

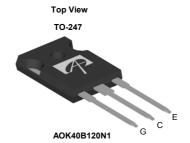
# AOK40B120N1

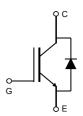
1200V, 40A Alpha IGBT™

With Soft and Fast Recovery Anti-Parallel Diode

### **General Description**

- 1200V latest Alpha IGBT (αIGBT) technology
- $\bullet$  Very low  $V_{\text{CE}(\text{sat})}$  and  $V_{\text{F}}$
- · High short-circuit ruggedness
- Very low turn-on EMI
- · Easy paralleling capability
- Low gate charge Q<sub>g</sub>
- · High efficiency and ruggedness in hard switching converters
- Maximum junction temperature 175°C
- · Very soft and fast recovery anti-parallel diode


## **Applications**


- · Motor drives
- Industrial UPS

### **Product Summary**

 $\begin{array}{ll} V_{CE} & 1200V \\ I_{C} \; (T_{C} \! = \! 100^{\circ}C) & 40A \\ V_{CE(sat)} \; (T_{J} \! = \! 25^{\circ}C) & 1.97V \end{array}$ 

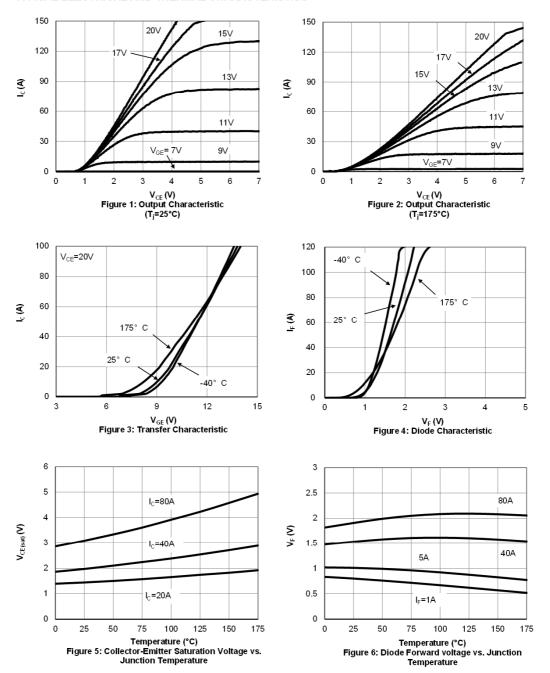




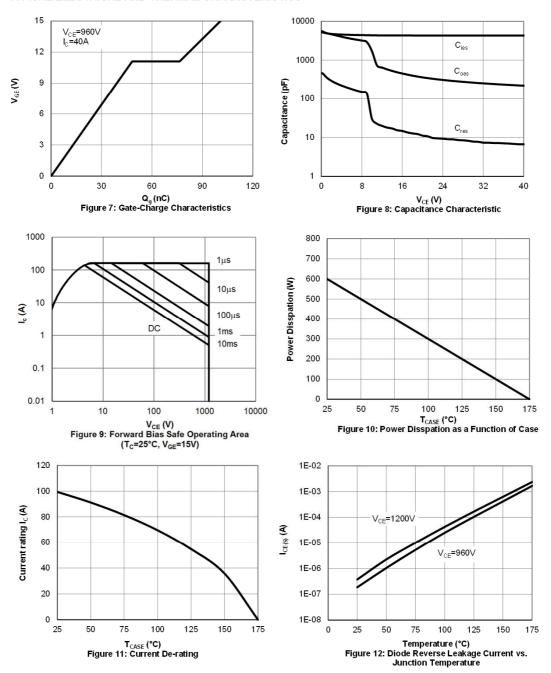


|                                                                              |                                               |                   | kage Type       | Form<br>Tube | Minimum Order Quantity |       |  |
|------------------------------------------------------------------------------|-----------------------------------------------|-------------------|-----------------|--------------|------------------------|-------|--|
| AOK40B120N1 Absolute Maximum Ratings T <sub>A</sub> =25°C unless of          |                                               |                   | TO247           | 240          |                        |       |  |
| Parameter                                                                    |                                               | Symbol            | AOK40B120N1     |              | Units                  |       |  |
| Collector-Emitter Voltage                                                    |                                               | V <sub>CE</sub>   |                 | 1200         |                        |       |  |
| Gate-Emitter Voltage                                                         |                                               |                   | $V_{GE}$        |              | ±30                    |       |  |
| Continuous Collector<br>Current                                              | T <sub>C</sub> =25°C<br>T <sub>C</sub> =100°C |                   | -I <sub>c</sub> | 80           |                        | A     |  |
|                                                                              |                                               |                   |                 |              | 40                     | A     |  |
| Pulsed Collector Current, Limited by T <sub>Jmax</sub>                       |                                               |                   | I <sub>CM</sub> |              | 160                    |       |  |
| Turn-Off SOA, $V_{CE} \le 1200V$ , Limited by $T_{Jmax}$                     |                                               | I <sub>LM</sub>   |                 | 160          | A                      |       |  |
