

Surface Mount Ceramic Capacitor Products

IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the "Information") in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX's knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX's products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product—related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.

Surface Mount Ceramic Capacitor Products

How to	Order	Automotive MLCC	
Part Num	nber Explanation1	General Specifications	54
		Capacitance Range	<u>5</u> 6
COG (N	P0) Dielectric		
	Specifications3	APS for COTS+ High Reliability Applications	
	tions and Test Methods4		59
•	nce Range5		
•	•		
U Diele	etric	MLCC with FLEXITERM®	
	owave COG (NP0) Capacitors (RoHS)	General Specifications	63
	owave COG (NPO) Capacitors (Sn/Pb)	Specifications and Test Methods	
	owave Automotive COG (NPO) Capacitors (RoHS)	Capacitance Range	
	200 Qualified Ultra Low ESR		
	Kits		
Deolgilei		General Specifications and Capacitance Range	69
X8R/X8	L Dielectric	General Specifications and Capacitance Range	00
	Specifications	Capacitar Array	
	tions and Test Methods		60
Specifica	itions and rest Methods10	Capacitor Array (IPC)	
X7R Die	Nestria	Automotive Capacitor Array (IPC)	
		Part & Pad Layout Dimensions	/4
	Specifications		
•	tions and Test Methods		
Capacita	nce Range21	Introduction	
V=0 D:		LICC (Low Inductance Chip Capacitors)	
X7S Die		IDC (InterDigitated Capacitors)	
	Specifications23		85
Specifica	tions and Test Methods24		
Capacita	nce Range25		
		AT Series - 200°C & 250°C Rated	88
X5R Die	electric		
General S	Specifications26	High Voltage MLC Chips	
Specifica	tions and Test Methods27	For 600V to 5000V Applications	94
Capacita	nce Range28		
		FLEXITERM® - 600V to 5000V Applications	
Y5V Die	electric	For 600V to 3000V Automotive Applications - AEC-Q200	
General S	Specifications30		
	tions and Test Methods31	MIL-PRF-55681/Chips	
•	nce Range32		108
•	•	CDR31 thru CDR35	
MLCC 6	Gold Termination — AU Series		
	Specifications	MLCC Medical Applications	
	nce Range34	The second secon	114
p		WWW OCTICO	
MI CC T	in/Lead Termination "B" (LD Series)	Packaging of Chip Components	110
	0) – General Specifications40		119
000 (141)	Specifications and Test Methods	Embossed Carrier Configuration	100
	Capacitance Range	Embossed Carrier Comiguration	120
X8R	General Specifications	Dan an Camian Canfirmation	404
	Specifications and Test Methods45		121
	Capacitance Range		2
X7R	General Specifications47	Basic Capacitor Formulas	122
	Specifications and Test Methods48		
	Capacitance Range49	General Description	123
X5R	General Specifications		
	Specifications and Test Methods		128
	Capacitance Range53		

How to Order

Part Number Explanation

Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A

0805	5	<u>A</u>	101	<u>J*</u>	A	<u>T</u>	2	<u>A**</u>
Size (L' x W") 0101* 0201 0402 0603 0805 1206 1210 1812 1825 2220 2225	Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V 1 = 100V 2 = 200V 7 = 500V Contact	Dielectric A = NPO(COG) C = X7R D = X5R F = X8R G = Y5V U = U Series W = X6S Z = X7S Factory for Voltages	101 Capacitance 2 Sig. Fig + No. of Zeros Examples: 100 = 10 pF 101 = 100 pF 102 = 1000 pF 223 = 22000 pF 224 = 220000 pF 105 = 1μF 106 = 10μF 107 = 100μF For values below 10 pF, use "R" in place of	Tolerance B = ±.10 pF C = ±.25 pF	Failure Rate A = N/A 4 = Automotive	Terminations T = Plated Ni and Sn 7 = Gold Plated U = Conductive Expoxy for Hybrid Applications Z = FLEXITERM® *X = FLEXITERM® with 5% min lead (X7R & X8R only)	Packaging Available 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples	Special Code A = Std K = 30K (0603 2mm pitch) 22K (0805/1206 <0.030"/ 0.76mm) H = 18K (0603/0805/1206 <0.037" / 0.94mm) J = 15K (0805/1206 <0.050" / 1.27mm) 1 = 12K (0805/1206 <0.055 / 1.4mm) **Non std options upon approval from the factory
*EIA 01005	F = 63V E = 150V V = 250V	9 = 300V 8 = 400V	Decimal point, e.g., 9.1 pF = 9R1.		1	Contact Factory For = Pd/Ag Term		

^{*} B, C & D tolerance for ≤10 pF values.

Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

High Voltage MLC Chips

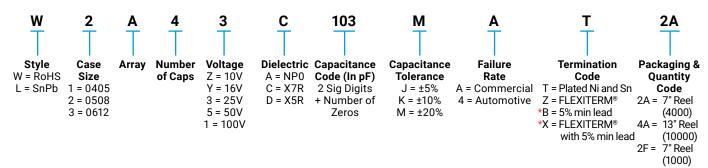
EXAMPLE: 1808AA271KA11A

1808	Α	Α	271	K	Α	Т	2	Α
	T	T		T	T	T	T	T
AVX	Voltage	Temperature	Capacitance	Capacitance	Failure	Termination	Packaging/	Special
Style	C = 600V/630V	Coefficient	Code	Tolerance	Rate	1 = Pd/Ag	Marking	Code
0805	A = 1000V	A = C0G	(2 significant digits	COG: $J = \pm 5\%$	A=Not	T = Plated Ni	2 = 7" Reel	A = Standard
1206	S = 1500V	C = X7R	+ no. of zeros)	K = ±10%	Applicable	and Sn	4 = 13" Reel	
1210	G = 2000V	t	Examples:	$M = \pm 20\%$		B = 5% Min Pb		
1808	W = 2500V		10 pF = 100	X7R: $K = \pm 10\%$		Z = FLEXITERM®		
1812	H = 3000V		100 pF = 101	$M = \pm 20\%$		*X = FLEXITERM®		
1825	J = 4000V		1,000 pF = 102	Z = +80%,		with 5% min		
2220	K = 5000V		2,000 pF = 223	-20%		lead (X7R		
2225		22	0,000 pF = 224			only)		
3640			1 μF = 105			·		

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. For Tin/Lead Terminations, please refer to LD Series

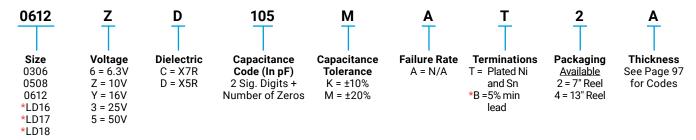
Not RoHS Compliant

For RoHS compliant products, please select correct termination style.


How to Order

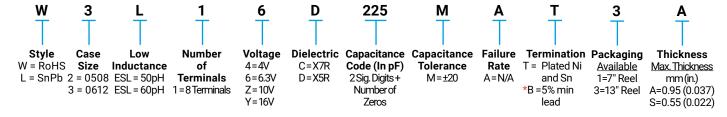
Part Number Explanation

Capacitor Array


EXAMPLE: W2A43C103MAT2A

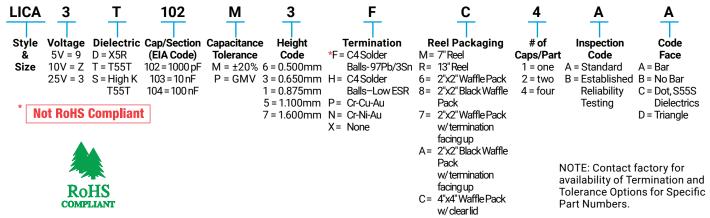
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Low Inductance Capacitors (LICC)


EXAMPLE: 0612ZD105MAT2A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

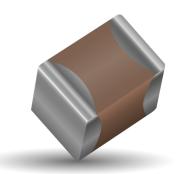
Interdigitated Capacitors (IDC)


EXAMPLE: W3L16D225MAT3A

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

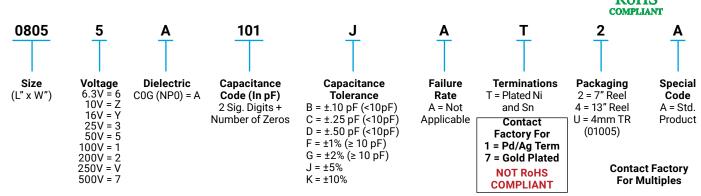
Low Inductance Decoupling Capacitor Arrays (LICA)

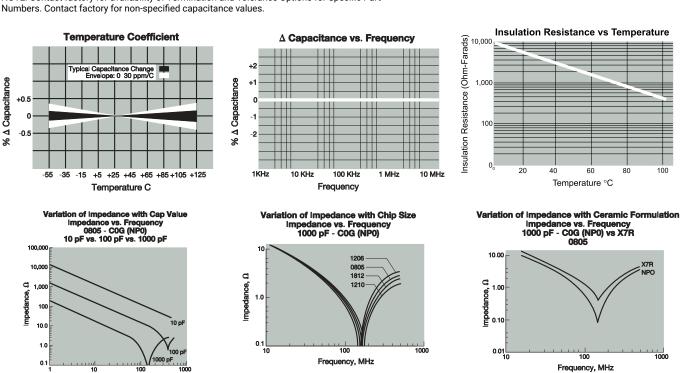
EXAMPLE: LICA3T183M3FC4AA



COG (NPO) Dielectric

General Specifications




COG (NPO) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern COG (NPO) formulations contain neodymium, samarium and other rare earth oxides.

COG (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 ±30ppm/°C which is less than ±0.3% C from -55°C to +125°C. Capacitance drift or hysteresis for COG (NPO) ceramics is negligible at less than ±0.05% versus up to ±2% for films. Typical capacitance change with life is less than ±0.1% for COG (NPO), one-fifth that shown by most other dielectrics. COG (NPO) formulations show no aging characteristics.

PART NUMBER (see page 4 for complete part number explanation)

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part

Frequency, MHz

COG (NP0) Dielectric

Parame	ter/Test	NP0 Specification Limits	Measuring (Conditions				
	perature Range	-55°C to +125°C	Temperature C					
· ·	itance Q	Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0	r cap > 1000 pF				
Insulation	Resistance	100,000MΩ or 1000MΩ - μ F, whichever is less	Charge device with rated @ room tem					
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and d to 50 mA Note: Charge device with for 500V	ischarge current limited A (max) n 150% of rated voltage				
	Appearance	No defects						
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Deflectio Test Time: 3					
Flexure	Q	Meets Initial Values (As Above)	V					
Stresses	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm				
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sold 0.5 sec					
	Appearance	No defects, <25% leaching of either end terminal						
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Dip device in eutectic solder at 260°C fo					
Resistance to	Q	Meets Initial Values (As Above)	60sec- onds. Store at room temperature for 24 ± 2hours before measuring electric					
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	properties.	e measuring electrical				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes				
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes				
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes				
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor					
	Appearance	No visual defects	-					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twic					
Load Life	Q (C=Nominal Cap)	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test cha	rs (+48, -0).				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	room temperatu before me	re for 24 hours				
	Dielectric Strength	Meets Initial Values (As Above)						
	Appearance	No visual defects						
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% +				
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	5% relative humidi (+48, -0) with rated	ty for 1000 hours I voltage applied.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.					
	Dielectric Strength	Meets Initial Values (As Above)						

COG (NP0) Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		0101*	02	01		0402				0603						0805			1206						
Solderi		Reflow Only	Reflov			low/W				eflow/W						low/Wave						Reflow/W			
Packagi	ing mm	All Paper 0.40 ± 0.02	All P 0.60 ±		-	All Pape 00 ± 0.				All Pape .60 ± 0.						/Emboss 01 ± 0.20	ed					oer/Embe 3.20 ± 0.			
(L) Length	(in.)	(0.016 ± 0.0008)	(0.024 ±			40 ± 0.				.60 ± 0. .063 ± 0						79 ± 0.20	8)		(0.126 ± 0.008)						
W) Width	mm	0.20 ± 0.02	0.30 ±			50 ± 0.				0.81 ± 0.						25 ± 0.20						1.60 ± 0.			
,	(in.) mm	(0.008 ± 0.0008) 0.10 ± 0.04	(0.011 ± 0.15 ±		<u> </u>	20 ± 0.0 25 ± 0.0				032 ± 0. 0.35 ± 0.						49 ± 0.00 50 ± 0.25				(0.063 ± 0.008) 0.50 ± 0.25					
(t) Terminal	(in.)	(0.004 ± 0.0016)	(0.006 ±			23 ± 0. 10 ± 0.				014 ± 0.						20 ± 0.23				0.50 ± 0.25 (0.020 ± 0.010)					
	WVDC	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
(pF)	0.5 1.0	В	A A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
(61)	1.2	В	A	A	C	C	c	G	G	G	G		J	J	Ĵ	J	J	J	J	J	J	J	J	J	Ĵ
	1.5	В	Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2	B B	A A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
	2.7	В	A	A	С	С	С	G	G	G	G		J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J	Ĵ	Ĵ	J
	3.3	В	A	A	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	3.9 4.7	B B	A	A	C	C	C	G G	G G	G G	G G		J	J	J	J	J	J	J	J	J	J	J	J	J
	5.6	В	Α	Α	С	С	С	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
	6.8	В	A	A	С	С	C	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	J	J
-	8.2 10	B B	A	A	C	C	C	G	G	G	G G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	12	В	Α	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	15 18	B B	A	A	C	C	C	G G	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J	J
	22	В	A	A	C	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	27	В	Α	Α	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	33 39	B B	A A	A	C	C	C	G G	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J	J	J
	47	В	Â	Â	C	c	c	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	56	В	A	A	С	С	С	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	68 82	B B	A	A	C	C	C	G G	G G	G G	G G	G G	J	J	J J	J	J J	J .1	J J	J	J	J	J	J J	J
	100	В	A	A	С	C	C	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J
	120				C	C	C	G	G G	G	G G	G	J	J J	J	J	J J	J	J	J	J	J	J	J	J
	150 180				С	C	C	G	G	G G	G	G G	J	J	J	J	J	N	J	J	J	J	J	J	J
	220				С	С	С	G	G	G	G	G	J	J	J	J	N	N	J	J	J	J	J	J	J
	270 330				C	C	C	G G	G G	G G	G G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	390				С	C	C	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	470				С	С	С	G	G	G	G		J	J	J	J	N	N	J	J	J	J	J	J	J
	560 680				C	C	C	G G	G G	G G	G G		J	J	J	J	N N	N N	J	J	J	J	J	J	J
	750				С	c	С	G	G	G	G		J	Ĵ	Ĵ	J	N	N	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	J
	820 1000				C	C	C	G	G G	G	G G		J	J	J	J	N	N	J	J	J	J	J	J	J
	1200				C	C	C	G	G	G G	G		J	J	J	J	N P	N P	J	J	J	J	J	J	J
	1500							G	G	G			J	J	J	J	Р	Р	J	J	J	М	Q	Р	Р
	1800 2200							G G	G G	G G			J P	J P	J P	J P	P P	P P	J	J	M M	P P	Q Q	P P	P P
	2700							G	G	G			P	P	P	P	P	P	J	J	M	P	Q	P	P
	3300							G	G	G			Р	Р	Р	Р	Р	Р	J	J	М	Р	Q	X	P
	3900 4700							G G	G G	G			P P	P P	P P	P P	P P	P P	J	J	M M	P P	X	X X	X
	5600												Р	Р	Р				J	J	M	Р	Х	Х	Х
	6800												Р	Р	P				M P	М	М	P	X	X	Χ
Сар	8200 0.010												P P	P P	P P				P	P P	P P	P P	X	X	
(μF)	0.012												P	P	P				Х	X	X	Х			
	0.015 0.018	<u> </u>	>		 	l	'												X	X	X	X			
	0.018	کا سی				1	•												X	X	X	X			
	0.027	_ ~ (\)) ÎT													х	Х	X				
	0.033			1 -	سلر		-												X	X	X	Х			
	0.039		$\overline{}$					L	L					L	L			L	x	X	X				
	0.068		4 ∱	•															Х	Х	Х				
	0.082		'			l	I												Х	Х	Х				
WVDC	2	16	25	50	16	25	50	16	25	50	100	200	16	25	50	100	200	250	16	25	50	100	200	250	500
SIZE		0101*	02	01		0402				0603						0805						1206			

Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.05 5)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER									EMB	OSSED			

COG (NP0) Dielectric

Capacitance Range

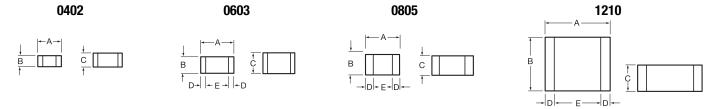
PREFERRED SIZES ARE SHADED

SIZE				1210					1812				1825			2220			2225	
Soldering				Reflow Only	,				Reflow Only	/			Reflow Onl	у		Reflow Onl	y	R	eflow Only	
Packaging				per/Emboss					II Embosse				All Emboss			II Embosse			Embossed	d
(L) Length	mm (in)			3.20 ± 0.20 0.126 ± 0.00					4.50 ± 0.30 .177 ± 0.01				4.50 ± 0.30			5.70 ± 0.40 .225 ± 0.01			5.72 ± 0.25 225 ± 0.010	2)
	(in.) mm			2.50 ± 0.00					3.20 ± 0.20				0.177 ± 0.0° 6.40 ± 0.40			5.00 ± 0.40			35 ± 0.010	J)
W) Width	(in.)			0.098 ± 0.00					.126 ± 0.00				0.252 ± 0.0			.197 ± 0.01			250 ± 0.010	0)
(t) Terminal	mm			0.50 ± 0.25					0.61 ± 0.36				0.61 ± 0.30			0.64 ± 0.39			0.64 ± 0.39	-\
	(in.)	25	50	0.020 ± 0.01 100	200	500	25	50	.024 ± 0.01	200	500	50	0.024 ± 0.0° 100	200	50	100 ± 0.01	200	50	025 ± 0.015 100	200
Сар	3.9	23	30	100	200	300	20	30	100	200	300	30	100	200	30	100	200	30	100	200
(pF)	4.7																			
	5.6																			
	6.8																			
	8.2						-	-												
	10 12	M M	M M	M M	M M	M M	P P	P P	P P	P P	P P						~	~	N	
	15	M	M	M	M	M	P	P	P	P	P					4	\sim		\int_{\uparrow}	
	18	М	М	М	М	М	Р	Р	Р	Р	Р					† (1	- <u>آ</u> ر	
	22	М	М	М	М	М	Р	Р	Р	Р	Р						$\overline{}$			
	27	M	M	M	М	М	P	P	P	P	P					+	4.0	-	_	
	33 39	M M	M M	M M	M M	M M	P P	P P	P P	P P	P P						, ''	ı	i	
	47	P	P	P	P	P	P	P	P	P	P									
	56	P	P	P	P	P	P	P	P	P	P									
	68	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	82	Р	Р	Р	P	Р	Р	Р	Р	Р	Р									
	100	Р	P	P	P	Р	Р	Р	P	P	P									
	120 150	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	180	P	P	P	P	P	P	P	P	P	P									
	220	P	P	P	P	P	P	P	P	Р	P									
	270	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	330	P	P	P	P	P	P	P	P	P	P									
	390 470	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P									
	560	P	P	P	P	P	P	P	P	P	P									
	680	P	P	P P	P P	P	P	P	P P	P	P									
	820	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р									
	1000	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	М	М	М				М	М	Р
	1200	P	P	P	P	P	P	P	P	P	P	M	M	M				M	M	P
	1500 1800	P P	P P	P P	P P	P P	P P	P P	P P	P P	P P	M M	M M	M M				M M	M M	P P
	2200	P	P	P	P	P	P	P	P	P	P	X	X	M				M	M	P
	2700	Р	Р	Р	Р	Р	Р	Р	Р	Р	Q	х	Х	М				М	М	Р
	3300	Р	Р	Р	Р	Р	Р	Р	Р	Р	Q	Х	Х	Х			Х	М	М	Р
	3900	P	P	P	P	P	P	P	P	P	Q	X	X	X		V	X	M	M	P
	4700 5600	P P	P P	P P	P P	P P	P P	P P	P P	P P	Y	X	X	X	X	X	X	M M	M M	P P
	6800	P	P	P	X	X	P	P	Q	Q	Ϋ́	x	×	x	x	x	x	M	M	P
	8200	P	P	P	X	X	P	P	Q	Q	Y	X	X	X	X	X	X	М	М	P
	0.010	P	P	Х	Х	Х	P	P	Q	Q	Y	Х	Х	Х	Х	Х	Х	М	М	P
	0.012	X	X	X	X	X	P	P	Q	X	Y	X	X	X	X	X	X	M	M	P
	0.015	X	X	Z	Z	Z	P P	P P	Q X	X	Y	X	X	X	X	X	X	M M	M M	Y
	0.018	X	x	Z	Z		P	P	x	x	'	x	×	x	x	ı x	^	M	Y	Y
	0.027	X	Z	Z	Z		Q	X	X	Z		X	X	Y	X	X		P	Y	Y
	0.033	Х	Z	Z	Z		Q	Х	Х	Z		Х	Х		Х	Х		Х	Y	Y
	0.039	Z	Z	Z			X	X	Z	Z		X			Y			X	Y	Υ
	0.047	Z	Z	Z			X Z	X Z	Z	Z		Х			Y Z		\vdash	X	Z Z	
	0.068						Z	Z	Z						Z			X	Z	
	0.002						Z	Z	Z						Z			Z	Z	
	WVDC	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200	50	100	200
	SIZE			1210					1812				1825			2220			2225	

