
General Specifications - SL

CAPACITORS - CLASS SL

These capacitors have wide temperature characteristics but still offer low loss and linear type TC's.

They are specially designed to be smaller alternative to standard Class I capacitors of linear temperature coefficient.

Typical application is RF tuning and decoupling.

DIMENSIONS			millimeters (inches)
Digit 9 of P.N. (ø)	D ± 2 (0.079)	T max.	Available Lead Spacing
Α	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R
В	5.0 (0.197)	3.0 (0.118)	A,B,D,E,O,R,X
С	6.0 (0.236)	3.0 (0.118)	A,B,C,D,E,O,R,X
D	7.0 (0.276)	3.0 (0.118)	A,B,C,D,E,O,R,X
E	8.0 (0.315)	3.0 (0.118)	A,B,C,D,E,O,R,X

Lead Spacing	Digit 8 of P.N.			
F		\mathbf{R}		
2.5 (0.100)	D	—		
5 (0.200)	А	0		
6 (0.250)	E	Х		
7.5 (0.300)	В	R		
10 (0.400)	С	W		

PERFORMANCE CHARACTERISTICS

Measured at	$C_R \le 100 \text{ pF} \rightarrow 1 \text{MHz/1.0 Vrms} / 25^{\circ}\text{C}$ $C_R > 100 \text{ pF} \rightarrow 1 \text{kHz/0.3 Vrms} / 25^{\circ}\text{C}$
Dissipation Factor	$C_R \le 100 \text{ pF} \dots 0.25\%$ 1MHz @ 1.0 Vrms $C_R > 100 \text{ pF} \dots 1.0\%$ 100kHz @ 0.3 Vrms $C_R > 100 \text{ pF} \dots 0.25\%$ 1kHz @ 0.3 Vrms
Tolerance	$C_R < 10 \text{ pF} \rightarrow \pm 0.25 \text{ pF}, \pm 0.5 \text{ pF}$ $C_R \ge 10 \text{ pF} \rightarrow \pm 5\%, \pm 10\%, \pm 20\%$
Temperature Coefficient	+350 ppm1500 ppm (P350 N1500)
Insulation Resistance	$@V_R → ≥ 10 GΩ$
Dielectric Strength NOTE: Charging current limited to 50 mA	$V_R = 100V \rightarrow Vt = 250V (DC)$ $V_R = 500V \rightarrow Vt = 1.25kV (DC)$
Operating Temperature Range (°C)	-30 +85
Climatic Category	30 / 085 / 21

Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.

Dimension Table - SL

HENOLIC COAT	millimeters (inche	
Temp. Coefficient		
Digits 1,2,3 of P.N.	5KK	5KQ
Rated Voltage C _R (pF) (V _R)	100 VDC 50 VAC	500 VDC 100 VAC
1.0 1.5		
2.2 3.3		
4.7 5.6		
8.2 10		
12 15	4.0 (0.157)	4.0 (0.157)
18 22 33		
47 56		
68 82		
100 150		
180		
220 270 330	5.0 (0.197)	6.0 (0.236)
470		0.0 (0.230)
560 680	6.0 (0.236)	7.0 (0.276)
820	7.0 (0.276)	8.0 (0.315)

