

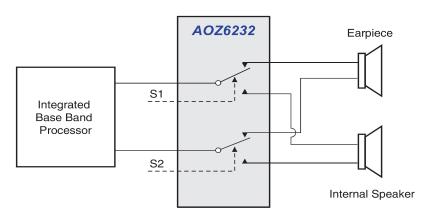
AOZ6232

0.25Ω Low-Voltage Dual-SPDT Analog Switch

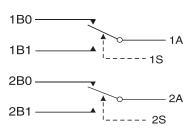
General Description

The AOZ6232 is a 0.25 Ω low-voltage Dual Single Pole Double Throw (SPDT) analog switch. The AOZ6232 operates from a single 1.65V to 3.3V supply. It features an ultra-low On Resistance of 0.25 Ω at a +2.7V supply and 25°C. The AOZ6232 is designed for break-before-make operation.

Features

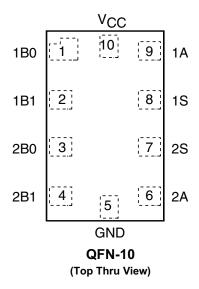

- Typical 0.25 Ω On Resistance (R_{ON}) for +2.7V supply
- 0.15Ω maximum R_{ON} flatness for +2.7V supply
- 1.6mm x 2.1mm QFN package
- Broad V_{CC} operating range
- Low THD (0.02% typical for 32Ω load)
- High current handling capability (350mA continuous current under 3.0V supply)

Applications


- Cell phone
- PDA
- Portable media player

Typical Application

Pin Configuration


Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental
AOZ6232QI	-40°C to +85°C	QFN-10	RoHS Compliant
			Green Product

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Pin Description

Pin Name	Function
1A, 2A, 1B0, 1B1, 2B0, 2B1	Data Ports
1S, 2S	Control Input

Truth Table

Logic Input	Function
0	B0 Connected to A
1	B1 Connected to A

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +3.6V
V _S	Switch Voltage ⁽¹⁾	-0.5 to V _{CC}
V _{IN}	Input Voltage ⁽¹⁾	-0.5 to V _{CC}
I _{IK}	Minimum Input Diode Current ⁽²⁾	-50mA
I _{SW}	Switch Current	350mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms duration, <10% Duty Cycle)	500mA
T _{STG}	Storage Temperature Range	-65°C to +150°C
T _J	Maximum Junction Temperature	+150°C
T _L	Lead Temperature (Soldering, 10 seconds)	+260°C
ESD	Human Body Model	8000V
	Charged Device Model	1000V

Recommend Operating Ratings

The device is not guaranteed to operate beyond the Maximum Operating Ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	1.65V to +3.3V
V _{IN}	Control Input Voltage ⁽³⁾	0V to V _{CC}
V _{SW}	Switch Input Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C

Notes:

