

AOZ8S401US4-05

4-Channel Undirectional TVS Diode Array

General Description

The AOZ8S401US4-05 is a 4-channel transient voltage suppressor array designed to protect high speed data lines such as USB2.0 in notebook and computer from damaging ESD events.

This device incorporates eight surge rated, low capacitance steering diodes and a TVS in a single package. During transient conditions, the steering diodes direct the transient to either the positive side of the power supply line or to ground.

The AOZ8S401US4-05 comes in a RoHS compliant and Halogen Free SOT23-6L package and is rated for -40°C to +125°C junction temperature range.

Features

- ESD protection for high-speed data lines:
 - IEC 61000-4-2, level 4 (ESD) immunity test
 - Air discharge: ±30kV
 - Contact discharge: ±30kV
 - IEC61000-4-5 (Lightning) 9A (8/20µs)
 - Human Body Model (HBM) ±8kV
- Protects four I/O lines
- Low capacitance between I/O to GND: 1.2 pF
- Low clamping voltage
- Low operating voltage: 5.0 V

Applications

- USB2.0
- SD and SIM cards
- Monitors and flat panel displays
- Set-top box
- Notebook computers

USB Host Downstream Controller Ports +5V VBUS RT D+ ۸A Rτ D-١ΛΛ GND AOZ8S401US4-05 +5V VBUS RT D+ NΛ RT D- $\Lambda \Lambda$ GND

Figure 1. USB High Speed Ports

Typical Application

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental		
AOZ8S401US4-05	-40°C to +125°C	SOT23-6L	Green Product		

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant.

Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Pin Configuration

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	Rating
Storage Temperature (T _S)	-65°C to +150°C
ESD Rating per IEC61000-4-2, contact ⁽¹⁾	±30kV
ESD Rating per IEC61000-4-2, air ⁽¹⁾	±30kV
8/20µs Surge IEC61000-4-5	±9 A
ESD Rating per Human Body Model ⁽²⁾	±8kV

Notes:

1. IEC 61000-4-2 discharge with C_Discharge = 150pF, R_Discharge = 330 Ω .

2. Human Body Discharge per MIL-STD-883, Method 3015 $C_{\text{Discharge}}$ = 100pF, $R_{\text{Discharge}}$ = 1.5k Ω .

Maximum Operating Ratings

Parameter	Rating
Junction Temperature (T _J)	-40°C to +125°C

Electrical Characteristics

 T_{A} = 25°C unless otherwise specified. Any I/O Pin to GND.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units		
V _{RWM}	Reverse Working Voltage				5	V		
V _{BR}	Reverse Breakdown Voltage	Ι _T = 100μΑ	6	8.5	11	V		
I _R	Reverse Leakage Current	V _T = Max, V _{RWM}		1	50	nA		
V _F	Diode Forward Voltage	I _F = 15mA		0.85		V		
	(0)(4)	I _{PP} = 1A		1.5	2.5			
Va	Clamping Voltage ⁽³⁾⁽⁴⁾ (100ns Transmission Line Pulse)	I _{PP} = -1A		-1	-2	V		
• CL		I _{PP} = 16A		4	5			
		I _{PP} = -16A		-4 -5				
R _{DYN}	Dynamic Resistance	I _{TLP} = 8A to 16A I _{TLP} = -8A to -16A		0.16 0.16		Ω		
		I _{PP} = 1A		1.5	2.0			
V _{CL}	Clamping Voltage ⁽³⁾ IEC61000-4-5 Surge 8/20µs	I _{PP} = -1A		-1.5	-2.0	V		
		I _{PP} = 10A		4.5	6	v		
		I _{PP} = -10A		-4.5	-6			
Cj	Junction Capacitance	$V_{I/O}$ = 0V, f = 1MHz, Any I/O pin to Ground		1.2	1.5	pF		

Notes:

3. These specifications are guaranteed by design and characterization.

4. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.

Typical Performance Characteristics

GND to I/O

8

10

Negative Transmission Line Pulse (tp=100ns, tr=0.2ns) 0 -4 -8 TLP Current (A) -12 -16 -20 -24 -28 -32 -8 -2 -10 -6 -4 0 TLP Voltage (V)

3

2

1

0

0

2

4

6

Peak Pulse Current, IPP (A)

Package Dimensions, SOT23-6L

RECOMMENDED LAND PATTERN

0.63			

A2	0.70	1.10	1.20	0.028	0.043	0.047		
b	0.30	0.40	0.50	0.012	0.016	0.020		
C	0.08	0.13	0.20	0.003	0.005	0.008		
D	2.70	2.90	3.10	0.106	0.114	0.122		
E	2.50	2.80	3.10	0.098	0.110	0.122		
E1	1.50	1.60	1.70	0.059	0.063	0.067		
e		0.95 BSC.		0.037BSC.				
e1		1.90 BSC.		0.075 BSC.				
L	0.30		0.60	0.012		0.024		
θ1	00		80	00		80		

MAX

1.25

0.15

DIMENSIONS IN INCHES

NOM

MAX

0.049

0.006

MIN

0.035

0.00

DIMENSIONS IN MILLIMETERS

NOM

MIN

0.90

0.00

SYMBOLS

A

A1

UNIT: mm

NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS.
- MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
- 2. DIMENSION "L" IS MEASURED IN GAGE PLANE.
- 3. TOLERANCE ±0.100 mm(4 mil) UNLESS OTHERWISE SPECIFIED.
- 4. FOLLOWED FROM JEDEC MO-178C & MO-193C.
- 5. CONTROLLING DIMENSIONS IS MILLIMETER.

CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.

www.aosmd.com

Tape and Reel Dimensions, SOT23-6L

PACKAGE	A0	B0	К0	DO	D1	E	E1	E2	P0	P1	P2	Т
SDT23_ 5L&6L	3.15 ±0.10	3.20 ±0.10	1.40 ±0.10	1.50 ±0.05	1.00 +0.10 -0.00	8.00 ±0.30	1.75 ±0.10	3.50 ±0.05	4.00 ±0.10	4.00 ±0.10	2.00 ±0.05	0.23 ±0.03

SOT23 5L/6L REEL

Package Marking

AOZ8S401US4-05

Otption & Assembly Location

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: <u>http://www.aosmd.com/terms_and_conditions_of_sale</u>

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.aosmd.com

单击下面可查看定价,库存,交付和生命周期等信息

>>AOS(万代)