		1.8	2.8	3.5	V
	Static Drain-Source On-Resistance	V _{GS} =15V, I _D =10A	T _J = 25°C		65	85	mΩ
R _{DS(ON)}	Static Drain-Source On-Resistance		T _J = 150°C		90		mΩ
9 _{fs}	Forward Transconductance	V _{DS} =20V, I _D =20V			12		S
V _{SD}	Diode Forward Voltage	I _S =10A,V _{GS} =-5V			4.1	5	V
DYNAMIC							
C _{iss}	Input Capacitance				1716		pF
C _{oss}	Output Capacitance	\\\ -0\\\\\ -000\\\		71		pF	
C_{rss}	Reverse Transfer Capacitance	V _{GS} =0V, V _{DS} =800V,		5		pF	
E _{oss}	Coss Stored Energy				30		μJ
R_{G}	Gate Resistance	f=1MHz			1.7		Ω
SWITCHING							
Q_g	Total Gate Charge				62.3		nC
Q _{gs}	Gate Source Charge	V _{GS} =-5/+15V, V _{DS} =800V, I _D =20A			23.1		nC
Q_{gd}	Gate Drain Charge				23.7		nC
t _{d(on)}	Turn-On DelayTime				14.6		ns
t _r	Turn-On Rise Time	V_{GS} =0V/+15V, V_{DS} =800V, I_{D} =20A, R_{G} =5 Ω			36.2		ns
t _{d(off)}	Turn-Off DelayTime				20.8		ns
t _f	Turn-Off Fall Time				10.2		ns
E _{on}	Turn-On Energy	La = 120µH			325		μJ
E _{off}	Turn-Off Energy	FWD: AOK065V120X2			23		μJ
E _{tot}	Total Switching Energy				348		μJ
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A,dI/dt=1560A/us, V _{DS} =800V			27		ns
I _{rm}	Peak Reverse Recovery Current				10		Α
Q _{rr}	Body Diode Reverse Recovery Charge				155		nC

with $T_A = 25^{\circ}C$.

F. The R_{BJA} is the sum of the thermal impedance from junction to case R_{BJC} and case to ambient.

G. The value of R_{BJC} is measured with the device mounted to a large heat-sink, assuming a maximum junction temperature of T_{J(MAX)}=175°C. H. The static characteristics in Figures 1 to 8 are obtained using <300ms

pulses, duty cycle 0.5% max. I. These curves are based on $R_{\hbox{\tiny BUC}}$ which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{\text{J}(MAX)}$ =175°C.The SOA curve provides a single pulse rating.

Notes:
A. < 1% duty cycle, f >1Hz
B. Device can be operated at Ves=0/15V. Actual operating VGS will de-B. Device can be operated at vos=0/13v. Actual operating vos will depend on application specifics such as parasitic inductance and dV/dt but should not exceed maximum ratings.
 C. The power dissipation P_D is based on T_{J(MAX)}=175°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation in the process where additional hostipiting is used.

tion limit for cases where additional heatsinking is used. D. L=5mH, I_{AS} =10A, R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C.