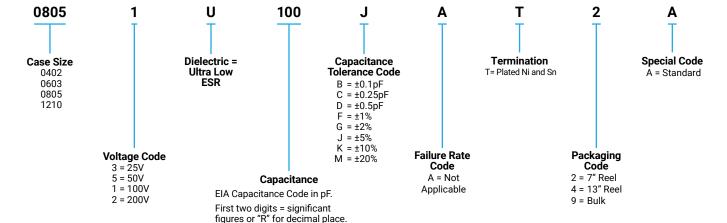
Letter	Α	В	С	E	G	J	K	М	N	Р	Q	X	Υ	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
	PAPER						(* * *)	(* * * * * * * * * * * * * * * * * * *	()	ЕМВО	SSED	(/	(2 2 2)	(= = 7

U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010 ± 0.005 (0.25 ± 0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020 ± 0.010 (0.51 ± 0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025 ± 0.015 (0.635 ± 0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

 Size
 Working Voltage

 0402
 50, 25 WVDC

 0603
 200, 100, 50 WVDC

 0805
 200, 100 WVDC

 1210
 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

0402 - See Performance Curve, page 300
0603 - See Performance Curve, page 300
0805 - See Performance Curve, page 300
1210 - See Performance Curve, page 300

Marking

Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

LEAD-FREE

LEAD-FREE COMPATIBLE COMPONENT RoHS

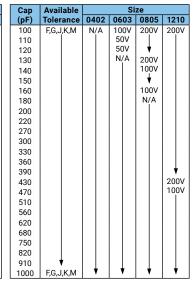
COMPLIANT

MILITARY SPECIFICATIONS

Meets or exceeds the requirements of MIL-C-55681

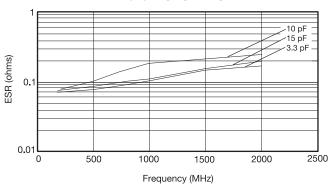
U Dielectric

RF/Microwave C0G (NP0) Capacitors (RoHS)

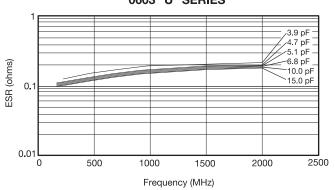


CAPACITANCE RANGE

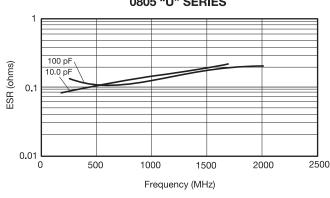
Cap	Available			ze	
(pF)	Tolerance	0402	0603	0805	1210
0.2	B,C	50V	N/A	N/A	N/A
0.3					
0.4	♦				
0.5	B,C				
0.6	B,Ç,D				
0.7					
0.8	▼				
0.9	B,C,D	♦	♦	♦	🕈

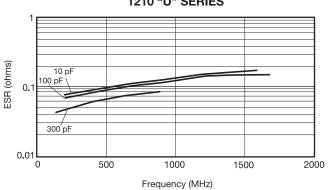

Cap	Available		Si	ze	
(pF)	Tolerance	0402	0603	0805	1210
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	<u> </u>				
5.6	, v				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M				_ '

Cap	Available		31	ze	
(pF)	Tolerance	0402	0603	0805	1210
7.5	B,C,J,K,M	50V	200V	200V	200V
8.2	♦				
9.1	B,C,J,K,M				
10	F,G,J,K,M				
11					
12					
13					
15			🗡		
18			200V		
20			100V		
22					
24					
27		♦			
30		50V			
33		N/A			
36					
39					
43					
47					
51					
56					
68					
75					
82				1	
91	▼	♥	🔻	*	🔻



ULTRA LOW ESR, "U" SERIES

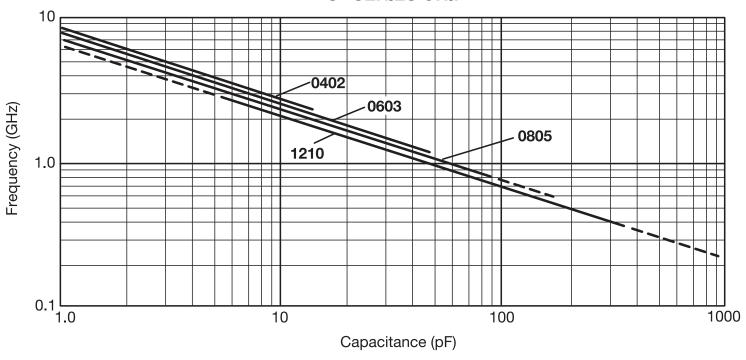

TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES

TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

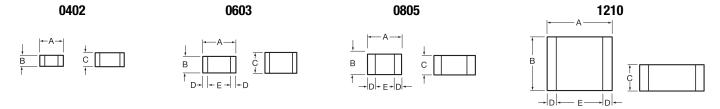


RF/Microwave C0G (NP0) Capacitors

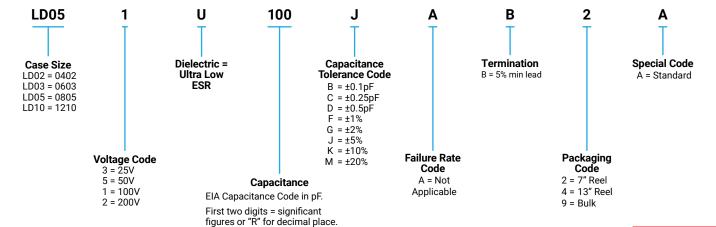
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)


Ultra Low ESR, "U" Series, COG (NP0) Chip Capacitors

GENERAL INFORMATION


"U" Series capacitors are COG (NPO) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210.

DIMENSIONS: inches (millimeters)

Size	A	В	С	D	E
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 (0.6) max	0.010 ± 0.006 (0.25 ± 0.15)	0.014 (0.36) min
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 (0.91) max	0.010±0.005 (0.25±0.13)	0.030 (0.76) min
0805	0.079±0.008 (2.01±0.2)	0.049±0.008 (1.25±0.2)	0.045 (1.15mm) max	0.020±0.010 (0.51±0.254)	0.020 (0.51) min
1210	0.126±0.008 (3.2±0.2)	0.098±0.008 (2.49±0.2)	0.055 (1.40mm) max	0.025±0.015 (0.635±0.381)	0.040 (1.02) min

HOW TO ORDER

Third digit = number of zeros or after "R" significant figures.

Not RoHS Compliant

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage
0402 - 50, 25 WVDC
0603 - 200, 100, 50 WVDC
0805 - 200, 100 WVDC
1210 - 200, 100 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Equivalent Series Resistance Typical (ESR):

040 - See Performance Curve, page 306 0603 - See Performance Curve, page 306 0805 - See Performance Curve, page 306 1210 - See Performance Curve, page 306

Marking:

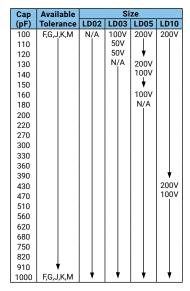
Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request).

Military Specifications

Meets or exceeds the requirements of MIL-C-55681

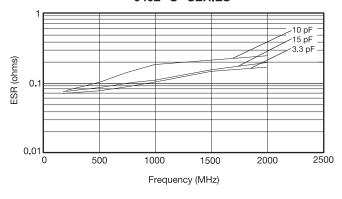
U Dielectric

RF/Microwave C0G (NP0) Capacitors (Sn/Pb)



CAPACITANCE RANGE

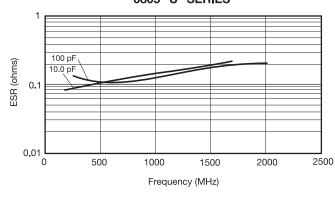
Сар	Available	Size					
(pF)	Tolerance	LD02	LD03	LD05	LD10		
0.2	B,C	50V	N/A	N/A	N/A		
0.3							
0.4	*						
0.5	B,C						
0.6	B,Ç,D						
0.7							
0.8	▼						
0.9	B,C,D	♦	+	♦	🗡		

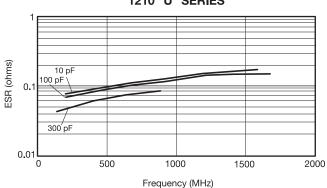

Cap	Available	ilable Size			
(pF)	Tolerance	LD02	LD03	LD05	LD10
1.0	B,C,D	50V	200V	200V	200V
1.1					
1.2					
1.3					
1.4					
1.5					
1.6					
1.7					
1.8					
1.9					
2.0					
2.1					
2.2					
2.4					
2.7					
3.0					
3.3					
3.6					
3.9					
4.3					
4.7					
5.1	l				
5.6	, ,				
6.2	B,C,D	↓	↓	↓	↓
6.8	B,C,J,K,M	'	"		<u>'</u>

Cap	Available Size					
(pF)	Tolerance	LD02	LD03	LD05	LD10	
7.5	B,C,J,K,M	50V	200V	200V	200V	
8.2	♦					
9.1	B,C,J,K,M					
10	F,G,J,K,M					
11						
12						
13						
15			♦			
18			200V			
20			100V			
22						
24						
27		▼				
30		50V				
33		N/A				
36						
39						
43						
47						
51						
56						
68						
75						
82						
91	▼	▼	♥	▼	▼	

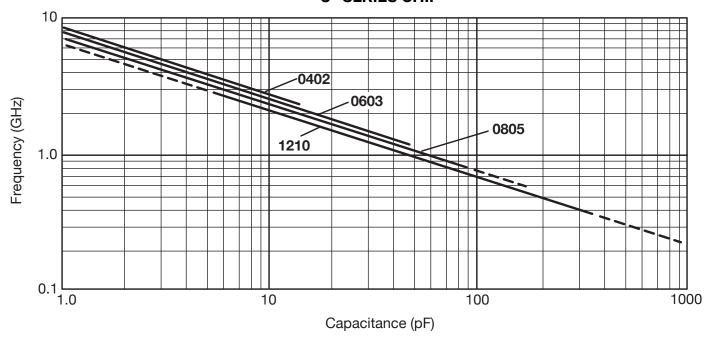


ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES


TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

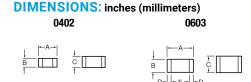
TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES


TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES

ESR Measured on the Boonton 34A

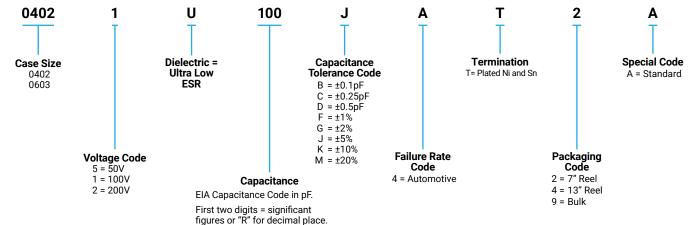
TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP

U Dielectric


RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

AEC Q200 Qualified Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

GENERAL INFORMATION


Automotive "U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the automotive market. Max ESR and effective capacitance are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0402 and 0603.

inches (mm)

Size	Α	В	С	D	Е
0402	0.039±0.004 (1.00±0.1)	0.020±0.004 (0.50±0.1)	0.024 max (0.6)	N/A	N/A
0603	0.060±0.010 (1.52±0.25)	0.030±0.010 (0.76±0.25)	0.036 max (0.91)	0.010±0.005 (0.25±0.13)	0.030 min (0.76)

HOW TO ORDER

LEAD-FREE LEAD-FREE COMPATIBLE COMPONENT

ELECTRICAL CHARACTERISTICS

Capacitance Values and Tolerances:

Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz

Temperature Coefficient of Capacitance (TC):

0±30 ppm/°C (-55° to +125°C)

Insulation Resistance (IR):

 $10^{12}\,\Omega$ min. @ 25°C and rated WVDC $10^{11}\,\Omega$ min. @ 125°C and rated WVDC

Working Voltage (WVDC):

Size Working Voltage 0402 - 100, 50, 25 WVDC 0603 - 200, 100, 50 WVDC

Dielectric Working Voltage (DWV):

250% of rated WVDC

Third digit = number of zeros or after "R" significant figures.

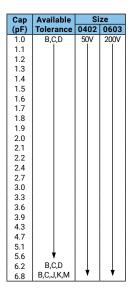
Equivalent Series Resistance Typical (ESR):

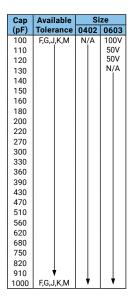
0402 - See Performance Curve, page 3030603 - See Performance Curve, page 303

Automotive Specifications

Meets or exceeds the requirements of AEC Q200

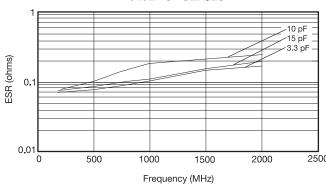
U Dielectric


RF/Microwave Automotive C0G (NP0) Capacitors (RoHS)

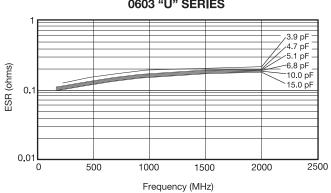

AEC Q200 Qualified, Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors

CAPACITANCE RANGE

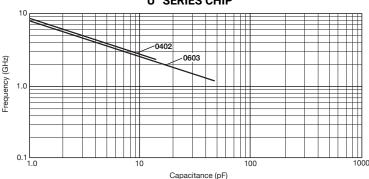
Cap	Available	Si	ze
(pF)	Tolerance	0402	0603
0.2	B,C	50V	N/A
0.3			
0.4	♦		
0.5	B,C		
0.6	B,C,D		
0.7			
0.8	▼		
0.9	B,C,D	*	🕈



Cap	Available	Size		
(pF)	Tolerance	0402	0603	
7.5	B,C,J,K,M	50V	200V	
8.2	♦			
9.1	B,C,J,K,M			
10	F,G,J,K,M			
11				
12				
13				
15			🛊	
18			200V	
20			100V	
22				
24				
27		♦		
30		50V		
33		N/A		
36				
39				
43				
47				
51				
56				
68				
75				
82				
91	▼		▼	



ULTRA LOW ESR, "U" SERIES


TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES

TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES

TYPICAL
SERIES RESONANT FREQUENCY
"U" SERIES CHIP

U Dielectric Designer Kits

Communication Kits "U" Series

0402

Kit 5000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
0.5		4.7				
1.0		5.6	D (1 0 1 = F)			
1.5		6.8	B (± 0.1pF)			
1.8	B (±0.1pF)	8.2				
2.2	ь (±0.1рг)	10.0				
2.4		12.0	J (±5%)			
3.0		15.0	J (±3%)			
3.6						

^{***25} each of 15 values

0805

Kit 3000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		15.0				
1.5		18.0				
2.2		22.0				
2.4		24.0	J (±5%)			
2.7		27.0				
3.0	B (±0.1pF)	33.0				
3.3	D (±0.1pi)	36.0				
3.9		39.0	3 (±3%)			
4.7		47.0				
5.6		56.0				
7.5		68.0				
8.2		82.0				
10.0	J (±5 %)	100.0				
12.0	3 (±3 %)	130.0				

^{***25} each of 30 values

0603

Kit 4000 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
1.0		6.8				
1.2		7.5	B (±0.1pF)			
1.5		8.2				
1.8		10.0				
2.0		12.0				
2.4	B (±0.1pF)	15.0				
2.7	D (±0.1pi)	18.0				
3.0		22.0	J (±5%)			
3.3		27.0				
3.9		33.0				
4.7		39.0				
5.6		47.0				

^{***25} each of 24 values

1210

Kit 3500 UZ						
Cap. Value PF	Tolerance	Cap. Value pF	Tolerance			
2.2		36.0				
2.7		39.0				
4.7		47.0				
5.1	B (±0.1pF)	51.0				
6.8		56.0				
8.2		68.0				
9.1		82.0				
10.0		100.0	J (±5%)			
13.0		120.0				
15.0		130.0				
18.0	J (± 5 %)	240.0				
20.0	J(±5%)	300.0				
24.0		390.0				
27.0		470.0				
30.0		680.0				

^{***25} each of 30 values

X8R/X8L Dielectric

General Specifications

AVX has developed a range of multilayer ceramic capacitors designed for use in applications up to 150°C. These capacitors are manufactured with an X8R and an X8L dielectric material. X8R material has capacitance variation of \pm 15% between -55°C and +150°C. The X8L material has capacitance variation of \pm 15% between -55°C to 125°C to 125°C and +15/40% from +125°C to +150°C.

The need for X8R and X8L performance has been driven by customer requirements for parts that operate at elevated temperatures. They provide a highly reliable capacitor with low loss and stable capacitance over temperature.

They are ideal for automotive under the hood sensors, and various industrial applications. Typical industrial application would be drilling monitoring system. They can also be used as bulk capacitors for high temperature camera modules.

Both X8R and X8L dielectric capacitors are automotive AEC-Q200 qualified. Optional termination systems, tin, FLEXITERM® and conductive epoxy for hybrid applications are available. Providing this series with our FLEXITERM® termination system provides further advantage to customers by way of enhanced resistance to both, temperature cycling and mechanical damage.