| Continuous Diode<br>Forward Current                                          | T <sub>C</sub> =25°C<br>T <sub>C</sub> =100°C |                   | -I <sub>F</sub> |              | 80                     |       |  |
|                                                                              |                                               |                   |                 |              | 40                     | A     |  |
| Diode Pulsed Current, Limited by T <sub>Jmax</sub>                           |                                               | I <sub>FM</sub>   |                 | 160          | А                      |       |  |
| Short Circuit Withstanding Time (1)                                          |                                               | t <sub>sc</sub>   | 10              |              | II.6                   |       |  |
| V <sub>GE</sub> =15V, V <sub>CC</sub> ≪600V, T <sub>J</sub> ≪175°C           |                                               |                   |                 | 10           | μs                     |       |  |
| Power Dissipation                                                            | T <sub>C</sub> =25°C<br>T <sub>C</sub> =100°C |                   | -P <sub>D</sub> | 600          |                        | w     |  |
|                                                                              |                                               |                   |                 |              | 300                    | VV    |  |
| Junction and Storage Temperature Range                                       |                                               | $T_J$ , $T_{STG}$ | -55             | 5 to 175     | °C                     |       |  |
| Maximum Lead Temperature for Soldering Purpose, 1/8" from case for 5 seconds |                                               | TL                | 300             |              | °C                     |       |  |
| Thermal Characteris                                                          | tics                                          |                   |                 |              |                        |       |  |
| Parameter                                                                    |                                               |                   | Symbol          | AOK40B120N1  |                        | Units |  |
| Maximum Junction-to-Ambient                                                  |                                               |                   | $R_{\theta JA}$ |              | 40                     | °C/W  |  |
| Maximum IGBT Junction-to-Case                                                |                                               |                   | $R_{\theta JC}$ |              | 0.25                   | °C/W  |  |
| Maximum Diode Junction-to-Case                                               |                                               |                   | $R_{\theta JC}$ |              | 0.4                    | °C/W  |  |

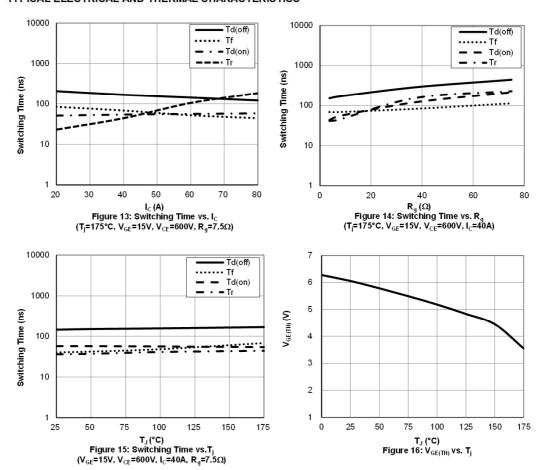
(1) Allowed number of short circuits: <1000; time between short circuits: >1s.