E. The value of $R_{\text{\tiny BJA}}$ is measured with the device in a still air environment

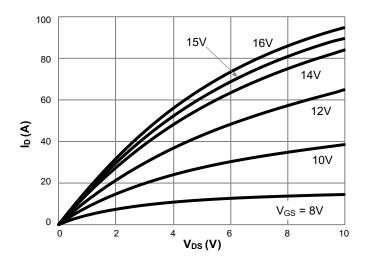


Figure 1. On-Region Characteristics T_J = 25°C

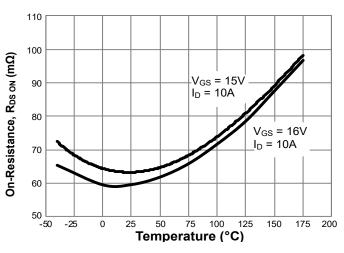


Figure 3. On-Resistance vs. Junction Temperature

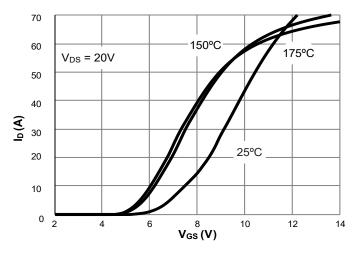


Figure 5. Transfer Characteristics

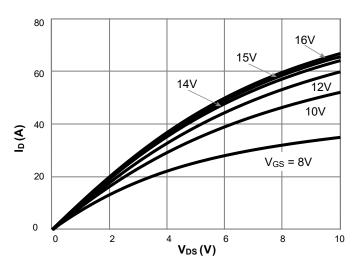


Figure 2. On-Region Characteristics T_J = 175°C

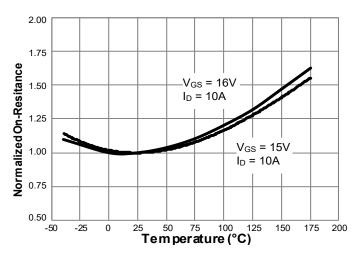


Figure 4. Normalized On-Resistance vs. Junction Temperature

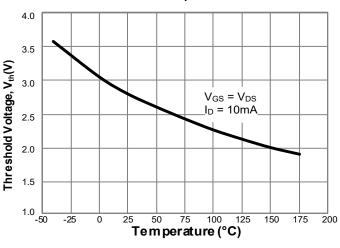


Figure 6. Threshold Voltage vs. Junction Temperature

Rev. 1.1 July 2020 **www.aosmd.com** Page 3 of 9

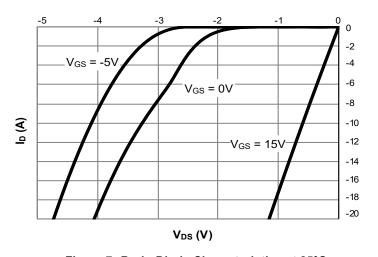


Figure 7. Body-Diode Characteristics at 25°C

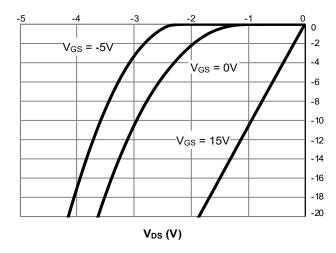


Figure 8. Body-Diode Characteristics at 175°C

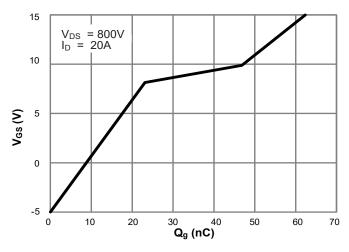


Figure 9. Gate-Charge Characteristics

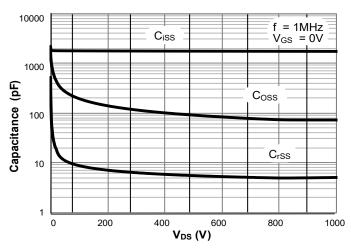


Figure 10. Capacitance Characteristics

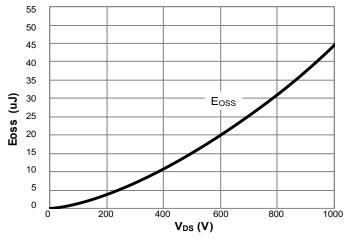


Figure 11. Coss stored Energy

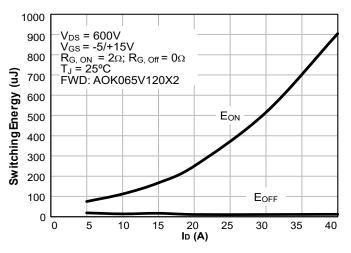


Figure 12. Switching Energy vs. Drain Current

Rev. 1.1 July 2020 **www.aosmd.com** Page 4 of 9

(A)

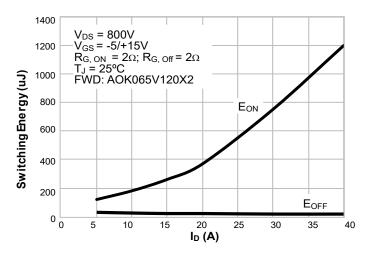


Figure 13. Switching Energy vs. Drain Durrent

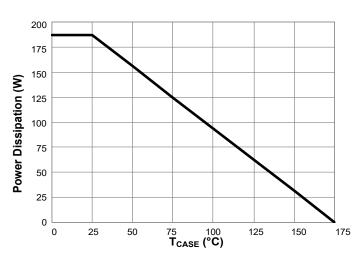


Figure 15. Power De-rating (Note I)

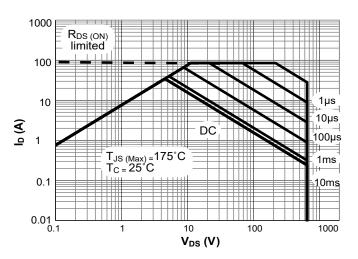


Figure 17. Maximum Forward Biased Safe Operating Area for AOK065V120X2 (Note I)