0805	5	Α	104	K	4	<u>T</u>	2	Α
	T	T		T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special Code
0402	10V = Z	X8R = F	Code (in pF)	Tolerance	Rate	T = Plated Ni and Sn	2 = 7" Reel	A = Std. Product
0603	16V = Y	X8L = L	2 Sig. Digits +	$J = \pm 5\%$	4=Automotive	Z = FLEXITERM®**	4 = 13" Reel	
0805	25V = 3		Number of Zeros	K = ±10%	A = Not			
1206	50V = 5		e.g. 10 F = 106	$M = \pm 20\%$				
	100V = 1		3		Applicable			

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

				X8 I	L
0805	1206	Size	0603	0805	

	Size		06	03	08		12	06
,	Solderin	ig	Reflow	//Wave	Reflow	/Wave	Reflow	/Wave
		WVDC	25V	50V	25V	50V	25V	50V
271	Cap	270	G	G				
331	(pF)	330	G	G	J	J		
471		470	G	G	J	J		
681		680	G	G	J	J		
102		1000	G	G	J	J	J	J
152		1500	G	G	J	J	J	J
222		2200	G	G	J	J	J	J
332		3300	G	G	J	J	J	J
472		4700	G	G	J	J	J	J
682		6800	G	G	J	J	J	J
103	Cap	0.01	G	G	J	J	J	J
153	(µF)	0.015	G	G	J	J	J	J
223		0.022	G	G	J	J	J	J
333		0.033	G	G	J	J	J	J
473		0.047	G	G	J	J	J	J
683		0.068	G		N	N	М	М
104		0.1			N	N	М	M
154		0.15			N	N	М	М
224		0.22			N		М	М
334		0.33					М	М
474		0.47					М	
684		0.68						
105		1						
155		1.5						
225		2.2						
		WVDC	25V	50V	25V	50V	25V	50V
	SIZE		06	03	08	05	12	06

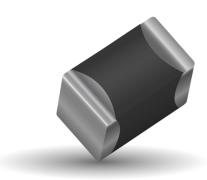
Size		0603	0805	1206	1210
Solderin	ıg	Reflow/Wave	Reflow/Wave	Reflow/Wave	Reflow/Wave
Packagii	ng	All Paper	Paper/Embossed	Paper/Embossed	Paper/Embossed
(L) Length (W) Width	mm	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.30 ± 0.4
	(in)	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.130 ± 0.016)
	mm	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20
	(in)	(0.032 ± 0.006)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)
	mm	0.35 ± 0.15	0.50 ± 0.25	0.50 ± 0.25	0.50 ± 0.25
(i) rerminai	(in)	(0.014 ± 0.006)	(0.020 ± 0.010)	(0.020 ± 0.010)	(0.020 ± 0.010)

	Size		0603			0805			12	06			1210	
	Soldering	Re	flow/W	ave	Re	flow/W	ave			/Wave		Ref	flow/W	ave
	WVD		50V	100V	25V		100V	16V	25V		100V	10V	50V	100V
271	Cap 27	G	G											
331	(pF) 33	G	G	G	J	J	J							
471	47	G	G	G	J	J	J							
681	68	G	G	G	J	J	J							
102	100) G	G	G	J	J	J		J	J				
152	150	G	G	G	J	J	J		J	J	J			
182	180		G	G	J	J	J		J	J	J			
222	220) G	G	G	J	J	J		J	J	J			
272	270) G	G	G	J	J	J		J	J	J			
332	330) G	G	G	J	J	J		J	J	J			
392	390		G	G	J	J	J		J	J	J			
472	470		G	G	J	J	J		J	J	J			
562	560		G	G	J	J	J		J	J	J			
682	680		G	G	J	J	J		J	J	J			
822	820		G	G	J	J	J		J	J	J			
103	Cap 0.0		G	G	J	J	J		J	J	J			
123	(μF) 0.01:		G		J	J	J		J	J	J			
153	0.01		G		J	J	J		J	J	J			
183	0.01		G		J	J	J		J	J	J			
223	0.02		G		J	J	J		J	J	J			
273	0.02		G		J	J	J		J	J	J			
333	0.03		G		J	J	N		J	J	J			
393	0.03		G		J	J	N		J	J	J			
473	0.04		G		J	J	N		J	J	J			
563	0.05		G		J	J	N		J	J	J			
683	0.06		G		J	J	N		J	J	J			
823	0.08		G		J	J	N		J	J	J			
104	0.		G		J	J	N		J	J	М			
124	0.1				J	N			J	J	M			
154	0.1				J	N		J	J	J	Q			
184 224	0.1		+	-	N	N N		J	J	J	Q		-	
274	0.2		+	-	N	IN		J	_	_	Q		-	-
334	0.2		+	-	N N	-	-	J	M	M	Q		-	-
394	0.3		+	-	N	-	-	M	M	P	Q		-	-
474	0.3		+	+	N	 	<u> </u>	M	M	P	Q		 	-
684	0.4		+	-	N	 	 	M	M	P	Q			<u> </u>
824	0.8		+	 	N			M	M	P	Q		 	
105		1	+	 	N		<u> </u>	M	M	P	0			
155	1.		+	 				M	M		Ψ_		-	
225	2.		+					M	M				Z	Z
475		+	+			 		IVI	IVI		1		Z	
106		1	1									Z		
	WVD	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V	10V	50V	100V
	SIZE		0603			0805	, ,,,,,,,			06	,		1210	
	J.==	_				2000								

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.9	0.94	1.02	1.27	1.4	1.52	1.78	2.29	2.54	2.79
Thickness	(-0.013)	(-0.022)	(-0.028)	(-0.035)	(-0.037)	(-0.04)	(-0.05)	(-0.055)	(-0.06)	(-0.07)	(-0.09)	(-0.1)	(-0.11)
			PAPER						EMBO	SSED			

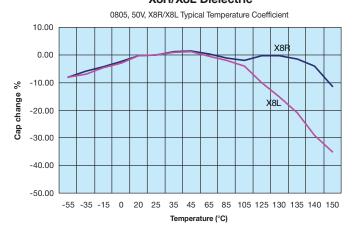
= AEC-Q200 Oualified

X8R/X8L Dielectric


General Specifications

APPLICATIONS FOR X8R AND X8L CAPACITORS

- · All market sectors with a 150°C requirement
- Automotive on engine applications
- · Oil exploration applications
- · Hybrid automotive applications
 - Battery control
 - Inverter / converter circuits
 - Motor control applications
 - Water pump
- · Hybrid commercial applications
 - Emergency circuits
 - Sensors
 - Temperature regulation


ADVANTAGES OF X8R AND X8L MLC CAPACITORS

- Both ranges are qualified to the highest automotive AEC-Q200 standards
- Excellent reliability compared to other capacitor technologies
- RoHS compliant
- · Low ESR / ESL compared to other technologies
- · Tin solder finish
- FLEXITERM® available
- · Epoxy termination for hybrid available
- 100V range available

ENGINEERING TOOLS FOR HIGH VOLTAGE MLC CAPACITORS

- Samples
- Technical Articles
- · Application Engineering
- · Application Support

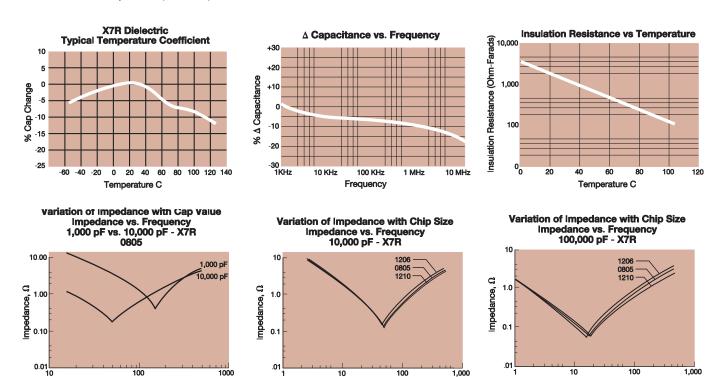
X8R/X8L Dielectric

X8R/X8L Dielectric

Parame	ter/Test	X8R/X8L Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance	Freg.: 1.0 k	Hz + 10%
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Voltage: 1.0	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Appearance Capacitance Variation Dissipation Factor Insulation Resistance	≤ ±12%	Test Time: 3	
Flexure Stresses		Meets Initial Values (As Above)		
		≥ Initial Value x 0.3	90 r	mm ————
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solo 0.5 sec	
	Appearance	No defects, <25% leaching of either end terminal		
	erature Range ance n Factor esistance Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resispation Factor Insulation Dissipation Factor Insulation Dissipation Factor Insulation	≤ ±7.5%	Din dovice in cute eti	a colder at 26000 for
Resistance to Solder Heat		Meets Initial Values (As Above)	Dip device in eutection 60 seconds. Store at 24 ± 2 hours before r	room temperature for
		Meets Initial Values (As Above)	properties.	J
		Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
		≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock		Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
		Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
		Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	I I I I I I I I I I I I I I I I I I I	No visual defects		
	Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
		Meets Initial Values (As Above)		
		No visual defects		
	Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours
Load Humidity	Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and humidity measu	for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	ineasu	y

General Specifications

X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within ±15% from -55°C to +125°C. This capacitance change is non-linear.


Capacitance for X7R varies under the influence of electrical operating con-ditions such as voltage and frequency.

X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

0805	<u>5</u>	<u>c</u>	103	<u>M</u>	<u>A</u>	<u>T</u>	<u>2</u>	<u>A</u>
Size (L" x W")	Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X7R = C		Capacitance Tolerance J = ± 5%* K = ±10% M = ± 20% *≤1µF only, contact factory for additional values		Terminations T = Plated Ni and Sn Z= FLEXITERM®** *Optional termination **See FLEXITERM® X7R section	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples	Special Code A = Std. Product

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

Frequency, MHz

Frequency, MHz

Frequency, MHz

Specifications and Test Methods

	ter/Test	X7R Specification Limits		g Conditions
	perature Range	-55°C to +125°C Within specified tolerance	Temperature	Cycle Chamber
	on Factor	≤ 10% for ≥ 50V DC rating≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating Contact Factory for DF by PN	Voltage: 1	0 kHz ± 10% .0Vrms ± .2V , 0.5Vrm @ 120Hz
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less		ith rated voltage for oom temp/humidity
Dielectric	: Strength	No breakdown or visual defects	seconds, w/charge and of 50 m Note: Charge device with	0% of rated voltage for 1-5 discharge current limited to A (max) h 150% of rated voltage for devices.
	Appearance	No defects		
Resistance to	Capacitance Variation	≤ ±12%	Deflect	ion: 2mm
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	Test Time	: 30 seconds
	Insulation Resistance	≥ Initial Value x 0.3		
Solde	rability	≥ 95% of each terminal should be covered with fresh solder		tic solder at 230 ± 5°C 0.5 seconds
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	seconds. Store at room t	e solder at 260°C for 60 emperature for 24 ± 2hours
Soluei Heat	Insulation Resistance	Meets Initial Values (As Above)	before measuring	electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)		measure after 24 ± 2 hours emperature
	Appearance	No visual defects	Observator to the second	and a college of the entire to
	Capacitance Variation	≤ ±12.5%		ed voltage in test chamber or 1000 hours (+48, -0).
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)		nber and stabilize at room hours before measuring.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)		isheet of specific parts.
	Dielectric Strength	Meets Initial Values (As Above)	Jointage AVA for date	ioneet or opeomic parts.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%		et at 85°C ± 2°C/ 85% ± 5% 0 hours (+48, -0) with rated
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	voltage	e applied.
Humaity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature and humid	er and stabilize at room ity for 24 ± 2 hours before
	Dielectric Strength	Meets Initial Values (As Above)	mea	suring.

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE	T	0101*			0201	1				0402							0	603								805								12	06			
Soldering	\dashv	Reflow Only			low (F	Reflov		ve					Reflo									w/Wa	ve				_		R		/Wav	e		
Packaging		Paper/ Embossed			II Pap						Paper							Pap						P	aper/	Embo	ssed						Pap	er/Er	nbos	sed		
(L) Length m (ir		0.40 ± 0.02 (0.016 ± 0.0008)			0 ± 0		.)			1.00 .040						(1	1.60							(1 ± 0.2 9 ± 0.0									0.30			
W) Width m		0.20 ± 0.02 (0.008 ± 0.0008)			0 ± 0		.)			0.50						(1	0.81	± 0. 2 ± 0.						(5 ± 0.2 9 ± 0.0									0.30 0.01			
(4) Ti m	ım	0.10± 0.04		0.1	5 ± 0	0.05				0.25							0.35									0.2 ± 0.2									0.25			
(t) Terminal (ir	n.)	(0.004 ± 0.0016)		(0.00	06 ± 0	0.002)		(0	.010	± 0.0	06)				(0.014	1 ± 0.	006)					(0.020	0.0 ±	10)						(0.	020 ±	0.01	0)		
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500
Cap 100 10	01	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J													G	G	N	N	N
(pF) 150 15	51	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J									G	G	G	G	G	G	N	N	N
220 22	21	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J	Е	Е	Е	Е	Е	Е	Е	J	J	J	J	J	J	J	N	N	Р
330 33	31	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
470 47	71	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
680 68	31	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
1000 10)2	В	Α	Α	Α	Α	Α	С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
1500 15	52		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
2200 22	22		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
3300 33	32		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
3900 39	92		Α	Α	Α	Α																																
4700 47	72		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	J	J	J	J	J	J	J	J	N	N	Р
5600 56	52		Α	Α	Α	Α																																
6800 68	32		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Р
Cap 0.01 10	03		Α	Α	Α	Α		С	С	С	С	С	С	G	G	G	G	G	G	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Р
(µF) 0.012 12	23																																					
0.015 15	53							С	С	С	С	Е		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	N	N	Q
0.018 18	33			1	i –	T																																
0.022 22	23		Α	Α	Α			С	С	С	С	Е		G	G	G	G	G	J	J	J		J	J	J	J	J	Р	Р	J	J	J	J	J	J	Р	Р	Q
0.027 27	73																																					
0.033 33	33					T		С	С	С	С	Е		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
0.039 39	93								T																									T				
0.047 47	73				t	T		С	С	С	С	Е		G	G	G	G	J	J	J			J	J	J	J	Р	Р	Р	J	J	J	J	J	J	Q	Q	Q
0.068 68	33					t		С	С	С	С	Е		G	G	G	G	J	J	J			J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q	
0.082 82	23				t																															_	Ť	
0.1 10	_		Α		t			С	С	С	С	Е		G	G	G	G	J	J	J			J	J	J	J	Р	Р		J	J	J	J	J	Р	Q	Q	
0.12 12	\rightarrow			Т	T	Т																															i i	\Box
0.15 15	_				İ			İ	İ		İ			G	G	G	J	J				İ	N	N	N	N	Р			K	K	К	К	K	Q	Q	Q	
0.22 22	_			Т	T	Т		С	С	С	С			G	G	J	J	J	İ				N	N	N	N	P			K	K	K	K	K	Q	Q	Q	\Box
0.33 33	_													J	J	J	J	J					Р	Р	Р	Р	Р		İ	K	K	К	К	N	Q			
0.47 47	_			t				С	С		İ			J	J	J	J	J			t		Р	Р	Р	Р	Р			М	М	М	М	Х	X			
0.68 68	_										İ			J	J	J							Р	Р	Р					М	М	М	М	Х	Х	İ	İ	\Box
1.0 10	_				T			С						J	J	J	J	J					Р	Р	Р	Р				М	М	М	М	Х	Х			\Box
2.2 22	_			Т	T						ļ			J	J	K							Р	Р	Р	Р				М	М	М	Х	Х	Х			H
4.7 47				Т	T									K									Р	P	P					Х	Х	Х	Х	Z				H
10 10				Т	T	Т																Р	Р	P						Х	Х	Х	Х			i –		
22 22	_			Т	T	T									Т		Т													Х	Х	Х				i –		
47 47	_			Т	T	T									T								İ		П									T		i –		
100 10	_			Т	T	T									T								İ											T		İ		
WVDC	T	16	6.3	10	16	25	50	0 6.3 10 16 25 50 100 6.3					6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500	
SIZE	\top	0101*			0201						102			100 6.3 10 16 25 50 100 200 250 0603						_	-	805						Ť	Ť	12								
																	_																		_			

ı	Letter	Α	В	С	E	G	J	K	M	N	Р	Q	X	Υ	Z
Ī	Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
	Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAF	PER						EMBO	SSED			

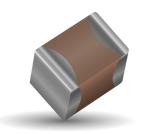
NOTE: Contact factory for non-specified capacitance values

*EIA 01005

^{**}Contact Factory for Specifications

Capacitance Range

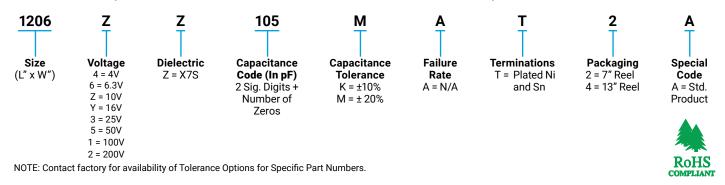
PREFERRED SIZES ARE SHADED


Cap	SIZE					1210						18	12				1825				2220				2225	
C) Length	Soldering				Re	eflow On	ıly					Reflo	v Only			R	eflow Or	nly		R	eflow Or	nly		Re	eflow On	ıly
Column C	Packaging				Pape	er/Embo	ssed					All Em	bossed			All	Emboss	sed		All	I Embos	sed		All	Emboss	ed
(1) (1)																										
(V) (U)																										
Cap 100 101																										
CF 150 151		-	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
Section Sect																							<u> </u>	>-		,]
330 331	(I')																						<u> </u>	\leq	——————————————————————————————————————	\ `` _
A70 A71							K	K	М														L (-) <u>↓</u>
680 681	330	331				K	K	K	М			N	N	N	N								_	~!J		
1000 102 K	470	471				K	K	K	М			N	N	N	N								L	4		
1500 152 K	680	681				K	K	K	М			N	N	N	N											
2200 222 K K K K K K K K	1000	102	K	K	K	K	K	K	М	N	N	N	N	N	N	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
3300 332 K		_	K	K	K	K	K	K	М	N	N	N	N	N	N	Х	Х	Х			Х		Х	Х	Х	Х
4700 472 K	2200	222	K	K	K	K	K	K	М	N	N	N	N	N	N	Х		Х		Х	Х	Х	Х		Х	Х
Cap	3300	332	K	K	K	K	K	K	Р	N	N	N	N	N	N	Х		Х			Х		Х	Х	X	X
Cap	4700	472	K	K	K	K	K	K	Р	N	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
(µF) 0.015 153 K K K K K K K F P N N N N N N P X X X X X X X X X X X X	6800	682	K	K	K		K	K		Ν	N	N	N	N		Х							Х			Х
0.022 223 K K K K K K K P Q N N N N N N N P X X X X X X X X X X X X	Cap 0.01	103	K	K	K	K	K	K	P	Ν	N	N	N	N	Р	Х	Х	Х		Х	Х		Х		Х	X
0.033 333 K K K K K K P X N N N N N N X X X X X X X X X X X X			K	K	K		K	K	P	Ν	N	N	N	N		Х					Х		Х			X
0.047	0.022	223	K	K	K	K	K	Р	Q	Ν	N	N	N	N	Р	Х	Х	Х		Х	Х	Х	Х	Х	X	Х
0.068 683 K K K K K K K P X N N N N P X X X X X X X X X X X X X	0.033	333	K	K	K	K	K	Р	Х	Ν	N	N	N	N	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х
0.1 104 K K K K K K P X N N N P P X X X X X X X X X X X X X	0.047	473	K	K	K	K	K	Р	Х	Ν	N	N	N	P	Χ	Х	Х	Х		Х	Х	Х	Х	Х	X	Х
0.15 154 K K K M P Z Z N N N N P P Z X X X X X X X X X X X X X X X X X	0.068	683	K	K	K	K	K	Р	Х	N	N	N	N	Р	Х	Х	Х	Х		Х	Х	Х	Х	Х	X	Х
0.22 224 K K K M P Z N N N N P Q Z X X X X X X X X X X X X X X X X X X	0.1	104	K	K	K	K	K	Р	Х	N	N	N	Р	Р	Х	Х	Х	Х		Х	Х	Х	Х	Χ	X	Х
0.33 334 K K K M Q Z N N N N P X Z X X X X X X X X X X X X X X X X X	0.15	154	K	K	K	М	Р	Z	Z	N	N	N	Р	Р	Z	Х	Х	Х		Х	Х	Х	Х	Χ	Х	Х
0.47 474 M M M M P Q Z N N N N Q X Z X X X X X X X X X X X X X X X X X	0.22	224	K	K	K	М	Р	Z		N	N	N	Р	Q	Z	Х	Х	Х		Х	Х	Х	Х	Χ	Χ	X
0.68 684 M M P X X Z Q Q Q Q Z X <th>0.33</th> <th>334</th> <th>K</th> <th>K</th> <th>K</th> <th>М</th> <th>Q</th> <th>Z</th> <th></th> <th>N</th> <th>N</th> <th>N</th> <th>Р</th> <th>Х</th> <th>Z</th> <th>Х</th> <th>Х</th> <th>Х</th> <th></th> <th>Х</th> <th>Х</th> <th>Х</th> <th>Х</th> <th>Χ</th> <th>Χ</th> <th>X</th>	0.33	334	K	K	K	М	Q	Z		N	N	N	Р	Х	Z	Х	Х	Х		Х	Х	Х	Х	Χ	Χ	X
1.0 105 P P P X Z Q Q Q X Z X X X X X X X X X X X X X	0.47	474	М	М	М	Р	Q	Z		N	N	N	Q	Х	Z	Х	Х	Х		Х	Х	Х	Х	Χ	Х	X
1.5 155 N N Z Z Z Z Z Z Z X X Z X X Z X	0.68	684	М	М	Р	Х	Х	Z		Q	Q	Q	Q	Z		Х	Х	Х		Х	Х	Х		Х	Х	X
2.2 225 X X Z Z Z Z Z Z X X Z X X Z X	1.0	105	Р	Р	Р	Х	Z			Q	Q	Q	Х	Z		Х	Х	Х		Х	Х	Х		Х	Х	Х
3.3 335 X X Z Z Z Z Z Z Z X X X X X Z Z Z X	1.5	155	N	N	Z	Z	Z				Z	Z	Z			Х	Х	Z		Х	Х	Z		Х	Х	Z
4.7 475 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	2.2	225	Х	Х	Z	Z	Z				Z	Z	Z			Х	X	Z		Х	X	Z		Х	Х	Z
10 106 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	3.3	335	Х	Х	Z	Z	Z				Z	Z	Z			Х	Х			Х	Z			Х	Х	
22 226 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	4.7	475	Z	Z	Z	Z	Z				Z	Z	Z			Х	Х			Z	Z			Х	Х	
47 476 Z	10	106	Z	Z	Z	Z				Z	Z	Z				Z	Z			Z	Z			Z	Z	
100 107	22 2	226	Z	Z	Z														Z							
	47	476	Z															ĺ								
WVDC 10 16 25 50 100 200 500 16 25 50 100 200 500 50 100 200 500 50 100 200 25 50 100 200 500 50 100	100	107		i														İ								
	WVDC	-	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	25	50	100	200	500	50	100	200
SIZE 1210 1812 1825 2220 2225	SIZE										18	12				1825				2220				2225		

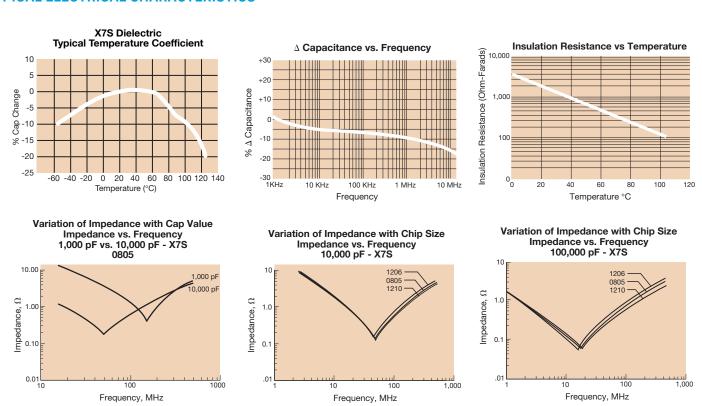
	Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
L	Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAI	PER						EMBC	SSED			

NOTE: Contact factory for non-specified capacitance values

General Specifications


GENERAL DESCRIPTION

X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. Its temperature variation of capacitances within $\pm 22\%$ from -55° C to $+125^{\circ}$ C. This capacitance change is non-linear.


Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency.

X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parame	ter/Test	X7S Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
·	on Factor	Within specified tolerance ≤ 5.0% for ≥ 100V DC rating ≤ 5.0% for ≥ 25V DC rating ≤ 10.0% for ≥ 10V DC rating ≤ 10.0% for ≤ 10V DC rating Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 μF, 0	Vrms ± .2V
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	30 seconds 7 1mm/sec
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutection for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

Capacitance Range

PREFERRED SIZES ARE SHADED

				ш	ш	[
SIZE		0	402	0603	0805		1206		1210
Solder			w/Wave	Reflow/Wave	Reflow/Wave		flow/W		Reflow Only
Packag	jing	All	Paper	All Paper	Paper/Embossed		r/Embo		Paper/Embossed
(L) Length	mm		± 0.10	1.60 ± 0.15	2.01 ± 0.20		20 ± 0.2		3.20 ± 0.20
(L) Length	(in.)		± 0.004)	(0.063 ± 0.006)	(0.079 ± 0.008)		26 ± 0.0		(0.126 ± 0.008)
W) Width	mm		± 0.10	0.81 ± 0.15	1.25 ± 0.20		60 ± 0.:		2.50 ± 0.20
,	(in.)		± 0.004)	(0.032 ± 0.006)	(0.049 ± 0.008)		63 ± 0.0		(0.098 ± 0.008)
(t)	mm		± 0.15	0.35 ± 0.15	0.50 ± 0.25		50 ± 0.:		0.50 ± 0.25
Terminal	(in.)		± 0.006)	(0.014 ± 0.006)	(0.020 ± 0.010)		20 ± 0.0		(0.020 ± 0.010)
_	WVDC	4	6.3	6.3	4	10	50	100	6.3
Cap	100								
(pF)	150								
-	220 330					ł			~w —
	470					-	<u> </u>	_	
	680					~)) [
	1000))	
	1500						_	ىلىك	
	2200							-	
	3300					t		t I	-
	4700					ŀ	ı	l i	i l
	6800					l			
Сар	0.010								
(µF)	0.015								
(6.)	0.022					İ			
	0.033		С						
	0.047		C						
	0.068		c						
	0.10		C						
	0.15		Ŭ						
	0.22					İ			
	0.33			G					
	0.47			G			l		
1	0.68			G			ĺ	İ	
	1.0	Е		G					
	1.5				N		ĺ		
	2.2	E			N				
	3.3				N				
	4.7				N	Q		Q*	
	10								
	22								Z
	47								
	100								
	WVDC	4	6.3	6.3	4	10	50	100	6.3
	SIZE	0	402	0603	0805		1206		1210

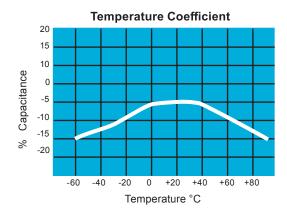
Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.90	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.075)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

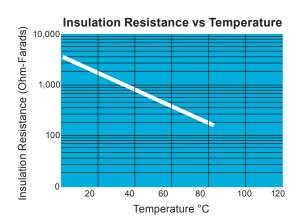
^{*}Contact Factory for Specifications

General Specifications

GENERAL DESCRIPTION

- General Purpose Dielectric for Ceramic Capacitors
- EIA Class II Dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- · Well suited for decoupling and filtering applications
- Available in High Capacitance values (up to 100μF)


PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


1210	4	D	107	М	Α	T	2	Α
	T	T	T	T	T	T	T	T
Size	Voltage	Dielectric	Capacitance	Capacitance	Failure	Terminations	Packaging	Special
(L" x W")	4 = 4V	D = X5R	Code (In pF)	Tolerance	Rate	T = Plated Ni	2 = 7" Reel	Code
0101**	6 = 6.3V		2 Sig. Digits +	$K = \pm 10\%$	A = N/A	and Sn	4 = 13" Reel	A = Std.
0201	Z = 10V		Number of	$M = \pm 20\%$				
0402	Y = 16V		Zeros					
0603	3 = 25V							
0805	D = 35V							A .
1206	5 = 50V							
1210	1 = 100V							The same of the sa
1812								
**EIA 010	005							RoHS
								COMPLIANT

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

TYPICAL ELECTRICAL CHARACTERISTICS

Specifications and Test Methods

Parame	ter/Test	X5R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature Cy	cle Chamber
Capac	itance	Within specified tolerance		
Dissipation	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 12.5% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0\ For Cap > 10 μF, 0.	/rms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μ F, whichever is less	Charge device with rate secs @ room te	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250% seconds, w/charge and di to 50 mA	scharge current limited
	Appearance	No defects	Deflection	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V	
	Insulation Resistance	≥ Initial Value x 0.3	90 m	nm —
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic sole ± 0.5 se	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic 60seconds. Store at roor	n temperature for 24 ±
	Insulation Resistance	Meets Initial Values (As Above)	2hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and hours at room	
	Appearance	No visual defects	Charge device with 1.5	rated voltage in test
	Capacitance Variation	≤ ±12.5%	chamber set at 85°C ± (+48,	2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	Note: Contact factory for part numbers that are t	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	volta	
	Dielectric Strength	Meets Initial Values (As Above)	Remove from test chamb temperature for	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber so 5% relative humidity for 10	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	rated voltag	e applied.
riamuity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature and 24 ± 2 hours befo	d humidity for
	Dielectric		Z4 I Z HOURS DER	ne measumy.

Capacitance Range

PREFERRED SIZES ARE SHADED

Case Size Soldering Packaging		010 Refloy		_		0201						02						0603							0805			
Packaging		Reliov	v Onlv		Re	flow O	nlv			F	Reflow	/Wave	e.				Refl	ow/W						Refl	ow/W			
		Paper/Er				II Pape					All P							II Pap								ossed		
	mm (in.)	0.40 ± (0.016 ±	0.02		0.6	50 ± 0. 24 ± 0.	09				1.00 ±	± 0.20	8)				1.6	50 ± 0. 53 ± 0.	.15					2.0	01 ± 0. 79 ± 0.	.20		
IW/IW/idth	mm (in.)	0.20 ± (0.008 ±				30 ± 0. 11 ± 0.					0.50 ±		8)					31 ± 0. 32 ± 0.							25 ± 0. 49 ± 0.			
l(f) Lerminal	mm (in.)	0.10 ± (0.004 ±				15 ± 0. 06 ± 0.					0.25 ±							35 ± 0. 14 ± 0.							50 ± 0. 20 ± 0.			
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50
Cap (pF) 100	101		В					Α																				
150	151		В					Α																				
220	221		В					Α						С														
330	331		В					Α						С														
470	471		В					Α						С														
680	681		В					Α						С														
1000	102		В				Α	Α						С														<u> </u>
1500	152	В	В				Α	Α						С														<u> </u>
2200	222	В	В			Α	Α	Α						С														<u> </u>
3300	332	В	В			Α	Α	Α						С														Ь—
4700	472	В	В			Α	Α	Α					С								G							<u> </u>
6800	682	В	В			Α	Α	Α					С						_		G							└
Cap (µF) 0.01	103	В	В			Α	Α	Α					С						G	G	G							<u> </u>
0.015	150	В											С						G	G	G				_			
0.022	223	В			Α	Α	Α	Α				С	С						G	G	G							N
0.033	333	В										С							G	G	G							N
0.047 0.068	473 689	B B			Α	Α	Α	Α				С	С						G	G	G							N
	104	В			٨	Α	۸	۸			С	C	_	С		-			G	•	G					NI.	NI.	N
0.1 0.15	154	В			Α	Α	Α	Α			U	L L	С	l C					G	G	G					N N	N N	IN.
0.13	224	В		Α	Α	A				С	С	С	С	С				G	G							N	N	N
0.22	334	D		А	A	A				L L	U	C	U	U				G	G							N	IN	IN
0.33	474	В		Α	Α				С	С	С	С	С	Е		<u> </u>	_	G	J					-	_	N	P	Р
0.47	684	U														<u> </u>		G	3							N		
1.0	105			Α	Α	С	С		С	С	С	С	С		G	G	G	G	J	G	G				N	N	Р	Р
1.5	155																U			0	J				.,	- ' '		
2.2	225			С	С	С			С	С	С	С	С		G	G	J	J	J	K	K			N	N	Р	Р	Р
3.3	335														J	J	J						N	N				
4.7	475			С	С				Е	Е	Е	Е			J	J	J	G	К			N	P	J	N	N	Р	Р
10	106								E	E	E				K	J	K	K	K			P	P	P	P	P		
22	226								E	G					K	K	K	<u> </u>				P	P	P	P	P		
47	476														K	K						P	P	P				
100	107																											
Voltage:		6.3	10	4	6.3	10	16	25	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	4 6.3 10 16 25 35 5						50
Case Size		010)1*			0201						02						0603							0805			

Letter	Α	В	С	E	G	J	K	М	N	Р	Q	Х	Y	Z
Max. Thickness	0.33 (0.013)	0.22 (0.009)	0.56 (0.022)	0.71 (0.028)	0.90 (0.035)	0.94 (0.037)	1.02 (0.040)	1.27 (0.050)	1.40 (0.055)	1.52 (0.060)	1.78 (0.070)	2.29 (0.090)	2.54 (0.100)	2.79 (0.110)
			PAI	PER						EMBO	SSED			

PAPER and EMBOSSED available for 01005 NOTE: Contact factory for non-specified capacitance values *EIA 01005

PREFERRED SIZES ARE SHADED

Case Size					1206							1210							1812				
Soldering					ow/W	lave					Re	flow 0						Re	flow 0				
Packaging				Paper,	/Emb	ossec	<u> </u>					r/Emb						All	Embos	sed			
(L) Length	mm		-		20 ± 0.							20 ± 0.							50 ± 0.				
(L) Length	(in.)				26 ± 0.							26 ± 0.							77 ± 0.				
W) Width	mm				0 ± 0.							50 ± 0.							20 ± 0.				
,	(in.)				3 ± 0.							98 ± 0.							26 ± 0.				
(t) Terminal	mm (in)				50 ± 0.							50 ± 0.							61 ± 0.				
Voltage:	(in.)	4	6.3	10.02	20 ± 0.	25	35	50	4	6.3	10.02	20 ± 0. 16	25	35	50	4	6.3	10.0	24 ± 0.	25	35	E0.	
	101	4	0.3	10	10	25	35	50	4	0.3	10	10	25	35	50	4	0.3	10	16	25	33	50	
Cap (pF) 100 150	101 151														-							 	
220	221															-						\vdash	
330	331																						
470	471													_		 			\vdash				
680	681															 							
1000	102																						
1500	152																						
2200	222																						
3300	332																						
4700	472																						
6800	682																						
Cap (µF) 0.01	103																						
0.015	150																						
0.022	223																						
0.033	333																						
0.047	473																						
0.068	689																					<u> </u>	
0.1	104																						
0.15	154																						
0.22	224																					<u> </u>	
0.33	334													.,	.,								
0.47	474					Q	Q							Х	Х				_			-	
0.68	684					0	0	0					V	V	V				-				
1.0	105 155					Q	Q	Q					Х	Х	Х								
2.2	225			Q	Q	Q	0	Q					Х	Z	Z		_		\vdash			\vdash	
3.3	335		Q	Q	Ų	Ų	Ų	Ų					^									\vdash	
4.7	475	Χ	X	X	Х	Х	Х	Х			Z	Z	Z	Z	Z	-			-			<u> </u>	
10	106	X	X	X	X	X	X	X		Х	X	Z	Z	Z	Z					Z			
22	226	X	X	X	X	X			Z	Z	Z	Z	Z		_	Z	Z	Z	Z				
47	476	X	X	X	X				Z	Z	Z	Z	Z			_	_	_	_				
100	107	X	X						Z	Z		_	_										
Voltage:		4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	
Case Size					1206							1210							1812				

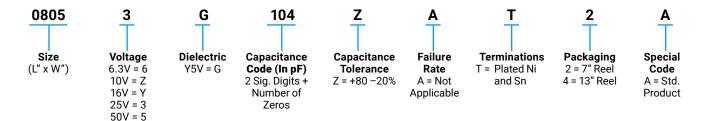
Letter	Α	В	С	E	G	J	K	М	N	P	Q	X	Υ	Z
Max.	0.33	0.22	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.009)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PA	PER						ЕМВО	SSED			

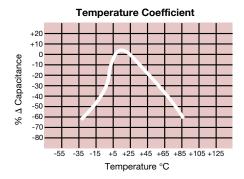
PAPER and EMBOSSED available for 01005

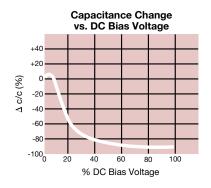
NOTE: Contact factory for non-specified capacitance values *EIA 01005

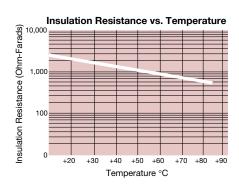
Y5V Dielectric

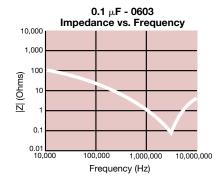
General Specifications

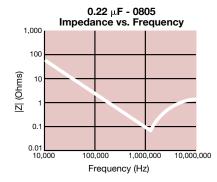

GENERAL DESCRIPTION

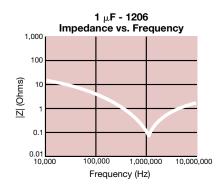

Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30°C to +85°C.


These characteristics make Y5V ideal for decoupling applications within limited temperature range.




PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)





Y5V Dielectric

Parame	ter/Test	Y5V Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-30°C to +85°C	Temperature Cy	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	\leq 5.0% for \geq 50V DC rating \leq 7.0% for 25V DC rating \leq 9.0% for 16V DC rating \leq 12.5% for \leq 10V DC rating	Freq.: 1.0 k Voltage: 1.0\ For Cap > 10 μF, 0.	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with rated @ room tem	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflection	n: 2mm
Resistance to	Capacitance Variation	≤ ±30%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	l v	
	Insulation Resistance	≥ Initial Value x 0.1	90 n	nm —
Solde	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±20%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -30°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±20%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ±2 hours at roo	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±30%	Charge device with twic	
Load Life	Dissipation Factor	≤ Initial Value x 1.5 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±30%	Store in a test chamber s 5% relative humidit	ty for 1000 hours
Load Humidity	Dissipation Factor	≤ Initial Value x 1.5 (See above)	(+48, -0) with rated	voltage applied.
,	Insulation Resistance	≥ Initial Value x 0.1 (See Above)	Remove from chamber temperature and 24 ± 2 hours befo	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 Hours ben	ore measuring.

Y5V Dielectric

Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		020	01			0402				06	03			08	305			12	06			12	10	
Solderi	ng	Reflow	Only		Ref	low/W	ave			Reflow	//Wave	9	F	Reflov	v/Wav	e	ı	Reflow	Mfeve	9	F	Reflow	/Wav	e
Packag	ing	All Pa	aper		А	II Pape	er			All P	aper		Pa	per/E	mboss	sed	Pa	per/En	nboss	ed	Pa	per/Er	nboss	sed
(L) Length	mm	0.60 ±	0.09		1.0	00 ± 0.	10			1.60	± 0.15			2.01	± 0.20			3.20 ±	0.20			3.20 :	£ 0.20	
(L) Length	(in.)	(0.024 ±				40 ± 0.)	((± 0.00	6)	_ `		± 0.00		(0).126 ±		8)	_ `	.126 :		
W) Width	mm	0.30 ±				50 ± 0.					0.15				± 0.20			1.60 ±				2.50		
vv) vvidtii	(in.)	(0.011 ±				20 ± 0.)	(0		± 0.00	6)			± 0.00		(0).063 ±		8)	(0	.098 :		8)
(t) Terminal	mm	0.15 ±				25 ± 0.					± 0.15				± 0.25			$0.50 \pm$					0.25	
(t) remindi	(in.)	(0.006 ±				10 ± 0.					± 0.00				± 0.01		_	0.020 ±			_	.020 :		
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
Сар	820																				7	~	₩-	
(pF)	1000		Α																_	~ L	<		\supset	₹
	2200		Α																			`	للر	. ★.
	4700		Α																		<u> </u>	4		
Сар	0.010	Α	Α																		4	ŧ d		
(μF)	0.022	A A						\perp												<u> </u>	نــــــــــــــــــــــــــــــــــــــ			ш
	0.047 0.10					С																		
	0.10				С	С					G	G				K								
	0.22							\perp		G														
	0.33									G														
	0.47					С				G	G													
	1.0			С	С			\perp	G	G	J			N	N	N		М	М	М				N
	2.2				С				J					N	N				K	Q				
	4.7												N	N	N			Р	Q			N	N	
	10.0												N	Р			Q	Q	Х		Χ	Q	Q	Z
	22.0																Q				Х	Z		
	47.0																							
	WVDC	6.3	10	6	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50	10	16	25	50
SIZE	SIZE 0201					0402				06	03			80	305			12	06			12	10	
Letter	Α	С	Е		G	J		K		M	N		Р		Q	Х		Υ		Z				
Max.	0.33	0.56	0.71	0	.90	0.9	4	1.02	1	.27	1.40)	1.52		.78	2.29	9	2.54	2.	79				
Thickness	(0.013)	(0.022)	(0.028)	(0.	.035)	(0.03	7)	(0.040)	(0.	050)	(0.05	5) ((0.060)	(0.	070)	(0.09	0) (0	0.100)	(0.1	110)				
. monness	, ,	, ,	PAPER	,		,		/					,	OSSE		,		/						
Į.								_			- 30-													

MLCC Gold Termination – AU Series

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of Gold. This termination is indicated by the use of a "7" or "G" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. Please contact the factory if you require additional information on our MLCC Gold Termination.

PART NUMBER

AU03	Y	G	104	<u>K</u>	<u>A</u>	7	<u>2</u>	<u>A</u>
Size AU02 - 0402 AU03 - 0603 AU05 - 0805 AU06 - 1206 AU10 - 1210 AU12 - 1812 AU13 - 1825 AU14 - 2225 AU16 - 0306 AU17 - 0508	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B = \pm .10 \text{ pF} (<10 \text{ pF})$ $C = \pm .25 \text{ pF} (<10 \text{ pF})$ $D = \pm .50 \text{ pF} (<10 \text{ pF})$ $F = \pm 1\% (\ge 10 \text{ pF})$ $G = \pm 2\% (\ge 10 \text{ pF})$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	Failure Rate A = Not Applicable	Terminations G*=1.9 μ" to 7.87 μ" 7 = 100 μ" minimum	Packaging 2 = 7" Reel 4 = 13" Reel U = 4mm TR (01005) Contact Factory For Multiples*	Special Code A = Std. Product

^{*} Contact factory for availability.