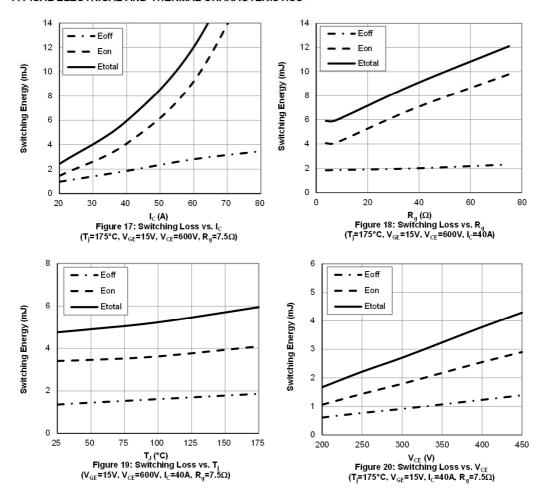

# Electrical Characteristics (T<sub>J</sub>=25°C unless otherwise noted)


| Symbol                 | Parameter                                      | Conditions                                                                                                      |                       | Min  | Тур  | Max   | Units |
|------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------|------|------|-------|-------|
| _                      | PARAMETERS                                     | •                                                                                                               |                       | •    |      | •     |       |
| BV <sub>CES</sub>      | Collector-Emitter Breakdown Voltage            | I <sub>C</sub> =1mA, V <sub>GE</sub> =0V, T <sub>J</sub> =25°C                                                  |                       | 1200 | -    | -     | V     |
|                        |                                                |                                                                                                                 | T <sub>J</sub> =25°C  | -    | 1.97 | 2.5   | V     |
| V <sub>CE(sat)</sub>   | Collector-Emitter Saturation Voltage           | V <sub>GE</sub> =15V, I <sub>C</sub> =40A                                                                       | T <sub>J</sub> =125°C | -    | 2.55 | -     |       |
|                        |                                                |                                                                                                                 | T <sub>J</sub> =175°C | -    | 2.9  | -     |       |
|                        |                                                | V <sub>GE</sub> =0V, I <sub>F</sub> =40A                                                                        | T <sub>J</sub> =25°C  | -    | 1.53 | 2     | V     |
| V <sub>F</sub>         | Diode Forward Voltage                          |                                                                                                                 | T <sub>J</sub> =125°C | -    | 1.6  | -     |       |
|                        |                                                |                                                                                                                 | T <sub>J</sub> =175°C | -    | 1.54 | -     |       |
| $V_{GE(th)}$           | Gate-Emitter Threshold Voltage                 | V <sub>CE</sub> =5V, I <sub>C</sub> =1mA                                                                        |                       | -    | 6.1  | -     | V     |
| ()                     | Zero Gate Voltage Collector Current            | V <sub>CE</sub> =1200V, V <sub>GE</sub> =0V                                                                     | T <sub>J</sub> =25°C  | -    | -    | 10    | μА    |
| I <sub>CES</sub>       |                                                |                                                                                                                 | T <sub>J</sub> =125°C | -    | -    | 2000  |       |
|                        |                                                |                                                                                                                 | T <sub>J</sub> =175°C | -    | -    | 20000 |       |
| I <sub>GES</sub>       | Gate-Emitter Leakage Current                   | V <sub>CE</sub> =0V, V <sub>GE</sub> =±30V                                                                      |                       | -    | -    | ±100  | nA    |
| <b>g</b> <sub>FS</sub> | Forward Transconductance                       | V <sub>CE</sub> =20V, I <sub>C</sub> =40A                                                                       |                       | -    | 18   | -     | S     |
| DYNAMIC                | PARAMETERS                                     | •                                                                                                               |                       | •    |      |       |       |
| C <sub>ies</sub>       | nput Capacitance                               |                                                                                                                 |                       |      | 4300 | -     | pF    |
| C <sub>oes</sub>       | Output Capacitance                             | $V_{GE}$ =0V, $V_{CC}$ =25V, f=1MH                                                                              | /, f=1MHz             |      | 300  | -     | pF    |
| C <sub>res</sub>       | Reverse Transfer Capacitance                   |                                                                                                                 | -                     | 9    | -    | рF    |       |
| $Q_g$                  | Total Gate Charge                              |                                                                                                                 |                       | -    | 100  | -     | nC    |
| $Q_{ge}$               | Gate to Emitter Charge                         | e V <sub>GE</sub> =15V, V <sub>CC</sub> =960V, I <sub>C</sub> =40A                                              |                       |      | 48   | -     | nC    |
| $Q_{gc}$               | Gate to Collector Charge                       | ]                                                                                                               | -                     | 28   | -    | nC    |       |