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Negative current should not exceed minimum negative value.
- 3. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
V _{IH}	Input Voltage HIGH		2.7 to 3.3	1.7			V
			2.3 to 2.7	1.6			
			1.65 to 1.95	0.65 x V _{CC}			
V _{IL}	Input Voltage LOW		2.7 to 3.3			1.0	V
			2.3 to 2.7			0.9	
			1.65 to 1.95			0.35 x V _{CC}	
I _{IN}	Control Input Leakage	V_{IN} = 0V to V_{CC}	1.65 to 3.3	-0.5		0.5	μA
	Off-Leakage Current of Port nB ₀ and nB ₁	nA = 0.3V, 3.0V, nB0 or nB1 = 0.3V, 3.0V or floating	3.3	-50		50	nA
		nA = 0.3V, 2.4V, nB0 or nB1 = 0.3V, 2.4V or floating	2.7	-50		50	
		nA = 0.3V, 1.65V, nB0 or nB1 = 0.3V, 1.65V or floating	1.95	-50		50	
I _{A(ON)}	On Leakage Current of Port 1A and 2A	nA = 0.3V, 3.0V, nB0 or nB1 = 0.3V, 3.0V or floating	3.3	-50		50	nA
		nA = 0.3V, 2.4V, nB0 or nB1 = 0.3V, 2.4V or floating	2.7	-50		50	
		nA = 0.3V, 1.65V, nB0 or nB1 = 0.3V, 1.65V or floating	1.95	-50		50	
R _{ON}	Switch On Resistance ⁽⁴⁾ See Figure 1	I _{OUT} = 100mA, nB0 or nB ₁ = 0V, 0.7V, 2.0V, 2.7V	2.7		0.25	0.4	Ω
		I _{OUT} = 100mA, nB0 or nB1 = 0V, 0.7V, 1.6V, 2.3V	2.3		0.30	0.45	
		I _{OUT} = 100mA, nB0 or nB1 = 0.8V	1.65		0.50	0.7	
ΔR _{ON}	On Resistance Matching	I _{OUT} = 100mA, nB0 or	2.7		0.040	0.075	Ω
	Between Channels ⁽⁵⁾	nB1 = 0.7V	2.3		0.040	0.080	1
			1.65		0.1]
R _{FLAT(ON)}	On Resistance Flatness ⁽⁶⁾	I _{OUT} = 100mA, nB0 or	2.7			0.15	Ω
		nB1 = 0V to V _{CC}	2.3			0.2]
			1.65		0.8		
I _{CC}	Quiescent Supply Current	$V_{IN} = 0V \text{ or } V_{CC}, I_{OUT} = 0A$	3.3	-500		500	nA

Notes

^{4.} On resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

^{5.} ΔR_{ON} = R_{ONmax} – R_{ONmin} measured at identical $V_{CC},$ temperature, and voltage.

^{6.} Flatness is defined as the difference between the maximum and minimum value of $R_{\mbox{\scriptsize ON}}$ over the specified range of conditions.

AC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
t _{ON}	Turn-On Time	nB0 or nB1 = 1.5V, $R_L = 50Ω$,	2.7 to 3.3		25.0	50.0	ns
		$C_L = 35 \text{ pF}$	2.3 to 2.7		30.0	50.0	
			1.65 to 1.95		50.0	60.0	
t _{OFF}	Turn-Off Time	nB0 or nB1 = 1.5V, $R_L = 50Ω$,	2.7 to 3.3		10.0	25.0	ns
		$C_L = 35pF$	2.3 to 2.7		20.0	25.0	
			1.65 to 1.95		45.0	50.0	
t _{BBM}	Break-Before-Make Time	nB0 or nB1 = 1.5V, $R_L = 50Ω$,	2.7 to 3.3	2.0	17.0		ns
		$C_L = 35pF$	2.3 to 2.7	2.0	15.0		
			1.65 to 1.95	2.0	12.0		
Q	Charge Injection	$C_L = 100 pF, V_{GEN} = 0V,$ $R_{GEN} = 0\Omega$	1.65 to 3.3		9.0		pC
OIRR	Off Isolation	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	1.65 to 3.3		-95		dB
Xtalk	Crosstalk	$f = 100kHz$, $R_L = 50\Omega$, $C_L = 5pF$ (Stray)	1.65 to 3.3		-95		dB
BW	-3dB Bandwidth	$R_L = 50\Omega$	1.65 to 3.3		45.0		MHz
THD	Distortion $f = 20Hz \text{ to}$ $R_L = 32\Omega,$	$R_L = 32\Omega$, $V_{IN} = 2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.7 to 3.3		0.024		%
		$R_L = 32\Omega$, $V_{IN} = 1.5V_{pk-pk}$, $f = 20Hz$ to $20kHz$	2.3 to 2.7		0.015		
		$R_L = 32\Omega$, $V_{IN} = 1.2V_{pk-pk}$, $f = 20Hz$ to $20kHz$	1.65 to 1.95		0.35		