AU18 - 0612

Capacitance Range (NP0 Dielectric)

PREFERRED SIZES ARE SHADED

SIZE			AU02			AU	103				AU05					AL	J06		
Solderin	na		flow/Epc			Reflow	/Epoxy/				flow/Epo					Reflow	/Epoxy/		
Packagi			Vire Bond All Pape			Wire I					Vire Bond er/Embo					Wire Paper/E	Bond* mbosse	d	
(L) Length	mm	1	.00 ± 0.1	0		1.60 :				2	.01 ± 0.2	20				3.20	± 0.20		
	(in.) mm		040 ± 0.0			0.063 :					079 ± 0.0 .25 ± 0.2						± 0.008) ± 0.20		
W) Width	(in.)	(0.0	020 ± 0.0	04)		(0.032 :	± 0.006)			(0.0	0.0 ± 0.0	(80				(0.063)	± 0.008)		
(t) Terminal	mm (in.)		0.25 ± 0.1 010 ± 0.0			0.35 :					0.50 ± 0.2 020 ± 0.0						± 0.25 ± 0.010)		
	WVDC	16	25	50	16	25	50	100	16	25	50 ± 0.0	100	200	16	25	50	100	200	500
Cap	0.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0 1.2	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	1.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.8 2.2	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	2.7	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3	С	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	4.7	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J J	J	J	J
	5.6	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8 8.2	C C	C	C	G G	G G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	10	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	12 15	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	18	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	33	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39 47	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J J	J
	56	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	68	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	82 100	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	С	С	G	G	G	G	J	J	J	J	Ĵ	J	J	J	J	J	J
	150 180	C	C	C	G G	G G	G	G	J	J	J	J	J	J	J	J	J	J	J
	220	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	М
	270 330	C	C	C	G	G	G	G	J	J	J	J	M M	J	J	J	J	J	M
	390	С	С	С	G	G	G		Ĵ	Ĵ	J	Ĵ	М	Ĵ	J	J	Ĵ	J	М
	470 560	С	С	С	G G	G G	G		J	J	J	J	M	J	J	J	J	J	M
	680				G	G	G		Ĵ	Ĵ	Ĵ	Ĵ	M	Ĵ	Ĵ	Ĵ	J	Ĵ	P
	820 1000				G G	G G	G		J	J	J	J	M	J	J	J	J	M Q	
	1200				G	G			J	J	J	J .	IVI	J	J	J	J	Q	
	1500 1800								J	J	J			J	J	J M	M	Q	
	2200								J	J	N			J	J	M	Р		
	2700 3300								J	J	N			J	J	M M	P P		
	3900								J	J				J	J	M	P		
	4700								J	J				J	J	M	Р		
	5600 6800													J M	J M	М			
	8200													М	М				
	0.010 0.012		I	_		1	147	I						М	М				
	0.015				/		_W	_											
	0.018 0.022		<	<	_)) _	ÎT											
	0.027		())		<i>ν</i> -	<u>* </u>											
	0.033				4														
	0.039				4.0			_									<u> </u>		
	0.068				TT														
	0.082																		
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE		AU02			AU	103				AU05					AL	J06		

^{*} Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	X	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	DSSED			

PREFERRED SIZES ARE SHADED

SIZE				AU10					AU12				AU13			AU14	
Solderin	na		Ref	low/Epo	xy/				flow/Epo				Reflow/Epoxy	/		Reflow/Epoxy	/
				/ire Bond er/Embos					Vire Bond Emboss				Wire Bond*			Wire Bond*	
Packagi	n g mm			.20 ± 0.2					.50 ± 0.3				4.50 ± 0.30			5.72 ± 0.25	
(L) Length	(in.)			26 ± 0.2					.30 ± 0.3 177 ± 0.0				4.30 ± 0.30 (0.177 ± 0.012)		0.225 ± 0.25)
	mm			.50 ± 0.2					.20 ± 0.2				6.40 ± 0.40	·)	'	6.35 ± 0.25	,
W) Width	(in.)			98 ± 0.0					126 ± 0.0				(0.252 ± 0.016)		(0.250 ± 0.010)
(t) Terminal	mm		0	.50 ± 0.2	5			0	.61 ± 0.3	36			0.61 ± 0.36			0.64 ± 0.39	
(t) Terrimia	(in.)	0.5		20 ± 0.0		I 500	0.5		024 ± 0.0		F00		(0.024 ± 0.014			(0.025 ± 0.015	
Сар	WVDC 0.5	25	50	100	200	500	25	50	100	200	500	50	100	200	50	100	200
(pF)	1.0																
	1.2 1.5																
	1.8														_	· •	_\\/
	2.2																VV -
	2.7 3.3)] T
	3.9																
	4.7 5.6																
	6.8															Tt	
	8.2 10					1		1									
	10					J											
	15					J											
	18 22					J											
	27					Ĵ											
	33					J											
	39 47					J											
	56					J											
	68 82					J											
	100					J											
	120 150					J											
	180					J											
	220					J											
	270 330					J											
	390					М											
	470 560	J	J	J	J	M											
	680	J	J	Ĵ	J	M											
	820	J J	J	J	J	M	K	I/	K	K	М	M	M	М	М	M	Р
	1000 1200	J	J	J	J M	M	K	K K	K	K	M	M	M M	M	M	M	P
	1500	J	J	J	М	М	K	K	K	K	М	М	М	М	М	М	P
	1800 2200	J J	J	J	M Q		K K	K K	K K	K K	M P	M M	M M	M M	M M	M M	P P
	2700	J	J	J	Q		K	K	K	Р	Q	М	М	М	М	М	Р
	3300 3900	J J	J J	J M			K K	K K	K	P P	Q Q	M M	M M	M M	M M	M M	P P
	4700	J	J	M			К	К	К	P	Q	М	М	М	М	М	P
	5600	J	J				K	K	М	P	X	М	M	М	М	М	Р
	6800 8200	J J	J				K K	K M	M M	X		M M	M M	М	M M	M M	P P
	0.010	J	J				K	М	М			М	М		М	М	Р
	0.012 0.015	J	J				K M	M M				M M	M M		M M	M M	P Y
	0.018						М	М				Р	M		М	М	Y
	0.022 0.027						M M	M M				P P			M P	Y	Y Y
	0.027						M	M				P			P	Y	Y
	0.039						М	М				Р			Р		
	0.047 0.068						M M	M				Р			P P		
	0.082						M	M							Q		
	0.1	25	50	100	200	500	25	50	100	200	500	50	100	200	Q 50	100	200
	WVDC																

* Contact Factory

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMB	OSSED			

PREFERRED SIZES ARE SHADED

Soldering Packaging	10 (() () () () () () () () () () () () ()	Reflow/ Wire E All P 1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	3ond* aper ± 0.10 ± 0.004 ± 0.10 ± 0.004 ± 0.15	1)	63	10	0.00 0.1 0.00 0.1 0.00	ow/Epire Bo III Pap 60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	nd* er .15 .006) .15 .006)		200	63	P	Wi 2.0 (0.07 1.2 (0.04 0.5 (0.02	re Bo r/Eml 01 ± 0 79 ± 0 25 ± 0	0.20 0.008 0.20 0.008 0.008	ed 3) 3)				(0)	eflow/ Wire I 0er/Er 3.20 ± .126 ± .1.60 ± .063 ± .0.50 ±	mbos ± 0.20 ± 0.00 ± 0.00 ± 0.00 ± 0.05 ± 0.05	sed))8)))8) 5	200	
Packaging (L) Length (ir (ir (ir	(i) (i) (ii) (iii)	All P 1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	aper ± 0.10 ± 0.004 ± 0.10 ± 0.004 ± 0.15 ± 0.006	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.0) (0.0) (0.0) (0.0)	NII Pap 60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006) .15 .006))	200	63		2.0 (0.07 1.2 (0.04 0.5 (0.02	r/Eml 01 ± (79 ± (25 ± (49 ± (0.20 0.008 0.20 0.008 0.008	3)				(0 (0	3.20 ± 3.20 ± 1.60 ± 1.60 ± 0.50 ±	mbos ± 0.20 ± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01	sed () () () () () () () () () () () () ()	200	
(L) Length (iii (iii (iii (iii (iii (iii (iii (i	(i) (i) (ii) (iii)	1.00 ± 0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	0.10 0.004 0.10 0.004 0.004 0.15	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.0) (0.0) (0.0) (0.0)	60 ± 0 63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006) .15)	200	63		2.0 (0.07 1.2 (0.04 0.5 (0.02	01 ± (79 ± (25 ± (49 ± (50 ± (0.20 0.008 0.20 0.008 0.25	3)				(0	3.20 ± 1.60 ± 1.60 ± 0.50 ± 0.	± 0.20 ± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01) () () () () () () () () () () ()	200	
(L) Length (ir W) Width (ir (t) Terminal (ir WVDC Cap 15 (pF) 22 33 47 68 100	(i) (i) (ii) (iii)	0.040 ± 0.50 ± 0.020 ± 0.25 ± 0.010 ±	± 0.004 ± 0.10 ± 0.004 ± 0.15 ± 0.006	(1) (5) (5) (5) (C) (C)	63	10	(0.0) (0.0) (0.0) (0.0)	63 ± 0 81 ± 0 32 ± 0 35 ± 0 14 ± 0	.006) .15 .006) .15 .006))	200	63		(0.0 ⁷ 1.2 (0.0 ⁴ 0.9 (0.02	79 ± (25 ± (49 ± (50 ± (0.008 0.20 0.008 0.25	3)				(0)	.126 ± 1.60 ± .063 ± 0.50 ±	± 0.00 ± 0.20 ± 0.00 ± 0.25 ± 0.01	08) 08) 08) 5	200	
W) Width (ir (t) Terminal (ir WVDC 10 Cap 10 (pF) 22 33 47 68	(in the content of th	0.50 ± 0.020 ± 0.25 ± 0.010 ±	0.10 0.004 0.15 0.006	(1) (5) (5) (5) (C) (C)	63	10	0.0 (0.03 0.3 (0.03	81 ± 0 32 ± 0 35 ± 0 14 ± 0	.15 .006) .15 .006))	200	63		1.2 (0.04 0.9 (0.02	25 ± (49 ± (50 ± (0.20 0.008 0.25	3)				(0	1.60 ± .063 ± .063 ± .050 ±	± 0.20 ± 0.00 ± 0.25 ± 0.01) () () () () ()	200	
(t) Terminal (ir WVDC) Cap 10 (pF) 22 33 47 68 100	(i) ((i) (ii) (iii	0.020 ± 0.25 ± 0.010 ±	0.004 0.15 0.006	5) 50 C C	63	10	(0.03 0.3 (0.0)	32 ± 0 35 ± 0 14 ± 0	.006) .15 .006)		200	63		0.04 0.9 (0.02	49 ± (50 ± (0.008 0.25	,				(0	.063 ±	± 0.00 ± 0.25 ± 0.01	08) 5 10)	200	
(t) Terminal (iii WVDC	(i) (i) (i) (ii) (ii) (ii) (ii) (ii) (i	0.25 ± 0.010 ±	± 0.15 ± 0.006	5) 50 C C	63	10	0.0	35 ± 0 14 ± 0	.15 .006)		200	63		0.02	50 ± 0	0.25	,					0.50 ±	± 0.25 ± 0.01	5 10)	200	
(t) Ferminal (ir WVDC) Cap 10 (pF) 22 33 47 68 100	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	0.010 ±	0.006	50 C C	63	10	(0.0	14 ± 0	.006)		200	63		(0.02									± 0.01	10)	200	
Cap 10 15 (pF) 22 33 47 68 100		16	25	C	63	10	16	25	50	100	200	63	10))				10			100	200	$\overline{}$
Cap (pF) 22 33 47 68 100				С									10	16	25		100	200	63	10	16	25	50	100	, ZUU	500
(pF) 22 33 47 68 100				С				i e																		
33 47 68 100				С																					,	
47 68 100	0							G																		
68 100	0			С					G	G	G]	٦	J	J	J	J	J]]	7	7		1]	ıΤ	K
100	0								G	G	G		J	J	J	J	J	J							ı	K
				С					G	G	G	Ш	J	J	J	J	J	J			igsquare			\sqcup	\longrightarrow	K
150)	1 1		С					G	G	G		J	J	J	J	J	J								K
200				C					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
220				С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
330 470			C	C C					G G	G G			J	J	ے -	J	J	J		J	J	J	J	J	J	М
680		С	C	U					G	G			J	J J	J	J	J	J		J J	J	J	J	J	J	M P
0.01		C	U				G		G	G			J	J	J	J	J	J		J	J	J	J	J	J	P
Cap 0.01		C					U	G	G	U			J	J	J	J	J	J		J	J	J	J	J	М	'
(μF) 0.01		C						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
0.03								G	G				J	J	J	J	N			J	J	J	J	J	М	
0.04							G	G	G				J	J	J	J	N			J	J	J	J	J	М	
0.06							G	G	G				J	J	J	J	N			J	J	J	J	J	Р	
0.1						G	G	G	G				J	J	J	J				J	J	J	J	М	Р	
0.1	5				G	G							J	J	J	N	N			J	J	J	J	Q		
0.2					G	G							J	J	N	N	N			J	J	J	J	Q	ш	
0.3]]]	Ν	N	Ν	Ν	N]	J	٦	М	Р	Q	ıŢ]
0.4													N	N	N	N	N			М	М	М	Р	Q	ı	
0.6		\vdash							\square				N	N	N					М	M	Q	Q	Q	 	
1.													N	N	N					M	M	_	Q	Q	,	
1.															P*					P	Q	Q			,	
3.															Ρ^					Q	Q	Q		$\vdash\vdash\vdash$		
3.													P*							Q	Q				,	
1													г							0*	Ų				,	
2		\vdash							\vdash			\vdash			\vdash	\vdash			0*	٧	\vdash	\vdash		\vdash	-+	
4																			٧						,	
10																									,	
WVD		16	25	50	63	10	16	25	50	100	200	63	10	16	25	50	100	200	63	10	16	25	50	100	200	500
SIZ	E		AU02					AU03	3			i '			AU0						-	ΔΙ	106			

^{*} Contact Factory

	Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
1	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						FMRC	SSFD			

PREFERRED SIZES ARE SHADED

SIZE					AU10						112			J13		J14
Soldering	a			Re	flow/Epo	xy/					/Epoxy/			/Epoxy/		/Epoxy/
					Vire Bond						Bond* bossed			Bond* bossed		Bond* bossed
Packagin	ng mm				er/Embos 3.20 ± 0.2						± 0.30			± 0.30		± 0.25
(L) Length	(in.)				126 ± 0.2						± 0.30 ± 0.012)			± 0.30 ± 0.012)		± 0.23 ± 0.010)
	mm				2.50 ± 0.0						± 0.012)			± 0.40		± 0.010)
W) Width	(in.)				098 ± 0.0						± 0.008)			± 0.016)		± 0.010)
(I) T : 1	mm				0.50 ± 0.2						± 0.36			± 0.36		± 0.39
(t) Terminal	(in.)			(0.	020 ± 0.0	10)				(0.024 :	± 0.014)		(0.024 :	± 0.014)	(0.025	± 0.015)
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
Сар	100															
(pF)	150															
(Pi)	220															
	330														_W	
	470										_		_		<u> </u>	
	680)] '	ÎT —
	1000												<i>\</i> '	١ _	- كر	• '
	1500	J	J	J	J	J	J	М					ر ا _~			
	2200	J	J	J	J	J	J	М					$\widetilde{}$			
	3300	J	J	J	J	J	J	М					4	1		
	4700	J	J	J	J	J	J	М				I	, ,	i I	I	1
	6800	J	J	J	J	J	J	M	1/	14	1/	14				
Сар	0.010	J	J	J	J	J	J	М	K	K	K	K	М	M	M	P
(μF)	0.015	J	J	J	J	J	J	P	K	K	K	P P	M	M	M	P P
	0.022	J	J	J	J	J	J	Q	K	K	K		M	M M	M M	P
	0.033 0.047	J	J J	J	J	J	J	Q	K	K	K	X Z	M	M	M	l P
	0.047	J	J	J	J	J	M		K	K	K	Z	M	M	M	P
	0.008	J	J	J	J	J	M		K	K	K	Z	M	M	M	P
	0.15	J	J	J	J	M	Z		K	K	P	_	M	M	M	P
	0.22	J	J	Ĵ	Ĵ	P	Z		K	K	P		М	M	М	P
	0.33	J	J	J	J	Q			K	М	Х		М	М	М	Р
	0.47	М	М	М	М	Q			K	Р			М	М	М	P
	0.68	М	М	Р	Х	Х			М	Q			М	Р	М	Р
	1.0	N	N	_	X	Z			M	X			М	Р	М	P
	1.5	N	N	Z	Z	Z			Z	Z			М		M	X
	2.2 3.3	X	X	Z Z	Z Z	Z			Z Z	Z				-	М	
	3.3 4.7	X	X	Z	Z				Z							
	10	Ž	Ž	Z	_											
	22		_											 		
	47															
	100															
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	50	100
	SIZE				AU10					AU	112		AU	J13	AL	J14

^{*} Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	DSSED			

PREFERRED SIZES ARE SHADED

SIZE				AL	102					-	AU03	3					ΑL	105						J06					-	AU1	0				Α	U12	
Solderin	ng			flow /ire							ow/E e Bo		y			Re V	flow /ire	/Epc Bonc	oxy ł*			Re V	eflow Vire	/Epo	oxy ł*			F		ow/E e Bo		у				w/Ep e Bor	oxy/ nd*
Packagi	ing			All P	ape	r				Al	l Pap	oer				Pape	er/Ei	mbo	ssec	1		Pap	er/E	mbo	ssec	1		Pa	per/	/Eml	ooss	ed		Α	All Er	nbos	ssed
(L) Length	mm (in.)			1.00 : 040 :						(0.06	60 ± 0 63 ± 0	.006))					± 0.20 ± 0.00						± 0.20					(0.12	20 ± 0 26 ± 0	.008)		(0 ± 0. 7 ± 0.	
(W) Width	mm (in.)		(0.	0.50 : 020 :	± 0.0	04)				(0.03	31 ± 0 32 ± 0	.006))			(0.	049 :	± 0.20	08)			(0.	.063	± 0.20	08)				(0.09	60 ± 0	.008)		(0.126	0 ± 0. 6 ± 0.	(800
(t) Terminal	mm (in.)			0.25 : 010 :							35 ± 0 4 ± 0)					± 0.25 ± 0.01						± 0.2						50 ± 0 20 ± 0)				1 ± 0. 4 ± 0.	
WVDC	. ,	4		10			50	4	6.3	10		25		50	6.3	10		25		50	6.3	10	16	25	35	50	4	6.3		16			50	6.3		25	50
Сар	100																																				
(pF)	150								İ																												
	220								İ		İ											İ		İ													
	330						С																														
	470						С																														
	680						С																														
	1000						С																														
	1500						С																														
	2200						С				-													-							-						
	3300 4700					С	С							G																							
	6800					C								G																							
Сар	0.010					С								G																							
(μF)	0.015					C						G	G	G																							
()	0.022				С	С						G	G	G						N																	
	0.033				С							G	G	G						N																	
	0.047				С	С						G	G	G						N																	
	0.068				С							G		G						N																	
	0.10		С		С	С						G		G				N		N																	
	0.15											G						N	N																		
	0.22		C*								G	G						N	N																		
	0.33										G	G						N								Q											
	0.47	C*									G							N						Q	Q												
	0.68				_			-	_	_	G	J.L.						N		Di				_	_								X				
	1.0								G	G	G	J*			N		N	N		P*				Q	Q						Х	Х	Х				
	1.5 2.2	C*						G*	G*	J*	J*				N N	N	N	N					Q	Q							Z	X					
	3.3	U"			\vdash			J*	J*	J*	J*	\vdash			N	N	IN	IN			Q	Q	Ų	Ų								^					
	4.7							J*	J*] J*					14	N	N*	N*			Q	Q	Q	Q						Q	Z						
	10							K*							P*	P*	P*				Q	Q	Q	Q*					Х	Z	Z					Z	
	22														P*						Q*	Q*	Q*	Ì				Z	Z	Z	Z						
	47																				Q*							Z*									
	100																										Z*	Z*									
	WVDC	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
	SIZE			ΑL	102			AU03					ΑL	105					Αl	J06						AU1	0				Δ	U12					

* Contact Factory

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

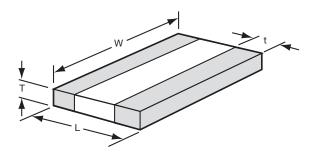
= *Optional Specifications - Contact Factory

NOTE: Contact factory for non-specified capacitance values

AU16/AU17/AU18

	IZE		(AU1 030	5)			(0	U17 508	3)			(AU1 061	2)	
Pack	raging mm			nboss 31 ± 0					boss 7 ± 0.			<u> </u>		nboss 0 ± 0		
Length	(in.)			31 ± 0 32 ± 0)	(0.05							i.25 i.010)	
Width	mm (in.)		1.6	0 ± 0	.15				0 ± 0.	25			3.2	0 ± 0		
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	M		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	M			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				٧	٧	Α		
155	1.5						///					W	W			
225	2.2											Α	Α			
335	3.3											/				
475	4.7															
685	6.8															
106	10															

Solid = X7R


MU16 (0306)
Code Thickness

0.56 (0.022)

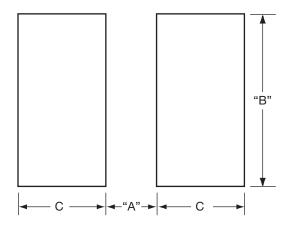
	mm (in.)
	AU16 (0508)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
Α	1.02 (0.040)

	mm (in.)
	AU16 (0612)
Code	Thickness
S	0.56 (0.022)
V	0.76 (0.030)
W	1.02 (0.040)
Α	1.27 (0.050)

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

MM (IN.)


	L	W	t
AU16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
AU17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
AU18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

MM (IN.)