| $R_g$                  | Gate Resistance                                | V <sub>GE</sub> =0V, V <sub>CC</sub> =0V, f=1MHz                                                                |                       |      | 4.4  | -     | Ω     |
| SWITCH                 | NG PARAMETERS, (Load Inductive, T <sub>J</sub> | =25°C)                                                                                                          |                       |      |      |       |       |
| t <sub>D(on)</sub>     | Turn-On Delay Time                             |                                                                                                                 |                       | -    | 57   | -     | ns    |
| t <sub>r</sub>         | Turn-On Rise Time                              | $T_J$ =25°C $V_{GE}$ =15V, $V_{CC}$ =600V, $I_C$ =40A, $R_G$ =7.5 $\Omega$                                      |                       | -    | 35   | -     | ns    |
| t <sub>D(off)</sub>    | Turn-Off Delay Time                            |                                                                                                                 |                       | -    | 146  | -     | ns    |
| t <sub>f</sub>         | Turn-Off Fall Time                             |                                                                                                                 |                       | -    | 42   | -     | ns    |
| E <sub>on</sub>        | Turn-On Energy                                 |                                                                                                                 |                       | -    | 3.4  | -     | mJ    |
| E <sub>off</sub>       | Turn-Off Energy                                |                                                                                                                 |                       | -    | 1.4  | -     | mJ    |
| E <sub>total</sub>     | Total Switching Energy                         |                                                                                                                 | -                     | 4.8  | -    | mJ    |       |
| t <sub>rr</sub>        | Diode Reverse Recovery Time                    | T <sub>J</sub> =25°C<br>I <sub>E</sub> =40A, di/dt=200A/μs, V <sub>CC</sub> =600V                               |                       | -    | 300  | -     | ns    |
| Q <sub>rr</sub>        | Diode Reverse Recovery Charge                  |                                                                                                                 |                       | -    | 3.0  | -     | μС    |
| I <sub>rm</sub>        | Diode Peak Reverse Recovery Current            | -11- 40/1, αι/αι 200/1/μ3, V <sub>C</sub>                                                                       | -                     | 18.5 | -    | Α     |       |
| SWITCH                 | NG PARAMETERS, (Load Inductive, $T_J$          | =175°C)                                                                                                         |                       |      |      |       |       |
| t <sub>D(on)</sub>     | Turn-On Delay Time                             |                                                                                                                 |                       | -    | 54   | -     | ns    |
| t <sub>r</sub>         | Turn-On Rise Time                              | T <sub>J</sub> =175°C<br>V <sub>GE</sub> =15V, V <sub>CC</sub> =600V, I <sub>C</sub> =40A, R <sub>G</sub> =7.5Ω |                       | -    | 55   | -     | ns    |
| t <sub>D(off)</sub>    | Turn-Off Delay Time                            |                                                                                                                 |                       | -    | 168  | -     | ns    |
| t <sub>f</sub>         | Turn-Off Fall Time                             |                                                                                                                 |                       | -    | 73   | -     | ns    |
| E <sub>on</sub>        | Turn-On Energy                                 | GE 104, VCC-0004, 1C-4                                                                                          | -                     | 4.1  | -    | mJ    |       |
| E <sub>off</sub>       | Turn-Off Energy                                |                                                                                                                 | -                     | 1.9  | -    | mJ    |       |
| E <sub>total</sub>     | Total Switching Energy                         |                                                                                                                 | -                     | 6.0  | -    | mJ    |       |
| t <sub>rr</sub>        | Diode Reverse Recovery Time                    | T <sub>1</sub> =175°C                                                                                           |                       | -    | 490  | -     | ns    |
| Q <sub>rr</sub>        | Diode Reverse Recovery Charge                  | I <sub>⊏</sub> =40A, di/dt=200A/μs, V <sub>C</sub>                                                              | -                     | 6.6  | -    | μС    |       |
| I <sub>rm</sub>        | Diode Peak Reverse Recovery Current            | T' <sub>1</sub> -τολ, αναι-200λ/μο, ν <sub>C</sub>                                                              | -                     | 25.5 | -    | Α     |       |