SL – CAPACITANCE VS. DISC DIAMETER

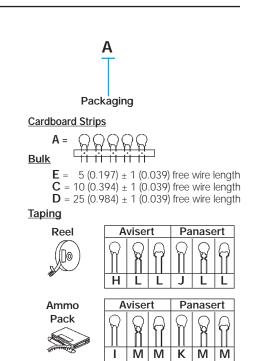
Diameter (ϕ) = 9th Part Number Digit

Ordering Code

HOW TO ORDER

5	0	Q	2	22
General Purpose 5A = NP0 / I *5B = P100 / I *5C = N150 / I *5D = N220 / I *5F = N470 / I 5G = N750 / I 5H = N1500 / I *5J = N2200 / I *5J = N2200 / I *5J = N4700 / I 5K = SL 5M = Y5E / II 5O = Y5F / II 5O = Y5F / II 5O = Y5F / II 5S = Y5U / II 5T = Y5V / II 5V = Z4V / III 5Y = Y5V / III 5Z = Y5V / III 5Z = Y5V / III	Professional Switch Mode Safety 6A = NPO / I *6B = P100 / I *6C = N150 / I *6C = N330 / I *6F = N470 / I 6G = N750 / I *6H = N1500 / I *6H = N1500 / I *6H = N1500 / I *6I = N2200 / I 6J = N4700 / I 6J = SAFETY 65 = SAFETY 10 = SETY 10 = SETY	Rated Voltage (dc) D = 16V F = 25V H = 50V K = 100V N = SAFETY Q = 500V R = 1000V S = 2000V T = 3000V U = 4000V V = SAFETY W = 5000V * $X = 6000V$ * $Y = 7500V$		Capacitance = TPC coor 100pF = 101 120pF = 121 150pF = 151 180pF = 181 220pF = 221 270pF = 271 330pF = 331 390pF = 391 470pF = 471 560pF = 561 680pF = 681 820pF = 821 1nF = 102 1.2nF = 122 1.8nF = 182 2.2nF = 222 2.7nF = 222 3.3nF = 332 3.9nF = 392 4.7nF = 472 5.6nF = 562 6.8nF = 682 8.2nF = 822 10nF = 103 15nF = 153 22nF = 223 33nF = 333

Α



Ordering Code

M	
Tolerance $C = \pm 0.25 \text{ pF}$ $D = \pm 0.50 \text{ pF}$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$ S = -20+50% Z = -20+80% P = 0+100%	

Capacitor Diameter ± 2 (0.079) A = 4 (0.157) B = 5 (0.197)
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\begin{array}{l} C = 6 & (0.236) \\ D = 7 & (0.276) \\ E = 8 & (0.315) \\ F = 9 & (0.354) \\ G = 10 & (0.394) \\ H = 11 & (0.433) \\ J = 13 & (0.512) \\ K = 15 & (0.591) \\ M^* = 19 & (0.748) \end{array}$

Lead F	\bigcirc	\bigcirc	\bigcap		
mm	mm inches		R	$\left \right $	
2.5 ±0.5	.1 ± .025	D	-	-	
5 ^{+0.6} -0.2	.2 ± .025	А	0	Ν	
6 ^{+0.6} -0.2	.25 ± .025	E	Х	_	
7.5 ⁺¹ -0.5	.3 ± .05	В	R	Q	
10 ^{+0.5} -1.0	.4 ± .05	С	W	_	
12.5 ⁺¹ -0.5	.5 ± .05	Ρ	-	_	

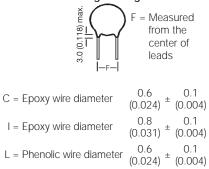
Finishing

Α

Diam ≤9 (0.354) and F = 5.00 (0.197)

Coating does not surpass the bend

For every other:


Low Voltage

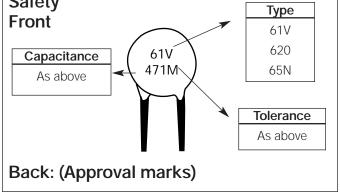
A = Phenolic $\begin{pmatrix} General \\ Purpose \end{pmatrix}$ Q = Waxed phenolic

S = Epoxy (Professional) cap. diameter $\leq 8 (0.315)$

D = Epoxy (Professional) cap. diameter> 8 (0.315)

High Voltage

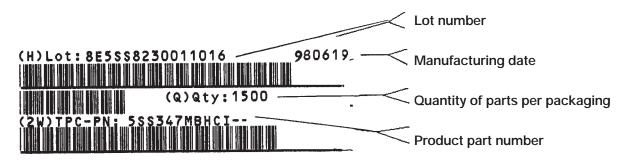
Please note that not all code combinations are either possible or available.