Capacitance

Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	f = 1MHz	0.0		4		pF
C _{OFF}	B Port Off Capacitance	f = 1MHz	3.3		26		pF
C _{ON}	A Port On Capacitance	f = 1MHz	3.3		150		pF

Rev. 2.3 February 2012 **www.aosmd.com** Page 5 of 11

Typical Performance Characteristics

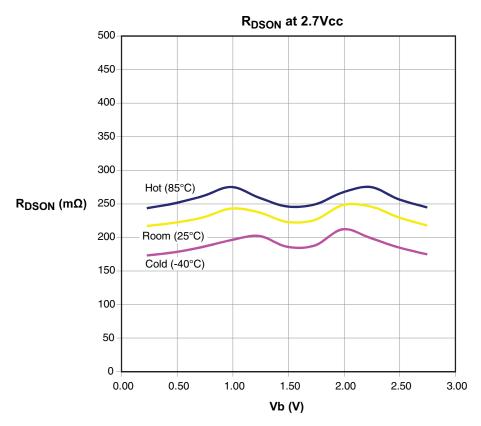


Figure 1. Switch On Resistance

AC Loading and Waveforms

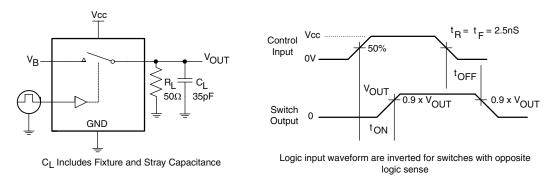


Figure 1. Turn-On/Turn-Off Timing

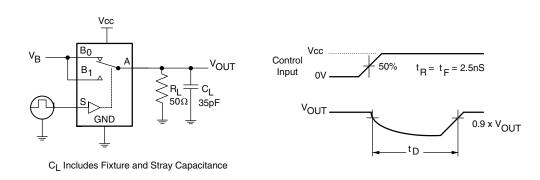


Figure 2. Break-Before-Make Timing`

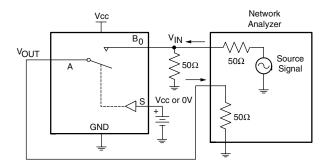


Figure 3. Off Isolation

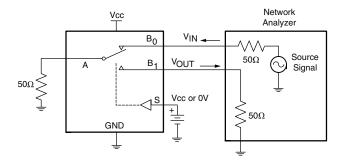


Figure 4. Crosstalk

Rev. 2.3 February 2012 **www.aosmd.com** Page 7 of 11

AC Loading and Waveforms (continued)

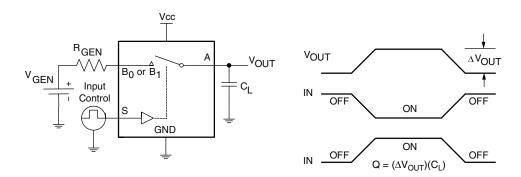


Figure 5. Charge Injection

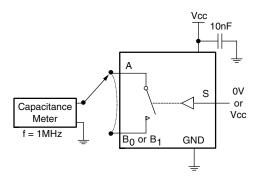
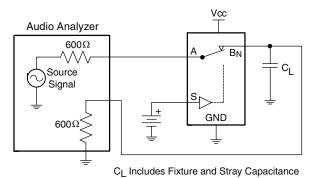
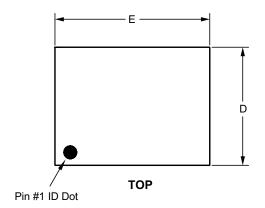
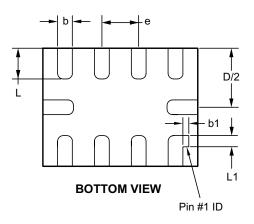
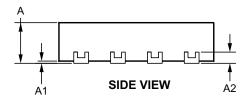