APPLICATIONS OR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
















30

25

20

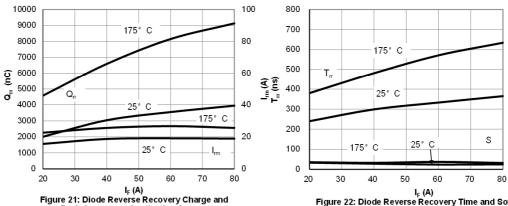
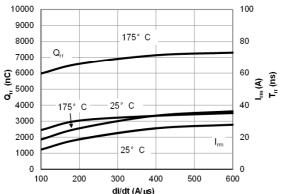
10

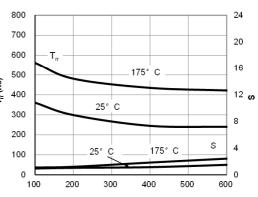
5

0

15 **ග** 





Figure 21: Diode Reverse Recovery Charge and Peak Current vs. Conduction Current (V<sub>GE</sub>=15V, V<sub>CE</sub>=600V, di/dt=200A/μs)

 $I_F~(A) \label{eq:interpolation}$  Figure 22: Diode Reverse Recovery Time and Softness Factor vs. Conduction Current  $(V_{GE}{=}15V, V_{CE}{=}600V, dl/dt{=}200A/\mu s)$ 



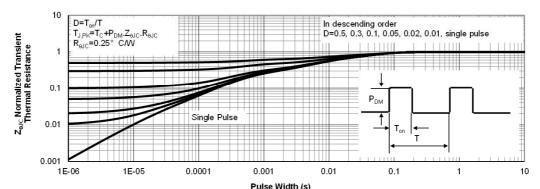
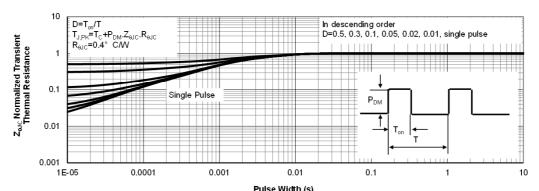

di/dt (A/ $\mu$ s)

Figure 23: Diode Reverse Recovery Charge and Peak Current vs. di/dt ( $V_{GE}$ =15V,  $V_{CE}$ =600V,  $I_F$ =40A)




di/dt (A/ $\mu$ s)
Figure 24: Diode Reverse Recovery Time and Softness Factor vs. di/dt ( $V_{GE}$ =15V,  $V_{CE}$ =600V,  $I_F$ =40A)





Pulse Width (s) Figure 25: Normalized Maximum Transient Thermal Impedance for IGBT



Pulse Width (s)
Figure 26: Normalized Maximum Transient Thermal Impedance for Diode

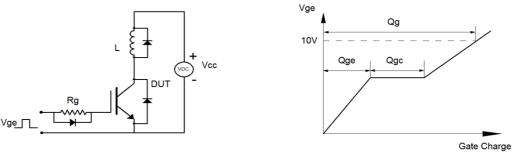



Figure A: Gate Charge Test Circuit & Waveforms

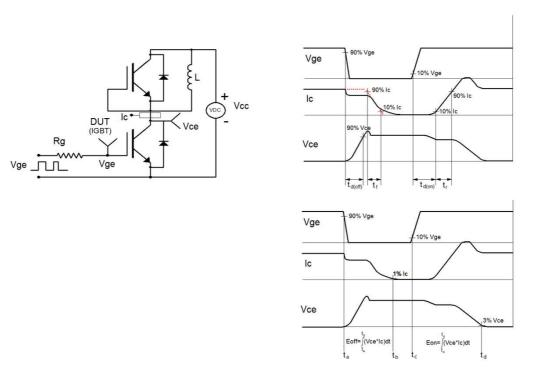



Figure B: Inductive Switching Test Circuit & Waveforms

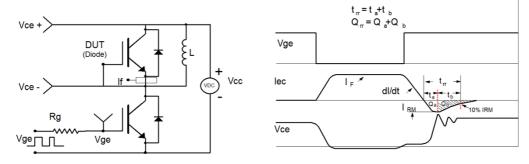



Figure C: Diode Recovery Test Circuit & Waveforms

# 单击下面可查看定价,库存,交付和生命周期等信息

# >>AOS(万代)