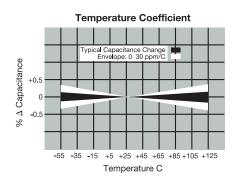

	A	В	С
AU16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
AU17 (0508)	0.51 (0.020)	2.03 (0.080)	0.51 (0.020)
AU18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

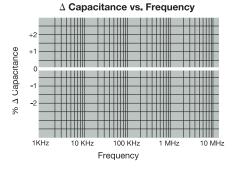
MLCC Tin/Lead Termination "B" (LD Series)

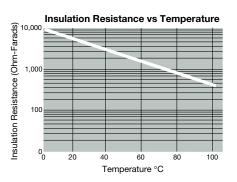
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

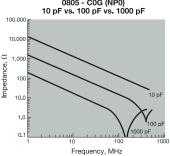
Not RoHS Compliant

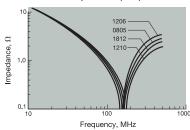

LD05	5	A	101	J	A	B	2	A
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric COG (NPO) = A X7R = C X5R = D X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = +20%	Failure Rate A = Not Applicable 4 = Automotive	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

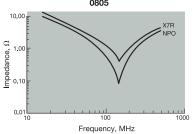

*LD04 has the same CV ranges as LD03.


See FLEXITERM $^{\mbox{\tiny 8}}$ section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.


Contact factory for non-specified capacitance values.




Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - C0G (NP0) 10 pF vs. 100 pF vs. 1000 pF

Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - COG (NPO) vs X7R

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions				
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber			
Capac		Within specified tolerance <30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	Freq.: 1.0 MHz ± 10% 1.0 kHz ± 10% fo Voltage: 1.0\	r cap > 1000 pF Vrms ± .2V			
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 60 ± 5 secs @ roor				
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V (and discharge current mA (max) n 150% of rated voltage			
	Appearance	No defects	Deflection: 2mm Test Time: 30 seconds 1mm/sec				
Resistance to Flexure	Capacitance Variation	±5% or ±.5 pF, whichever is greater					
Stresses	Q	Meets Initial Values (As Above)					
	Insulation Resistance	≥ Initial Value x 0.3	90 n				
Solder	ability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5				
	Appearance	No defects, <25% leaching of either end terminal					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Die dovice in cutestie e	aldor at 26000 for 60			
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2				
Solder Heat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp	≤ 3 minutes			
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 hours at roor				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twic chamber set at				
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hou Remove from test chamb	rs (+48, -0).			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	temperature f before me	for 24 hours			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects					
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber s	et at 85°C ± 2°C/ 85% ±			
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	Store in a test chamber set at 85°C ± 2°C/ 85% ± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)					
	Dielectric Strength	Meets Initial Values (As Above)					

COG (NPO) - Capacitance Range

PREFERRED SIZES ARE SHADED

			-				ш												
SIZI			LD02				03				LD05					LD0			
Solder			eflow/Wa				//Wave				flow/Wav					Reflow/\			
Packag	ging mm		All Paper .00 ± 0.1				aper ± 0.15				er/Embos				Р	aper/Eml			
(L) Length	(in.)		040 ± 0.0				± 0.006)		(0.079 ± 0.008)					(0.126 ± 0.008)					
W) Width	mm	C	0.50 ± 0.1	0		0.81	± 0.15		1.25 ± 0.20					1.60 ± 0.20					
vv) vvidili	(in.)		020 ± 0.0				± 0.006)		(0.049 ± 0.008)					(0.063 ± 0.008)					
(t) Terminal	mm (in.)		0.25 ± 0.1 010 ± 0.0				± 0.15 ± 0.006)		0.50 ± 0.25 (0.020 ± 0.010)					0.50 ± 0.25 (0.020 ± 0.010)					
	WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
Сар	0.5	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
(pF)	1.0	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	1.2 1.5	C	C	C	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	1.8	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.2	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	2.7	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	3.3 3.9	C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	4.7	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	5.6	С	С	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	6.8	С	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	8.2 10	C	C	C	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	10	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	15	С	С	С	G	G	G	G	J	Ĵ	Ĵ	J	J	J	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ
	18	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	22 27	C C	C	C	G G	G G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	33	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	39	C	С	C	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	Ĵ	J	Ĵ	Ĵ	J	Ĵ
	47	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	56 68	C	C	C	G G	G	G G	G G	J	J	J	J	J	J	J	J	J	J	J
	82	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	100	С	С	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	120	С	C	С	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J
	150 180	C	C	C	G	G	G	G G	J	J	J	J	J	J	J	J	J	J	J
	220	C	C	C	G	G	G	G	J	J	J	J	J	J	J	J	J	J	M
	270	С	С	С	G	G	G	G	Ĵ	Ĵ	Ĵ	Ĵ	М	Ĵ	J	Ĵ	Ĵ	J	М
	330	С	С	С	G	G	G	G	J	J	J	J	М	J	J	J	J	J	M
	390 470	C C	C	C	G G	G G	G G	G	J J	J J	J J	J J	M M	J	J	J J	J J	J	M M
	560				G	G	G		J	J	J	J	M	J	J	J	J	J	M
	680				G	G	G		J	J	J	J		J	J	J	J	J	Р
	820				G	G	G		J	J	J	J		J	J	J	J	M	
	1000 1200				G	G G	G		J	J	J	J		J	J	J	J	Q Q	
	1500								Ĵ	Ĵ	Ĵ			Ĵ	J	J	М	Q	
	1800								J	J	J			J	J	М	М		
	2200 2700								J	J	N N			J	J	M M	P P		
	3300		1			1			J	J	IN			J	J	M	P		$\vdash \vdash \vdash$
	3900								Ĵ	J				J	J	М	Р		
	4700		-			-			J	J				J	J	M	Р		$oxed{oxed}$
	5600 6800													J M	J M	М			
	8200													M	M				
Сар	0.010													М	М				
(pF)	0.012				l	1_	l												
	0.015 0.018		+	_ _		W-W-	_		-						-	-			$\vdash\vdash\vdash$
	0.018		1			ررر	ÎT												
	0.027		† (الل	Ψ' _												
	0.033		`																
	0.039 0.047				a-t														
	0.047		†		[. –												H
	0.082																		
	0.1 WVDC	16	25	50	16	25	50	100	16	25	50	100	200	16	25	50	100	200	500
	SIZE	10	LD02	30	10		03	100	01		LD05	100		10		LD0		200	_ 300
	UIZE		LDUZ			LL	-55				2000					LDU	~		

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
	PAPER						EMBOSSED							

COG (NPO) - Capacitance Range

PREFERRED SIZES ARE SHADED

SIZ	E			LD10					LD12				LC	013				LD14	
Solder	rina		F	Reflow On	ly			F	Reflow Or	nly			Reflo	w Only				Reflow Only	
Packag				er/Embo					II Emboss					bossed				All Embossed	
(L) Length	mm			3.20 + 0.2					4.50 ± 0.3					± 0.30				5.72 ± 0.25	
14/) 14/:-IAI-	(in.) mm			.126 ± 0.0 2.50 ± 0.2				(0.	177 ± 0.0 3.20 ± 0.2	20				± 0.012) ± 0.40				$\frac{(0.225 \pm 0.010)}{6.35 \pm 0.25}$)
W) Width	(in.)		(0.	$.098 \pm 0.0$	(80			(0.	126 ± 0.0	(800			(0.252	± 0.016)			((0.250 ± 0.010))
(t) Terminal	mm (in.)			0.50 ± 0.2 .020 ± 0.0					0.61 ± 0.3 024 ± 0.0					± 0.36 ± 0.014)			(0.64 ± 0.39 (0.025 ± 0.015)
	WVDC	25	50	100	200	500	25	50	100	200	500	50	1	00	20	0	50	100	200
Cap (pF)	0.5 1.0																		
(1-7)	1.2																		
	1.5 1.8			-															
	2.2																	>~	W.
	2.7																_		
	3.3 3.9																(\prod
	4.7																_ `	$\overline{}$	
	5.6 6.8																	4	
	8.2																		
	10					J										П			
	12 15					J													
	18					J													
	22 27					J													
	33					J													
	39 47					J													
	56					J													
	68 82					J													
	100					J													
	120					J													
	150 180					J							-						
	220					J													
	270 330					J													
	390					M													
	470					M							-						
	560 680	J J	J	J	J	M M													
	820	J	J	J	J	М													_
	1000 1200	J J	J	J	J M	M M	K K	K	K K	K K	M M	M M		M M	M		M M	M M	P P
	1500	J	J	Ĵ	М	M	K	K	K	K	М	М		M	M		М	М	Р
	1800 2200	J J	J	J	M Q		K K	K	K K	K K	M P	M M		M M	M		M M	M M	P P
	2700	J	J	J	Q		K	K	K	P	Q	M		M	M		M	M	P
	3300	J	J	J			P P	Р	Р	P P	Q	M		M	M		М	M	Р
	3900 4700	J	J	M M			P	P P	P P	P	Q Y	M M		M M	M		M M	M M	P P
	5600	J	J				P P	P P	P	РО	Y	M		M	M		M	M	P P
	6800 8200	J J	J				P	P	Q Q	Q Q	Y	M M		M M	IV	'	M M	M M	P
Cap	0.010	J	J				Р	Р	Q	Q	Y	М		М			М	М	Р
(pF)	0.012 0.015	J	J				P P	P P	Q Q	X X	Y	M M		M M			M M	M M	P Y
	0.018						Р	Р	Х	Х	Y	P		M			М	М	Υ
	0.022 0.027						P Q	P X	X X	X Z		P P					M P	Y Y	Y Y
	0.033						Q	Х	Х	Z		Р					Р		
	0.039 0.047						X	X	Z Z	Z Z		P P					P P		
	0.047						Z	Z	Z	L		P					P		
	0.082						Z	Z	Z								Q		
	0.1 WVDC	25	50	100	200	500	Z 25	Z 50	Z 100	200	500	50	1	00	20	0	Q 50	100	200
SIZ				LD10					LD12					13				LD14	
Letter	0.33	0.5		E 0.71	G 0.90	0.9		1.02	M 1.27		.40	P 1.52	Q 1.78	2.2		Y 2.54	Z 2.79		
Max. Thickness	(0.013)	(0.02		0.71	(0.035)	(0.03		(0.040)	(0.050		055)	(0.060)	(0.070)	(0.09	1	(0.100)			
	(2.2)	(3.32		PAPER	()	, ,,,,,,			(2.20)	, (3.		EMBO		(5.0.	-/		, , , , , , , ,		

X8R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

LD05	<u>5</u>	F	101		<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X8R = F	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = ±.10 pF (<10pF) C = ±.25 pF (<10pF) D = ±.50 pF (<10pF) F = ±1% (≥ 10 pF) G = ±2% (≥ 10 pF) J = ±5% K = ±10% M = ±20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product

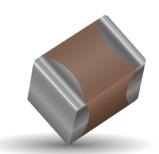
LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Contact factory for non-specified capacitance values.

Parame	ter/Test	X8R Specification Limits	Measuring (Conditions		
Operating Tem	perature Range	-55°C to +150°C	Temperature C	ycle Chamber		
Capac	itance	Within specified tolerance	From : 1.0 k	d I = 1 100/		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.5% for 25V DC and 16V DC rating	Freq.: 1.0 k Voltage: 1.0			
Insulation	Resistance	100,000ΜΩ or 1000ΜΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo			
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) n 150% of rated voltage		
	Appearance	No defects	Deflectio	n: 2mm		
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3			
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)				
	Insulation Resistance	≥ Initial Value x 0.3	90 r	mm		
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9			
	Appearance	No defects, <25% leaching of either end terminal				
	Capacitance Variation	≤ ±7.5%				
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2		
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.		
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes		
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp ≤ 3 minutes			
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes		
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes		
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro			
	Appearance	No visual defects				
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r			
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 h			
	Dielectric Strength	Meets Initial Values (As Above)				
	Appearance	No visual defects				
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours		
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.		
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for		
	Dielectric Strength	Meets Initial Values (As Above)	Z4 I Z HOURS DEI	ore measuring.		



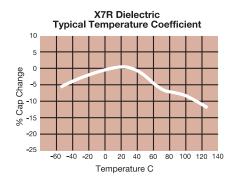
	SIZE	LD	03	LD	05	LD	06
	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331		G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472		G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682		G	G	J	J	J	J
822		G	G	J	J	J	J
103		G	G	J	J	J	J
123	0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473		G	G	J	J	J	J
563		G		N	N	M	М
683	0.068	G		N	N	М	М
823	0.082			N	N	М	М
104	0.1			N	N	М	М
124	0.12			N	N	M	М
154	0.15			N	N	М	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					M	М
334	0.33					M	М
394	0.39					М	
474	0.47					M	
684	0.68						
824	0.82						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	LD	03	LD	05	LD	06

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
	PAPER								EMBC	SSED			

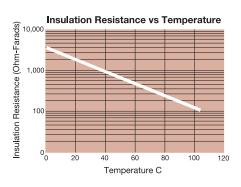
X7R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

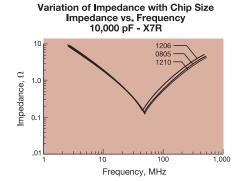

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)

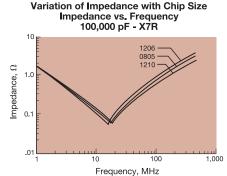

LD05	5	<u>c</u>	101	J	<u>A</u>	<u>B</u>	2	<u>A</u>
Size LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X7R = C	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance B = \pm .10 pF (<10pF) C = \pm .25 pF (<10pF) D = \pm .50 pF (<10pF) F = \pm 1% (\geq 10 pF) G = \pm 2% (\geq 10 pF) J = \pm 5% K = \pm 10% M = \pm 20%	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.

See FLEXITERM® section for CV options

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.





Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7R
0805

10.00 pF
10.00 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF
10,000 pF

Variation of Impedance with Cap Value

X7R - Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +125°C	Temperature C	ycle Chamber
Сарас	itance	Within specified tolerance		
Dissipati	on Factor	≤ 10% for ≥ 50V DC rating ≤ 12.5% for 25V DC rating ≤ 12.5% for 25V and 16V DC rating ≤ 12.5% for ≤ 10V DC rating	Freq.: 1.0 k Voltage: 1.0'	
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	: Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50 Note: Charge device with for 500V	and discharge current mA (max) 150% of rated voltage
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	\ \tag{\frac{1}{2}}	
	Insulation Resistance	≥ Initial Value x 0.3	90 n	nm
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb temperature for 24 ± 2 ho	
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	voltage applied.
Hullifulty	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	24 ± 2 hours bef	ore measuring.

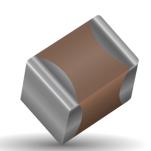
X7R - Capacitance Range

PREFERRED SIZES ARE SHADED

	ZE lering	Def	LD02				Def	LD03						D-4	LD05 low/W							LD Reflow				
	aging		II Pap					II Pap								ossed						Reflow aper/Er				
	mm		00 ± 0					50 ± 0							01 ± 0							3.20 ±		, cu		
(L) Length	(in.)		40 ± 0					53 ± 0.							79 ± 0.						(0.126 ±		8)		
W) Width	mm		50 ± 0					31 ± 0.							25 ± 0.						,	1.60 ±				
	(in.)		20 ± 0 25 ± 0					32 ± 0. 35 ± 0.							49 ± 0. 50 ± 0.						(0.063 ± 0.50 ±		B)		
(t) Termina	al mm (in.)		25 ± 0 10 ± 0					14 ± 0.							30 ± 0. 20 ± 0.						(± 0.020 ± 0.020		n)		
W	/DC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
Сар	100	10		00	0.0		10		00	100	200	0.0		10	20	00	100	200	0.0	10	10	20	00	100	200	000
(pF)	150																									
(P.)	220			С																						
	330			C					G	G	G		J	J	J	J	J	J								К
	470			С					G	G	G		J	J	J	J	J	J								Κ
	680			С					G	G	G		J	J	J	J	J	J								K
	1000			С					G	G	G		J	J	J	J	J	J								K
	1500			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	2200			С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	3300		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	М
	4700		С	С					G	G			J	J	J	J	J	J		J	J	J	J	J	J	M
	6800	С	С						G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
Сар	0.010	С	С	ļ					G	G			J	J	J	J	J	J		J	J	J	J	J	J	Р
(µF)	0.015	С						G	G				J	J	J	J	J	J		J	J	J	J	J	M	
	0.022	С						G	G				J	J	J	J	J	N		J	J	J	J	J	М	
	0.033	С						G	G				J	J	J	J	N			J	J	J	J	J	М	
	0.047						G	G	G				J	J	J	J	N			J	J	J	J	J	M	
	0.068		C*			_	G	G	G G				J	J	J	J	N			J	J	J	J	J P	P	
	0.10 0.15		C*		_	G G	G	G	G				J	J	-	J	N			J	J	J	J		Р	
	0.15				G G	G							J J	J	J	N N	N N			J	J J	J J	J	Q		
	0.22				G	G							N	N	N	N	N			J	J	M	P	Q		
	0.33							J*					N	N	N	N	N			M	M	M	P	Q		
	0.47												N	N	N		14			M	M	Q	Q	Q		
	1.0					J*	J*						N	N	N*					M	M	Q	0	0		\vdash
	1.5																			P	Q	Q		_		
	2.2				J*										P*					Q	Q	Q				
	3.3																									
	4.7												P*	P*						Q*	Q*	Q*				
	10											P*	Р							Q*	Q*	Q				
	22																		Q*							
	47																									
	100																									
	WVDC	16	25	50	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	6.3	10	16	25	50	100	200	500
	SIZE		LD02					LD03							LD05							LD	06			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013) (0.022) (0.028) (0.035) (0.0					(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

X7R - Capacitance Range


PREFERRED SIZES ARE SHADED

SIZE					LD10					LD				13			20			14
Solderin	-				eflow On					Reflov				w Only		Reflo			Reflov	
Packagir	-				er/Embos					All Emb				bossed			bossed			oossed
(L) Length	mm			-	.20 + 0.2	-				4.50 ±				± 0.30			± 0.50		5.72	
() - 3-	(in.)				26 ± 0.0					(0.177 ±				± 0.012)		(0.224 :			(0.225 :	
W) Width	mm				.50 ± 0.2 198 ± 0.0					3.20 ± (0.126 ±			1	± 0.40 ± 0.016)			± 0.40			£ 0.25 £ 0.010)
	(in.) mm				.50 ± 0.0					0.126 1				± 0.016)			± 0.016) ± 0.39		0.64	
(t) Terminal	(in.)				0.20 ± 0.20 0.00 ± 0.00					$(0.024 \pm$				± 0.014)			± 0.015)		(0.025	
WVDC		10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
Сар	100	- 1 -																		
(pF)	150																			
	220															Ĺ	' >	<u>_</u>	-W.	'
	330															*			$\vec{\gamma}$	
	470																		$\bigcup \mathcal{V}$	
	680 1000										-		-			+			-	
	1500	J	J	J	J	J	J	М										4		
	2200	J	J	J	Ĵ	J	J	М									I			
	3300	J	J	J	J	J	J	М												
	4700	J	J	J	J	J	J	М												
	6800	J	J	J	J	J	J	М												
1	0.010	J	J	J	J	J	J	М	K	K	K	K	М	М		Х	X	Х	М	Р
\ \ \ \ \ \	0.015	J	J	J	J	J	J	Р	K	K	K	P	М	М		Х	X	Х	М	P
	0.022	J	J	J	J	J	J	Q	K	K	K	P	M	M		X	X	X	M	P
	0.033 0.047	J J	J J	J	J	J	J J	Q	K K	K K	K K	X Z	M M	M M		X	X	X	M M	P P
	0.047	J	J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	P
	0.10	J	J	J	J	J	M		K	K	K	Z	M	M		X	X	X	M	P
	0.15	Ĵ	Ĵ	Ĵ	Ĵ	M	Z		K	K	P	_	M	М		X	X	X	M	P
	0.22	J	J	J	J	Р	Z		K	К	Р		М	М		Х	X	Х	М	Р
	0.33	J	J	J	J	Q			K	М	Х		М	М		Х	Х	Х	М	Р
	0.47	М	М	М	М	Q			K	Р			М	М		Х	X	Х	М	Р
	0.68	M	М	Р	X	X			М	Q			M	P		Х	X		M	P
	1.0	N	N	P	X	Z			M	X			M	Р		X	X		M	P
	1.5	N X	N X	Z Z	Z Z	Z Z			Z Z	Z Z			М			X	X		M M	Х
	3.3	X	X	Z	Z				Z							X	Z		IVI	
	4.7	X	X	Z	Z				Z	Z						X	Z			
	10	Z	Z	Z	Z				_	_						Z	Z			
	22	Z	Z							İ	İ				Z			İ	İ	
	47																			
	100																			
	WVDC	10	16	25	50	100	200	500	50	100	200	500	50	100	25	50	100	200	50	100
SIZE					LD10					LD	12		LE	13		LD	20		LD	14

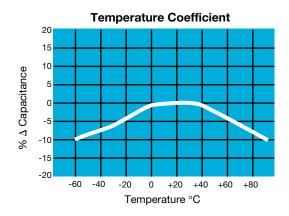
Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			

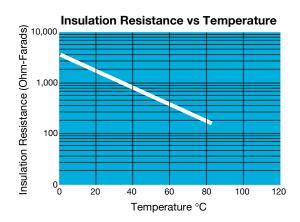
X5R - General Specifications

AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products.