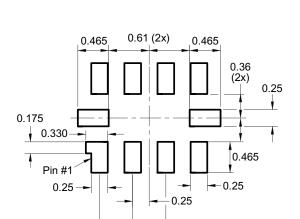
Figure 6. ON/Off Capacitance Measurement

Figure 7. Bandwidth


Figure 8. Harmonic Distortion


Rev. 2.3 February 2012 **www.aosmd.com** Page 8 of 11



Package Dimensions, QFN-10

0.50 (2x)

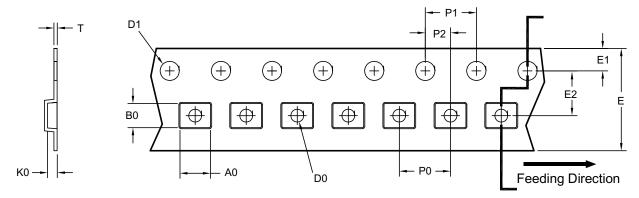
Dimensions in millimeters

Symbols	Min.	Nom.	Max.		
Α	0.50	0.55	0.60		
A1	0.00	_	0.05		
A2	0	.152 REI	F		
b	0.15	0.15 0.20 0.			
b1	C	.08 REF			
D	1.55	1.60	1.65		
E	2.05	2.10	2.15		
е	(
L	0.365	0.415	0.465		
L1	C).15 REF			

Dimensions in inches

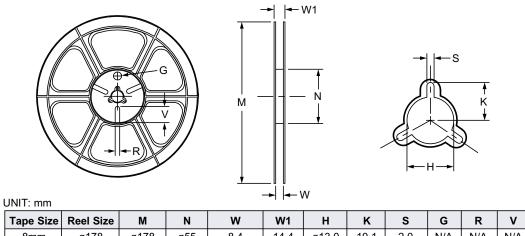
Symbols	Min.	Nom.	Max.			
Α	0.020	0.022	0.024			
A1	0.00		0.002			
A2	0.	006 REF	=.			
b	0.006	0.008	0.010			
b1	0.	.003 REF	=.			
D	0.061	0.063	0.065			
Е	0.081	0.083	0.085			
е	0	.020 BS	3			
L	0.014	0.016	0.018			
I 1	0	006 RFF	=			

Note:

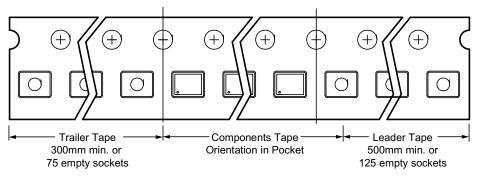

1. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.

Unit: mm

Tape and Reel Dimensions, QFN-10

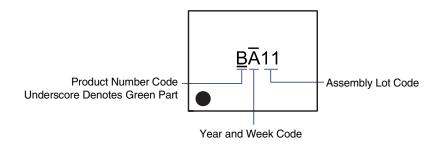

Carrier Tape

UNIT: mm


Package	A0	В0	K0	D0	D1	E	E1	E2	P0	P1	P2	Т
QFN 2.1 x 1.6	0.76	1.21	0.53	0.50	1.5	8.00	1.75	3.50	4.00	4.00	2.00	0.254
(8mm)	±0.05	±0.05	±0.05	±0.05	±0.10	+0.30/-0.10	±0.10	±0.05	±0.10	±0.10	±0.05	±0.02

Reel

Tape Size	Reel Size	M	N	W	W1	Н	K	S	G	R	V
8mm	ø178	ø178 ±0.5	ø55 ±1	8.4 +1.5/0	14.4 Max.	ø13.0 ±0.5	10.1 Max.	2.0 ±0.5	N/A	N/A	N/A


Leader/Trailer and Orientation

Rev. 2.3 February 2012 **www.aosmd.com** Page 10 of 11

Chip Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha & Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Rev. 2.3 February 2012 **www.aosmd.com** Page 11 of 11

单击下面可查看定价,库存,交付和生命周期等信息

>>AOS(万代)