Marking

DIC	G. 2	Logo: Only in	diam. ≥ 6mm	Capacitance	EIA
0				1pF = 109	100pF = 101
TC / Class				1.2pF = 129	120pF = 121
		-		1.5pF = 159	150pF = 151
General Purpose	Professional	-		1.8pF = 189	180pF = 181
A = NP0 / I	A = NPO / I			2.2pF = 229	220pF = 221
*B = P100 / I	B = P100 / I			2.7pF = 279	270pF = 271
*C = N150 / I	C = N150 / I			3.9pF = 399	390pF = 391
*D = N220 / I	D = N220 / I			4.7pF = 479	470pF = 471
*E = N330 / I	E = N330 / I			5.6pF = 569	560pF = 561
*F = N470 / I	F = N470 / I			6.8pF = 689	680pF = 681
G = N750 / I	G = N750 / I			8.2pF = 829	820pF = 821
H = N1500 / I	H = N1500 / I		$\overline{}$	10pF = 100	1nF = 102
*I = N2200 / I	I = N2200 / I	22	22	12pF = 120	1.2nF = 122
*J = N4700 / I	J = N4700 / I		2M)	15pF = 150	1.8nF = 182
K = SL	7 = Y5U / SM			18pF = 180	2.2nF = 222
M = Y5E / II	8 = Y5V / SM		Ĭ	22pF = 220	2.7nF = 272
N = Y5F / II	L = Y5P / SM	-	\setminus	27pF = 270	3.9nF = 392
O = Y5P / II	M = X5E / II			39pF = 390	4.7nF = 472
P = Y5R / II	N = X5F / II	/		47pF = 470	5.6nF = 562
Q = Y5T / II	0 = X5P / II			56pF = 560	6.8nF = 682
S = Y5U / II	P = X5R / II	· · ·		68pF = 680	8.2nF = 822
T = Y5V / II	Q = X5T / II	DIG. 3	DIG. 7	82pF = 820	10nF = 103
U = Z5V / II	S = X5U / II	Q	М		15nF = 153
V = Z4V / III	T = X5V / II				22nF = 223
*W = Y5P / II	U = Z5V / II	Rated Voltage	Tolerance		33nF = 333
*X = Y5R / II	V = Z4V / III	D = 16V	$C = \pm 0.25 pF$		47nF = 473
Y = Y5U / II	W = Y5P / III	F = 25V	$D = \pm 0.5 pF$		100nF = 104
Z = Y5V / II	X = Y5R / III	H = 50V	$J = \pm 5\%$		200nF = 204
	Y = Y5U / III	K = 100V	$K = \pm 10\%$		
	Z = Y5V / III	Q = 500V	$M = \pm 20\%$		
		R = 1000V	S = -20 + 50%		
		S = 2000V	Z = -20 + 80%		
*Upon Request	<u> </u>	T = 3000V	P = 0 + 100%		
		U = 4000V			
		W = 5000V	Safety		Turno
		X = 6000V	Front	_	
		Y = 7500V		\sim	61V

TC – Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.



IDENTIFICATION AND TRACEABILITY

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:

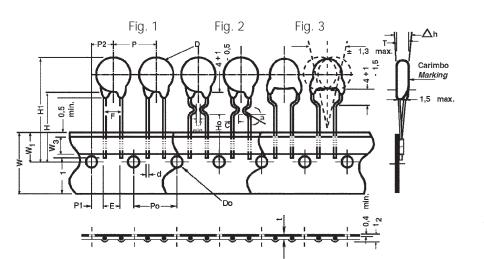
TAPED PARTS QUANTITY TABLE

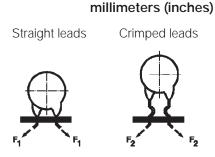
millimeters (inches)

Rated Voltage Diameter		Quantities		
(Vr)	D	Ammopack	Reel	
Vr <= 500V	D ≦ 7 (0.276)	2000	2500	
	7 < D ≦ 11 (0.433)	2000	2000	
500V <vr<=2kv< td=""><td>D ≦ 11 (0.433)</td><td>1500</td><td>2000</td></vr<=2kv<>	D ≦ 11 (0.433)	1500	2000	
2KV <vr=5kv< td=""><td>D ≦ 11 (0.433)</td><td>1000</td><td>1500</td></vr=5kv<>	D ≦ 11 (0.433)	1000	1500	

CARDBOARD STRIPS QUANTITY TABLE

millimeters (inches)