Figure 14. Turn-On Energy and dV/dt vs. External Gate Resistance

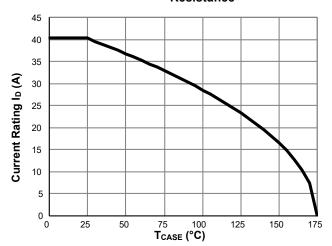
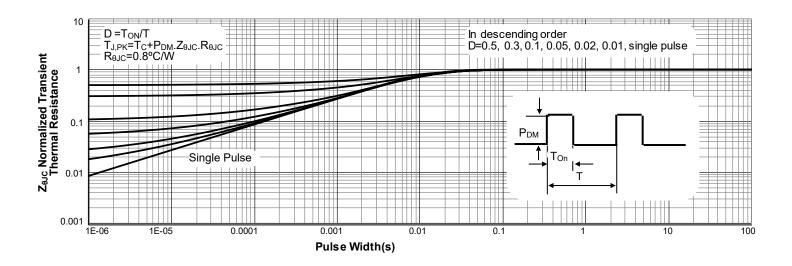
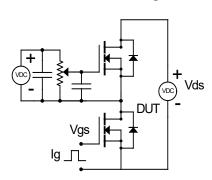
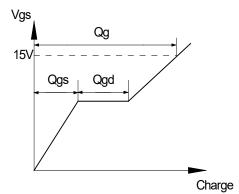
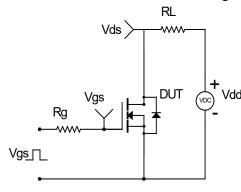
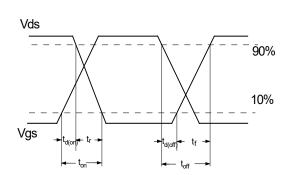


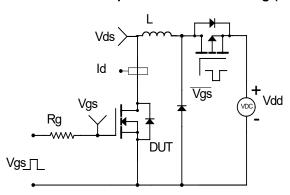
Figure 16. Current De-rating (Note I)

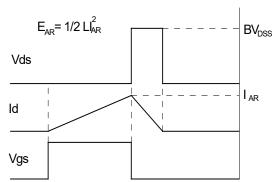



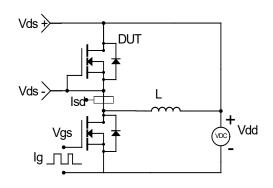

Figure 18. Normalized Maximum Transient Thermal Impedance for AOK065V120X2 (Note I)

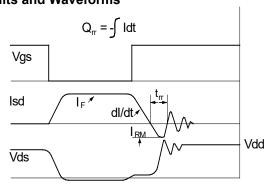

Test Circuits and Waveforms

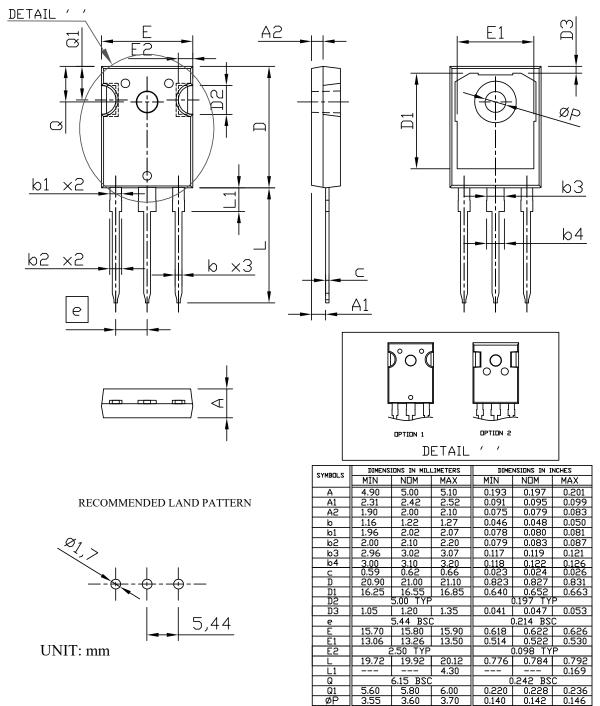

Gate Charge Test Circuits and Waveforms




Resistive Switching Test Circuit and Waveforms

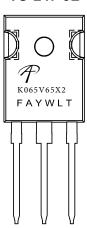



Unclamped Inductive Switching (UIS) Test Circuit and Waveforms


Gate Charge Test Circuits and Waveforms

Package Dimensions, TO247-3L

NOTE


- 1. PAKCAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
 MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 6 MILS EACH.
- 2. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

Rev. 1.1 July 2020 **www.aosmd.com** Page 8 of 9

Part Marking

TO-247-3L

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 1.1 July 2020 **www.aosmd.com** Page 9 of 9

单击下面可查看定价,库存,交付和生命周期等信息

>>AOS(万代)