Rated Voltage	Diameter	Lead S	Брасе
(Vr)	D	< = 5 (0.197)	> 5 (0.197)
Vr <= 500V	D ≦ 8 (0.315)	2500	1500
	8 (0.315) ≦ D≦ 11 (0.433)	1500	-
	8 (0.315) ≦ D≦ 13 (0.512)	-	1000
	11 (0.433) ≦ D≦ 15 (0.591)	1000	-
	13 (0.512) ≦ D≦ 19 (0.748)	-	500
	D ≤ 19 (0.748)	500	-
500V <vr<=2kv< td=""><td>$D \le 9 (0.354)$</td><td>1500</td><td>1000</td></vr<=2kv<>	$D \le 9 (0.354)$	1500	1000
	9 (0.354) \leq D \leq 11 (0.433)	-	1000
	9 (0.354) ≦ D ≦ 13 (0.512)	1000	-
	11 (0.433) ≦ D ≦ 19 (0.748)	-	500
	13 (0.512) ≦ D ≦ 19 (0.748)	500	-
2KV <vr<=5kv< td=""><td>$D \le 9 (0.354)$</td><td>1500</td><td>-</td></vr<=5kv<>	$D \le 9 (0.354)$	1500	-
Safety 65N 62O	D ≤ 11 (0.433)	-	1000
	D ≤ 13 (0.512)	500	500
Safety	D ≦ 6 (0.236)	1500	1500
61V	$7 (0.275) \le D \le 9 (0.354)$	1000	1000
	9 (0.354) ≦ D	500	500


Quantities for other package alternative, upon request.

Tape and Reel Specifications

There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack. The standard packaging quantities are shown bellow:

Maximum pull force during insertion and lead cut

	\mathbf{F}_{1}	F_2
4 (0.157) ≤ D < 6 (0.236)	12N	20N
D≥6 (0.236)	20N	25N

Digit 11	Available Tapings	Digit 9
L M	Sizes $4 (0.157) \le D \le 11 (0.433)$	А Н
K I J H	Sizes $6 (0.236) \le D \le 11 (0.433)$	С Н

TPC Code Digit 11

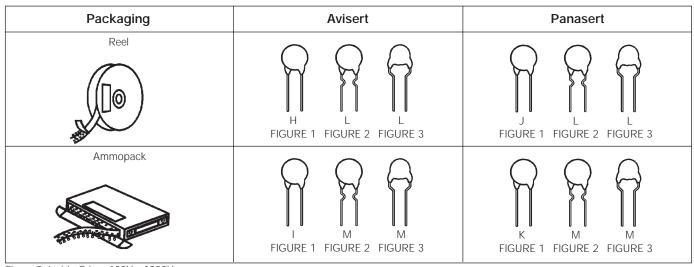
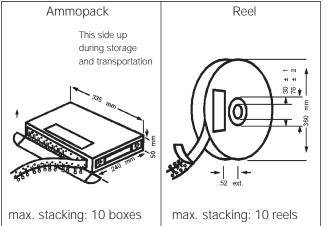
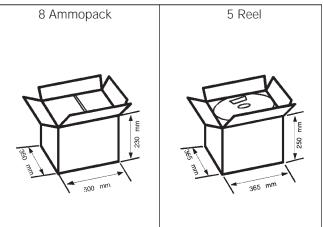


Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V



Tape and Reel Specifications



		Straight Leads		millimeters (inches) Crimped
		Figure 1		Figure 2 & 3
Description of Symbols		A (Avisert)	P (Panasert)	Avisert & Panasert
Crimp angle	~			20°45°
Crimp length	С			1.7 min.
Lead diameter	d	0.60 ± 0.1		
Disc diameter	D	11 max.		
Lead hole diameter	Do	4.0 ± 0.2		
Disc thickness	Т	See Catalog		
Lead spacing	F	5.0 ^{+0.6} _{-0.2}		
Component alignment, front-rear	Δh	0 ± 1		
Height of component from tape center	Н	19.5 ± 0.5	16.5 ± 0.5 - 0	_
Height from tape center to crimp	Но			16 + 0.5 - 0
Component height	H1	32.25 max.	>23.5 <32.25	32.25 max.
Distance from component leads to tape bottom	<i>l</i> 1	12 max.		
Tape width	W	18 ⁺¹ _{-0.5}		
Bonding tape width	W ₃	5.5 min.		
Feed hole position	W ₁	9.0 ± 0.5		
Pitch between discs	Р	12.7 ± 1		
Feed hole pitch	Po	12.7 ± 0.3		
Hole center to lead	P1	3.85 ± 0.7		
Feed hole center to component center	P2	6.35 ± 1		
Tape + bonding tape thickness	t	0.7 ± 0.2		
Total tape thickness. including lead	t ₂	1.5 max.		

PACKAGING

SHIPPING CONTAINER

单击下面可查看定价,库存,交付和生命周期等信息

>>AVX