Not RoHS Compliant

PART NUMBER (SEE PAGE 4 FOR COMPLETE PART NUMBER EXPLANATION)


LD05	<u>5</u>	D	101	J	A	B	2	A
Size LD02 - 0402 LD03 - 0603 LD04 - 0504* LD05 - 0805 LD06 - 1206 LD10 - 1210 LD12 - 1812 LD13 - 1825 LD14 - 2225 LD20 - 2220	Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 35V = D 50V = 5 100V = 1 200V = 2 500V = 7	Dielectric X5R = D	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance $B = \pm .10 \text{ pF} (<10 \text{ pF})$ $C = \pm .25 \text{ pF} (<10 \text{ pF})$ $D = \pm .50 \text{ pF} (<10 \text{ pF})$ $F = \pm 1\% (\ge 10 \text{ pF})$ $G = \pm 2\% (\ge 10 \text{ pF})$ $J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	Failure Rate A = Not Applicable	Terminations B = 5% min lead X = FLEXITERM® with 5% min lead** **X7R only	Packaging 2 = 7" Reel 4 = 13" Reel Contact Factory For Multiples*	Special Code A = Std. Product


^{*}LD04 has the same CV ranges as LD03.

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers. Contact factory for non-specified capacitance values.

See FLEXITERM® section for CV options

TYPICAL ELECTRICAL CHARACTERISTICS

Parame	ter/Test	X5R Specification Limits	Measuring (Conditions
Operating Tem	perature Range	-55°C to +85°C	Temperature C	ycle Chamber
Capac	itance	Within specified tolerance		
Dissipati	on Factor	≤ 2.5% for ≥ 50V DC rating ≤ 3.0% for 25V, 35V DC rating ≤ 12.5% Max. for 16V DC rating and lower Contact Factory for DF by PN	Freq.: 1.0 k Voltage: 1.0 For Cap > 10 µF, 0	Vrms ± .2V
Insulation	Resistance	10,000MΩ or 500MΩ - μF, whichever is less	Charge device with 120 ± 5 secs @ roo	
Dielectric	Strength	No breakdown or visual defects	Charge device with 250 1-5 seconds, w/charge limited to 50	and discharge current
	Appearance	No defects	Deflectio	n: 2mm
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3	
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)		
	Insulation Resistance	≥ Initial Value x 0.3	90 r	
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.9	
	Appearance	No defects, <25% leaching of either end terminal		
	Capacitance Variation	≤ ±7.5%		
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2
	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.
	Dielectric Strength	Meets Initial Values (As Above)		
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +85°C ± 2°	30 ± 3 minutes
	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles 24 ± 2 hours at ro	
	Appearance	No visual defects	Observation to the second	V
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 chamber set at 85°C: (+48, -0). Note: Contac	± 2°C for 1000 hours
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	specification part numl	bers that are tested at
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamb	
	Dielectric Strength	Meets Initial Values (As Above)	temperature for 24 ± 2 h	ours before measuring.
	Appearance	No visual defects		
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s 5% relative humidi	ty for 1000 hours
Load Humidity	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated	d voltage applied.
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber temperature an 24 ± 2 hours bef	d humidity for
	Dielectric Strength	Meets Initial Values (As Above)	27 ± 2 110u13 De1	ore measuring.

X5R - Capacitance Range

PREFERRED SIZES ARE SHADED

											_						ш	_					П	⊐													
SIZE				LI	D02					L	.D0	3					LD	05					LD	06						_D10	0				LD'	12	
Solderi	ng		R	eflo	w/W	ave			- 1	Reflo	w/V	Vave	9			Re	flow	/Wav	/e			Re	eflow	/Wa	ve				Refl	ow/V	Vave						
Packag	ing			All I	Pap	er				All	Par	oer			P	ape	r/Er	nbo	sse	d	Р	ape	r/Er	nbo	sse	d		Pa	aper,	/Emt	osse	ed					
(L) Length	mm				± 0.					1.60								0.20					.20 ±							0 ± 0							
(L) Length	(in.)				± 0.	004)		_		0.8			5)					0.00					126 ±					(6 ± 0	0.008)					
W) Width	mm (in.)					004)				0.8 0.032			5)					0.20 0.00					.60 ±					().20).008)					
(t) Terminal	mm				± 0.			t		0.3			<u>, </u>					0.2					.50 ±						0.5	0 ± 0	0.25					_	\exists
``	(in.)					006)	1 50	ļ.,		0.014				L = 0	()			0.0		150			020 ±			150	L.				0.010		150		1401	0.5	
WVDC	100	4	6.3	10	16	25	50	4	6.3	10	16	25	35	50	6.3	10	16	25	35	50	6.3	10	16	25	35	50	4	6.3	10	16	25	35	50	6.3	10	25	50
Cap (pF)	150					ł																															
(pr)	220						С																														
	330						С																								1				H		\dashv
	470						C																								~	>	<	₹ -V	٧	_	
	680						C																					~	<		<			7	γ<		
	1000						С	Н										\vdash								Н	\vdash		(_	$\overline{}$	7			ノ	ĮΤ	-
	1500						С																							_		↲	_			_	
	2200						С																								Ī						
	3300						С																									t I					1
	4700					С								G														ı	ı	ı	ı	ı	ı	ı	1 1		
	6800					С								G																					il		
Сар	0.010					С								G																							
(μF)	0.015					С						G	G	G																					1		
	0.022				С	С						G	G	G						Ν															Ш		
	0.033				С							G	G	G						N																	
	0.047				С	С						G	G	G						N																	
	0.068				С							G		G						N															Ш		
	0.10			С	С	С						G		G				N		N																	
	0.15											G						N	N																		
	0.22		C*								G	G						N	N							Q						-			\vdash		
	0.33 0.47	C*	C*								G G	G						N N						0	Q								Х				
	0.47	U^	U^								G							N						Q	Ų								^				
	1.0	C*	C*	C*			\vdash	\vdash	G	G	G	J*	\vdash				N	N	\vdash	P*				Q	Q						Х	Х	Х		\vdash		—
	1.5	U							0	0							14	14		•				Q	Q						^						
	2.2	C*						G*	G*	J*	J*					N	N	N					Q	Q							Z	Х					
	3.3		\vdash				H	J*	J*	J*	J*		\vdash		N	N	-	i.,			Х	Х	<u> </u>	~		Н			\vdash		1				H		_
	4.7							J*	J*	J*		1			N	N	N*	N*	l		X	X	Х	Х						Q	Z	ĺ					
	10							K*			1				Р	Р	Р		1		Х	Х	Х	Х					Х	z	Z	ĺ	l			Z	
	22						İ								P*						Х	Х	Х	Х				Z	Z	Z	Z				П		
	47			l				1								1			1	l	Х				1			Z*				1	l	l			
	100																										Z*	Z							Ш		
	WVDC	4	6.3		16		50	4	6.3	_	_	_	35	50	6.3	10	_	25	35	50	6.3	10		25	35	50	4	6.3	10	16		35	50	6.3		_	50
	SIZE			LI	002					L	.DO:	3					LD	05					LD	06					_ I	LD10	00				LD'	12	

Letter	Α	С	E	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBC	SSED			


^{*}Optional Specifications - Contact factory

NOTE: Contact factory for non-specified capacitance values

Automotive MLCC

General Specifications

GENERAL DESCRIPTION

AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 25 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved.

AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers.

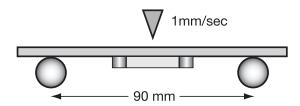
HOW TO ORDER

COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON

	Commercial	Automotive
Administrative	Standard Part Numbers. No restriction on who purchases these parts.	Specific Automotive Part Number. sed to control supply of product to Automotive customers.
Design	Minimum ceramic thickness of 0.020"	Minimum Ceramic thickness of 0.022" (0.56mm) on all X7R product.
Dicing	Side & End Margins = 0.003" min	Side & End Margins = 0.004" min Cover Layers = 0.003" min
Lot Qualification (Destructive Physical Analysis - DPA)	As per EIA RS469	Increased sample plan stricter criteria.
Visual/Cosmetic Quality	Standard process and inspection	100% inspection
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing.

All Tests have Accept/Reject Criteria 0/1

Automotive MLCC


NP0/X7R Dielectric

FLEXITERM FEATURES

a) Bend Test

The capacitor is soldered to the PC Board as shown:

Typical bend test results are shown below:

Style	Conventional	Soft Term
0603	>2mm	>5
0805	>2mm	>5
1206	>2mm	>5

a) Temperature Cycle testing FLEXITERM® has the ability to withstand at least 1000 cycles between -55°C and +125°C

Automotive MLCC-NP0

SIZ		04	-			03				0805						206		
Solde		Reflow			Reflow					flow/Wa						//Wave		
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
0R5	0.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R0	1.0	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R2	1.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R5	1.5	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
1R8	1.8	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R2	2.2	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
2R7	2.7	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
3R3 3R9	3.3	C	C	G G	G G	G G	G G	J	J	J	N N	N N	J	J	J	J	J	J
4R7	4.7	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
5R6	5.6	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
6R8	6.8	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
8R2	8.2	С	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
100	10.0	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
120	12	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
150	15	C	C	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
180	18	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
220	22	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
270	27	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
330	33	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
390	39	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
470	47	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J	J	J
510	51	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
560	56	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
680	68	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
820	82	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
101	100	С	С	G	G	G	G	J	J	J	N	N	J	J	J	J		
121	120			G	G	G		J	J	J	N	N	J	J	J	J		
151	150			G	G	G		J	J	J	N	N	J	J	J	J		
181	180			G G	G	G		J	J	J	N	N	J	J	J	J		
221	220 270			G	G G	G G		J	J	J	N N	N N	J	J	J	J		
331	330			G	G	G		J	J	J	N	N	J	J	J	J		
391	390			G	G	G		J	J	J	IN	IN	J	J	J	J		
471	470			G	G			J	J	J			J	J	J	J		
561	560			G	G			J	J	J			J	J	J	J		
681	680			G	G			J	J	J			J	J	J	J		
821	820							J	J	J			J	J	J	J		
102	1000							J	J	J			J	J	J	J		
122	1200																	
152	1500														ĺ			
182	1800																	
	2200																	
	2700																	
	3300																	
392	3900																	
	4700																	
WV		25V	50V	25V	50V	100V	200V	25V	50V	100V	200V	250V	25V	50V	100V	200V	250V	500V
Siz	ze	04	02		06	03				0805					12	206		

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

Automotive MLCC - X7R

SIZE		0	402					060	3					0	805						120	6				12	10		1:	812		2220	
Soldering	寸	Reflo	w/W	ave			Re	flow/\	Nave					Reflo	w/Wa	ve				Re	eflow/\	Wave				Reflo	v Only	y	Reflo	w Only	Ref	low 0	nly
WVDC	1	16V	25V	50V	10V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	16V	25V	50V	100V	200V	250V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
221 Cap 22	20	С	С	С											С																		
271 (pF) 27	70	С	С	С																													
331 33	30	С	С	С																													
391 39	90	С	С	С																													
471 47	70	С	С	С																													
561 56	60	С	С	С																													
681 68	80	С	С	С																													
821 82	20	С	С	С																													
102 100	00	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	K			
182 180	00	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	К	К			
222 220	00	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	К	K	К	К	К			
332 330	00	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	К	K			
472 470	00	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	К	K	К	К	K			
103 Cap 0.0	01	С	С	С	G	G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	К	K			
123 (F) 0.01	12	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	К	К	K			
153 0.01	15	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	К	К	K			
183 0.01	18	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	К	К	K			
223 0.02	22	С			G	G	G	G	G			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
273 0.02	27	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
333 0.03	33	С			G	G	G	G	J			J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	K	K			
473 0.04	47				G	G	G	G	J			J	J	J	N	N	N	J	J	J	М	М	М		K	K	K	K	K	K			
563 0.05	56				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
683 0.06	68				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
823 0.08	82				G	G	G	G	J			J	J	J	N			J	J	J	М	М	М		K	K	K	М	K	K			
104 0).1				G	G	G	G	J			J	J	J	N			7	J	J	М	Р	Р		K	K	K	М	K	K			
124 0.1	12				G							J	J	N	N			7	J	М	М	Q	Q		K	K	K	Р	K	K			
154 0.1	15				G							М	N	N	N			7	J	М	М	Q	Q		K	K	K	Р	K	K			
224 0.2	_				G							М	N	N	N			J	М	М	Q	Q	Q		М	М	М	Р	М	М			
334 0.3	33											Ν	N	N	N			J	М	Р	Q				Р	Р	Р	Q	Х	Х			
474 0.4	47											Ν	N	N	N			М	М	Р	Q				Р	Р	Р	Q	Х	Х			
684 0.6	68											Ν	N	N	N			М	Q	Q	Q				Р	Р	Q	Х	Х	Х			
105	1											Ν	N	N	N			М	Q	Q	Q				Р	Q	Q	Z	Х	Х		Z	Z
	.5											Ν	N					Q	Q	Q	Q				Р	Q	Z	Z	Х	Х		Z	Z
	2.2											Ν	N					Q	Q	Q	Q				Z	Z	Z	Z	Z	Z		Z	Z
	3.3																	Q	Q	Q					Χ	Z	Z	Z	Z			Z	Z
	1.7																	Q	Q	Q					Χ	Z	Z	Z	Z			Z	Z
	10																								Z	Z	Z		Z		Z	Z	Z
-	22																														Z		
WVDC	_ [16V	_	50V	10V	16V	25V			200V	250V	16V	25V			200V	250V	16V	25V	50V			250V	500V	16V	25V		100V		100V	_	50V	100V
Size		()402					0603	3					0	805						1206	5				12	10		18	312		2220	

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
ĺ	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
				PAPER						EMB	OSSED			

Automotive MLCC - X8R

Capacitance Range

	SIZE	06	03	0	805	12	06
Sol	dering	Reflow	/Wave	Reflo	w/Wave	Reflow	/Wave
WVDC	WVDC	25V	50V	25V	50V	25V	50V
271	Cap 270	G	G				
331	(pF) 330	G	G	J	J		
471	470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
182	1800	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
272	2700	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
392	3900	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
562	5600	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
822	8200	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
123	(F) 0.012	G	G	J	J	J	J
153	0.015	G	G	J	J	J	J
183	0.018	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
273	0.027	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
393	0.039	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
563	0.056	G		N	N	М	М
683	0.068	G		N	N	М	М
823	0.082			N	N	М	М
104	0.1			N	N	M	M
124	0.12			N	N	M	M
154	0.15			N	N	M	М
184	0.18			N		М	М
224	0.22			N		М	М
274	0.27					М	М
334	0.33					М	М
394	0.39					М	
474	0.47					М	
684	0.68						
824	0.82						
105	1						
WVDC	WVDC	25V	50V	25V	50V	25V	50V
5	SIZE	06	03	0	805	12	06

Le	tter	Α	С	Е	G	J	K	М	N	Р	Q	Χ	Υ	Z
M	lax.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thic	kness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
-				PAPER						EMBC	SSED			

APS for COTS+ High Reliability Applications

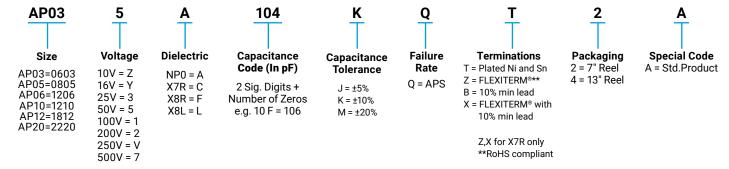
General Specifications Surface Mount NP0, X7R and X8R/L MLCCs

AVX's APS COTS+ series of multilayer ceramic capacitors offers the customer a high reliability solution with an ultralow failure rate, <1ppb, in a variety of case sizes and voltages. The APS range encompasses a wide range of dielectric types to meet the customer's requirements from low temperature/voltage capacitance change dielectric, NP0, to high preforming capacitance voltage X7R to high temperature reliability dielectrics, X8R/L.

APS capacitors have a wider capacitance range than MIL spec parts that satisfies the need for higher CV demands and board space saving requirements. Each production lot is extensively tested and removes the requirement for customer specific drawings. The testing regime uses many of the MIL-STD test methods as per MIL-PRF-55681 and has a field failure rate of less than 1 ppb. The APS testing series uses AVX's unique in-house maverick testing detection system that eliminates infant mortality failures.

Applications suitable for APS include Industrial, Telecommunications, Aviation, and Military. The APS is available with a range of different termination finishes, Flexiterm®, Nickel / Tin and Tin with Pb1. Flexiterm® technology delivers improved thermo-mechanical stress resistance.

AVX'S APS RELIABILITY TEST SUMMARY


- 100% Visual Inspection
- DPA
- · IR, DF, Cap, DWV
- · Maverick Lot Review
- · Thermal Shocl
- 85/85 Testing
- Additional Life Testing
- · C of C with every Order
- Quarterly Data Package

FEATURES

- The APS range has been extensively reliability tested as standard resulting in an ultralow failure rate, ≤1ppb
- The APS range is available with Flexiterm® that deliver's high thermo-mechanical stress resistance.
- High CV range enabling board space saving requirements.

Dielectric	Temperature/Percentage Cap Change
NP0	-30ppm +30ppm from -55°C + 125°C
X7R	-15% +15% from -55°C to + 125°C
X8R	-15% +15% from -55°C to + 150°C
X8L	-15% +40% from -55°C to + 150°C

HOW TO ORDER

 ${\tt NOTE: Contact \ factory \ for \ availability \ of \ Termination \ and \ Tolerance \ Options \ for \ Specific \ Part \ Number.}$

APS COTS+ NP0 Series

Size	AP	03 = 060	03	AP	05 = 08	05		AF	P06 = 12	06			AP10	= 1210	
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
100 10pF	G	G	G	J	J	J	J	J	J	J	J				
120 12	G	G	G	J	J	J	J	J	J	J	J				
150 15	G	G	G	J	J	J	J	J	J	J	J				
180 18	G	G	G	J	J	J	J	J	J	J					
220 22	G	G	G	J	J	J	J	J	J	J					
270 27	G	G	G	J	J	J	J	J	J	J					
330 33	G	G	G	J	J	J	J	J	J	J					
390 39	G	G	G	J	J	J	J	J	J	J					
470 47	G	G	G	_	J	J	J	J	J	J					
510 51	G	G	G	_	J	J	J	J	J	J					
560 56	G	G	G	٦	J	J	J	J	J	J					
680 68	G	G	G	٦	J	J	J	J	J	J					
820 82	G	G	G	J	J	J	J	J	J	J					
101 100	G	G	G	J	J	J	J	J	J	J					
121 120	G	G	G	J	J	J	J	J	J	J					
151 150	G	G	G	J	J	J	J	J	J	J					
181 180	G	G	G	J	J	J	J	J	J	J					
221 220	G	G	G	J	J	J	J	J	J	J					
271 270	G	G	G	J	J	J	J	J	J	J					
331 330	G	G	G	J	J	J	J	J	J	J					
391 390	G	G		J	J	J	J	J	J	J					
471 470	G	G		J	J	J	J	J	J	J					
561 560				J	J	J	J	J	J	J					
681 680				J	J	J	J	J	J	J					
821 820				J	J	J	J	J	J	J					
102 1000				J	J	J	J	J	J	J		J	J	J	J
122 1200												J	J	М	М
152 1500												J	J	М	М
182 1800												J	J	М	М
222 2200												J	J	М	М
272 2700															
332 3300															
392 3900															
472 4700															
103 10nF															
WVDC	25V	50V	100V	25V	50V	100V	25V	50V	100V	200V	500V	25V	50V	100V	200V
Size	AP	03 = 060	03	AP	05 = 08	05		AF	P06 = 12	06		AP10 = 1210			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Χ	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X7R Series

	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220
,	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
102	Cap 1000	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	K	K	K	К	K	K			
182	(pF) 1800	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
222	2200	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
332	3300	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
472	4700	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
103	0.01	G	G	G	G		J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	K	K			
123	0.012	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
153	0.015	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
183	0.018	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
223	0.022	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
273	0.027	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
333	0.033	G	G	G			J	J	J	М		J	J	J	J	J		K	K	K	K	K	K			
473	0.047	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	K	K	K			
563	0.056	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
683	0.068	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
823	0.082	G	G	G			J	J	J	М		J	J	J	М	J		K	K	K	М	K	K			
104	0.1	G	G	G			J	J	М	М		J	J	J	М	J		K	K	K	М	K	K			
124	0.12						J	J	М	N		J	J	М	М			K	K	K	Р	K	K			
154	0.15						М	N	М	N		J	J	М	М			K	K	K	Р	K	K			
224	0.22						М	N	М	N		J	М	М	Q			М	М	М	Р	М	М			
334	0.33						N	N	М	N		J	М	Р	Q			Р	P	Р	Q	X	Х			
474	0.47						Ν	N	М	N		М	М	Р	Q			Р	Р	Р	Q	Х	X			
684	0.68						N	N	N			М	Q	Q	Q			Р	Р	Q	Х	Х	Х			
105	Cap 1.0						N	N	N*			М	Q	Q	Q*			Р	Q	Q	Z*	Х	Х			
155	(μF) 1.5											Q	Q	Q				Р	Q	Z	Z	Х	Х			
225	2.2											Q	Q	Q				Z	Z	Z	Z*	Z	Z			
335	3.3											Q						Χ	Z	Z	Z	Z				
475	4.7											Q						Х	Z	Z		Z*				
106	10																	Z	Z*						Z	Z*
226	22																	Ť						Z		
	WVDC	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	16V	25V	50V	100V	200V	500V	16V	25V	50V	100V	50V	100V	25V	50V	100V
	Size		AP	03 = 06	503			AP	05 = 0	805				AP06 =	1206				AP10 :	= 1210)	AP12	= 1812	AP	20 = 22	220

^{*}Not currently available with lead plating finish, contact plant for further information.

Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

APS COTS+ X8R/L Series

Capacitance Range

X8R

	SIZE	AP03 =	: 0603	AP05	= 0805	AP06 =	1206
,	WVDC	25V	50V	25V	50V	25V	50V
331	Cap 330	G	G	J	J		
471	(pF) 470	G	G	J	J		
681	680	G	G	J	J		
102	1000	G	G	J	J	J	J
152	1500	G	G	J	J	J	J
222	2200	G	G	J	J	J	J
332	3300	G	G	J	J	J	J
472	4700	G	G	J	J	J	J
682	6800	G	G	J	J	J	J
103	Cap 0.01	G	G	J	J	J	J
153	(μF) 0.015	G	G	J	J	J	J
223	0.022	G	G	J	J	J	J
333	0.033	G	G	J	J	J	J
473	0.047	G	G	J	J	J	J
683	0.068	G		N	N	M	M
104	0.1			N	N	M	M
154	0.15			N	N	M	М
224	0.22			N		М	M
334	0.33					M	M
474	0.47					M	
684	0.68						
105	1						
	WVDC	25V	50V	25V	50V	25V	50V
	SIZE	060	03	08	05	120	6

X8L

	SIZE		AP03 = 0603	3		AP05 = 080	5		AP06 :	= 1206				
	WVDC	25V	50V	100V	25V	50V	100V	16V	25V	50V	100V			
331	Cap 330		G	G		J	J							
471	(pF) 470		G	G		J	J							
681	680		G	G		J	J							
102	1000		G	G		J	J							
152	1500		G	G		J	J			J	J			
222	2200		G	G		J	J			J	J			
332	3300		G	G		J	J			J	J			
472	4700		G	G		J	J			J	J			
682	6800		G	G		J	J			J	J			
103	Cap 0.01		G	G		J	J			J	J			
153	(μF) 0.015	G	G		J	J	J			J	J			
223	0.022	G	G		J	J	J			J	J			
333	0.033	G	G		J	J	N			J	J			
473	0.047	G	G		J	J	N			J	J			
683	0.068	G	G		J	J				J	J			
104	0.1	G	G		J	J				J	М			
154	0.15				٦	N		J	J	J	Q			
224	0.22				Ν	N		J	J	J	Q			
334	0.33				Ν			J	М	Р	Q			
474	0.47				N			М	М	Р				
684	0.68							М						
105	1							М						
	WVDC	25V	50V	100V	25V	50V	100V	16V	6V 25V 50V 100V					
	SIZE		0603			0805			12	06				

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z
Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79
Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)
			PAPER						EMBO	SSED			

General Specifications

GENERAL DESCRIPTION

With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the hood automotive and other harsh environment applications.

To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, AVX launched FLEXITERM®. FLEXITERM® is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2mm minimum. Using FLEXITERM®, AVX provides up to 5mm of flexure without internal cracks. Beyond 5mm, the capacitor will generally fail "open".

As well as for automotive applications FLEXITERM® will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure.

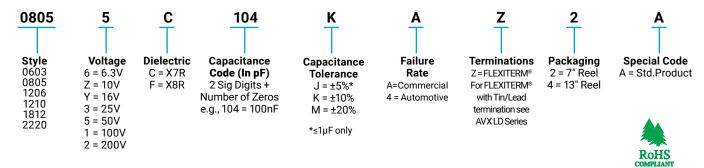
PRODUCT ADVANTAGES

- High mechanical performance able to withstand, 5mm bend test guaranteed
- Increased temperature cycling performance, 3000 cycles and beyond
- · Flexible termination system
- Reduction in circuit board flex failures
- Base metal electrode system
- Automotive or commercial grade products available
- AECQ200 Qualified
- · Approved to VW 80808 Specification

APPLICATIONS

High Flexure Stress Circuit Boards

· e.g. Depanelization: Components near edges of board.


Variable Temperature Applications

- Soft termination offers improved reliability performance in applications where there is temperature variation.
- e.g. All kind of engine sensors: Direct connection to battery rail.

Automotive Applications

- · Improved reliability.
- Excellent mechanical performance and thermo mechanical performance.

HOW TO ORDER

NOTE: Contact factory for availability of Tolerance Options for Specific Part Numbers.

Specifications and Test Methods

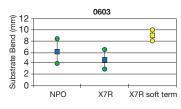
A KYOCERA GROUP COMPANY

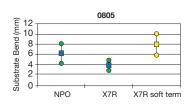
PERFORMANCE TESTING

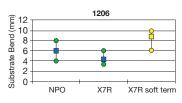
AEC-0200 Qualification:

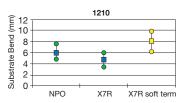
 Created by the Automotive Electronics Council

 Specification defining stress test qualification for passive components


Testing:


Key tests used to compare soft termination to AEC-Q200 qualification:

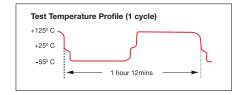

- · Bend Test
- · Temperature Cycle Test


BOARD BEND TEST RESULTS

AEC-Q200 Vrs AVX FLEXITERM® Bend Test

TABLE SUMMARY

Typical bend test results are shown below:

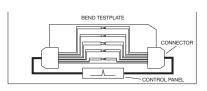

Style	Conventional Termination	$FLEXITERM^{\texttt{®}}$
0603	>2mm	>5mm
0805	>2mm	>5mm
1206	>2mm	>5mm

TEMPERATURE CYCLE TEST PROCEDURE

Test Procedure as per AEC-Q200:

The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures.

- Sample lot size quantity 77 pieces
- TC chamber cycle from -55°C to +125°C for 1000 cycles
- · Interim electrical measurements at 250, 500, 1000 cycles
- Measure parameter capacitance dissipation factor, insulation resistance

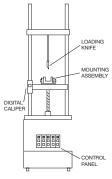

BOARD BEND TEST PROCEDURE

According to AEC-Q200

Test Procedure as per AEC-Q200: Sample size: 20 components

Span: 90mm Minimum deflection spec: 2 mm

- Components soldered onto FR4 PCB (Figure 1)
- Board connected electrically to the test equipment (Figure 2)



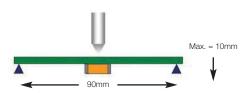

Fig 1 - PCB layout with electrical connections

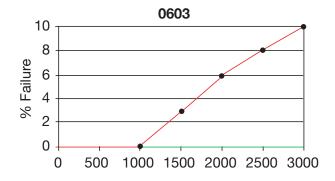
Fig 2 - Board Bend test equipment

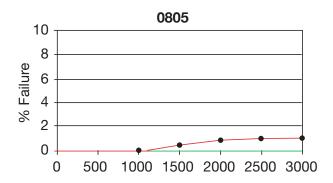
AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE

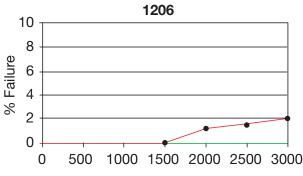
Bend Test

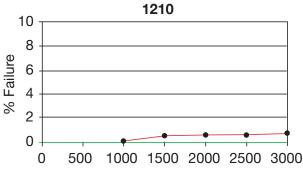
The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second:

- The board is placed on 2 supports 90mm apart (capacitor side down)
- The row of capacitors is aligned with the load stressing knife


- The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit)
- The maximum deflection capability is 10mm



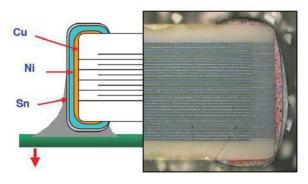

Specifications and Test Methods



BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS

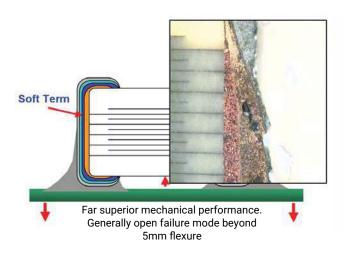
Green = Soft Term MLCC (Flexiterm)

Red = Standard MLCC


Soft Term - No Defects up to 3000 cycles

AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles.

FLEXITERM® TEST SUMMARY


- Qualified to AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150°C bend test guaranteed greater than 5mm).
- FLEXITERM® provides improved performance compared to standard termination systems.
- Board bend test improvement by a factor of 2 to 4 times.
- Temperature Cycling:
 - 0% Failure up to 3000 cycles
 - No ESR change up to 3000 cycle

WITHOUT SOFT TERMINATION

Major fear is of latent board flex failures.

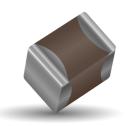
WITH SOFT TERMINATION

Capacitance Range X8R Dielectric

	SIZE	06	03	08	305	1206			
Sc	oldering	Reflow	//Wave	Reflov	v/Wave	Reflow	//Wave		
	WVDC	25V	50V	25V	50V	25V	50V		
271	Cap 270	G	G						
331	(pF) 330	G	G	J	J				
471	470	G	G	J	J				
681	680	G	G	J	J				
102	1000	G	G	J	J	J	J		
152	1500	G	G	J	J	J	J		
182	1800	G	G	J	J	J	J		
222	2200	G	G	J	J	J	J		
272	2700	G	G	J	J	J	J		
332	3300	G	G	J	J	J	J		
392	3900	G	G	J	J	J	J		
472	4700	G	G	J	J	J	J		
562	5600	G	G	J	J	J	J		
682	6800	G	G	J	J	J	J		
822	8200	G	G	J	J	J	J		
103	Cap 0.01	G	G	J	J	J	J		
123	(μF) 0.012	G	G	J	J	J	J		
153	0.015	G	G	J	J	J	J		
183	0.018	G	G	J	J	J	J		
223	0.022	G	G	J	J	J	J		
273	0.027	G	G	J	J	J	J		
333	0.033	G	G	J	J	J	J		
393 473	0.039 0.047	G G	G G	J	J	J	J		
563	0.047	G	G	J N	N N	J M	M		
683	0.056	G		N N	N N	M	M		
823	0.082	G		N N	N N	M	M		
104	0.082			N	N N	M	M		
124	0.12			N	N N	M	M		
154	0.12			N	N	M	M		
184	0.18			N	· · ·	M	M		
224	0.10			N		M	M		
274	0.27			1		M	M		
334	0.33			İ	İ	M	M		
394	0.39					M			
474	0.47				1	M	İ		
684	0.68						1		
824	0.82				İ		İ		
105	1								
	WVDC	25V	50V	25V	50V	25V	50V		
	SIZE	06	03	30	305	1206			

Letter	Α	С	Е	G	J	K	М	N	Р	Q	Х	Υ	Z					
Max. Thickness	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79					
Inickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)					
			PAPER						EMBOSSED									

Capacitance Range X7R Dielectric


	Size			040	2				06	03						0805						120	6			1210				1812		2220		
	Solderi		Ref		Wave			R		/Wave	2					w/Wa	ve				Re	eflow/					Reflov		V	Reflo		Re	eflow C	
	WVD						116V				200V	250V	16V	25V				250V	16V	25V				250V	1500V									1100 V
221	Сар	220		C	C	1.01					2001	2001				C	2001	2001					2001	2001						- 001	100 1			
271	(pF)	270		C	Ċ											_																		
331	V- /	330		C	C																													
391		390	С	С	С													İ																İ
471		470	С	С	С																													
561		560	С	С	С						İ																							
681		680	С	С	С		İ							İ																				
821		820	С	С	С																								İ					
102		1000	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
182		1800	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
222		2200	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
332		3300	С	С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	Ν	N			
472		4700		С	С		G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
103	Cap	0.01	С				G	G	G	G	G	G	J	J	J	J	J	J	J	J	J	J	J	J	J	K	K	K	K	N	N			
123	(µF)	0.012					G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
153		0.015					G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
183		0.018	С				G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
223		0.022	С		_		G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
273		0.027	С	_	_	1	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
333		0.033	С	_	_	_	G	G	G				J	J	J	N	N	N	J	J	J	J	J	J		K	K	K	K	N	N			
473		0.047			_	-	G	G	G		ļ		J	J	J	N	N	N	J	J	J	М	J	J		K	K	K	K	N	N			
563		0.056			+	+	G	G	G		ļ .		J	J	J	N			J	J	J	М	J	J		K	K	K	М	N	N			
683		0.068		-	_	+	G	G	G				J	J	J	N			J	J	J	М	J	J	_	K	K	K	M	N	N			
823		0.082			-		G	G	G				J	J	J	N			J	J	J	M	J	J	-	K	K	K	M	N	N			
104		0.1	С	_	_	+	G	G	G				J	J	J	N			J	J	J	М	J	J		K	K	K	M	N	N			
124 154		0.12		-	+	+	+	-				_	J	J	N	N		_	J	J	M	M		-		K	K	K	P P	N	N N			_
				₩	+	_					<u> </u>		M	N	N	N			J	J	M	M	<u> </u>	-		K	K	K		N				
224 334		0.22	_	├	+-	G	J	J	J	_	-		M	N	N	N N			J	M	M P	Q	_	-	_	M P	M P	M P	P 0	N X	N X			_
474		0.33	-	+	+	J	J	J	 	-	-	-	N N	N	N	N	-	-	J M	M	P	Q		-	-	P	P	P	Q	X	X			-
684		0.47		\vdash	+	J	J	J	\vdash		 		N	N	N	N			M	Q	0	0	-	\vdash	-	P	P	0	X	X	X			-
105		1		\vdash	+	+	+	+	-		 		N	N	N N	N		-	M	0	0	0	_	\vdash		P	0	Q	Z	X	X			-
155		1.5		1	+	+	+				<u> </u>		N	N	IN	IN		-	0	Q	Q	Ų		1	-	P	Q	Z	Z	X	X			-
225		2.2		1	+	+	+				<u> </u>		N	N		\vdash	<u> </u>		O	Q	0	-		\vdash		X	Z	Z	Z	Z	Z			
335		3.3	\vdash	\vdash	+	+	+						- 14	IN					0	ō	٦		\vdash	\vdash	 	x	Z	Z	Z	Z				
475		4.7		\vdash	+	+	+				<u> </u>								ō	Q						X	Z	Z	Z	Z				Z
106		10		\vdash	+	+	+				<u> </u>			\vdash	\vdash	1			Y	Y		 	<u> </u>	\vdash		Ž	Z	Z					Z	Z
226		22		t	+	+	+				<u> </u>		<u> </u>		t		<u> </u>			\vdash			<u> </u>					1				Z		
	WVD		16V	25V	50V	10V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	16V	25V	50V	100 V	200V	250V	500V	16V	25V	50V	100 V	50V	100 V		50V	100 V
	Size			040		1.50	1.01		06		, ====			,,		805	,	,			1001	120		,	, 300 1	,	12		1.00 V		12	,	2220	
										_																					_			

	Letter	Α	С	E	G	J	K	М	N	Р	Q	Х	Υ	Z	
ſ	Max.	0.33	0.56	0.71	0.90	0.94	1.02	1.27	1.40	1.52	1.78	2.29	2.54	2.79	
	Thickness	(0.013)	(0.022)	(0.028)	(0.035)	(0.037)	(0.040)	(0.050)	(0.055)	(0.060)	(0.070)	(0.090)	(0.100)	(0.110)	
_				PAPER			EMBOSSED								

FLEXISAFE MLC Chips

General Specifications and Capacitance Range For Ultra Safety Critical Applications

AVX have developed a range of components specifically for safety critical applications.

Utilizing the award-winning FLEXITERM™ layer in conjunction with the cascade design previously used for high voltage MLCCs, a range of ceramic capacitors is now available for customers who require components designed with an industry leading set of safety features.

The FLEXITERM™ layer protects the component from any damage to the ceramic resulting from mechanical stress during PCB assembly or use with end customers. Board flexure type mechanical damage accounts for the majority of MLCC failures. The addition of the cascade structure protects the component from low insulation resistance failure resulting from other common causes for failure; thermal stress damage, repetitive strike ESD damage and placement damage. With the inclusion of the cascade design structure to complement the FLEXITERM™ layer, the FLEXISAFE range of capacitors has unbeatable safety features. Flexisafe capacitors are qualified in accordance with AEC-Q200 standard. AEC-Q200 detailed qualification data is available on request

HOW TO ORDER

FS05 104 K Z 2 Special Size Voltage **Dielectric** Capacitance Capacitance **Failure Terminations Packaging** Code FS03 = 0603Code (In pF) **Tolerance** Z = FLEXITERM™ 2 = 7" Reel 16V = Y Rate FS05 = 0805 *X = FLEXITERM™ 4 = 13" Reel A = Std.Product $J = \pm 5\%$ 25V = 3 2 Sig. Digits + A = Commercial FS06 = 1206 K = ±10% with 5% min lead Number of 50V = 54 = Automotive FS10 = 1210 $M = \pm 20\%$ *Not RoHS Compliant Zeros 0 = APS100V = 1 e.g. $10\mu F = 106$

CAPACITANCE RANGE FLEXISAFE X7R

SI	SIZE FS03 = 0603					FS05 :	= 0805		FS	S06 = 120	6	FS10 = 1210			
W\	/DC	16	25	50	100	16	25	50	100	16	25	50	16	25	50
102	1000	G	G	G	G	J	J	J	J	J	J	J			
182	1800	G	G	G	G	J	J	J	J	J	J	J			
222	2200	G	G	G	G	J	J	J	J	J	J	J			
332	3300	G	G	G	G	J	J	J	J	J	J	J			
472	4700	G	G	G	G	J	J	J	J	J	J	J			
682	6800	G	G	G	G	J	J	J	J	J	J	J			
103	0.01	G	G	G	G	J	J	J	J	J	J	J			
123	0.012	G	G	G		J	J	J	J	J	J	J			
153	0.015	G	G	G		J	J	J	J	J	J	J			
183	0.018	G	G	G		J	J	J	J	J	J	J			
223	0.022	G	G	G		N	N	N	Ν	J	J	J			
273	0.027					N	N	N	Ν	7	J	J			
333	0.033					N	N	N	Ν	٦	J	J			
473	0.047					N	N	N	Ν	М	М	М			
563	0.056					N	N	N	Ν	М	М	М			
683	0.068					N	N	N	N	М	М	М			
823	0.082					N	N	N	Ν	М	М	М			
104	0.1					N	N	N	Ν	М	М	М			
124	0.12									М	М	М			
154	0.15									М	М	М	Q	Q	Q
224	0.22												Q	Q	Q
334	0.33												Q	Q	Q
474	0.47												Q	Q	Q

Letter	G	J	М	N	Q
Max. Thickness	0.90 (0.035)	0.94 (0.037)	1.27 (0.050)	1.40 (0.055)	1.78 (0.070)
	PAF	PFR		FMBOSSFD	

Capacitor Array

Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

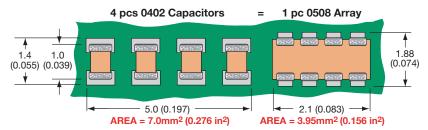
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4×0402 discrete capacitors and of >70% vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

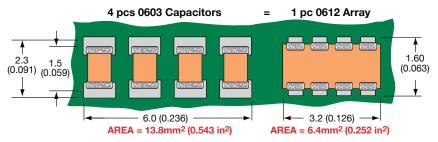
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

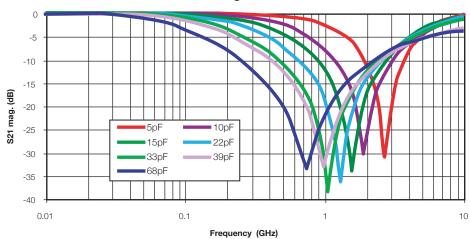
W2A (0508) Capacitor Arrays

The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

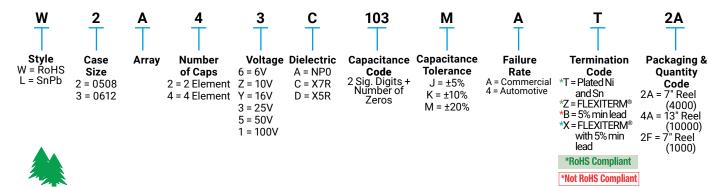
The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)


GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).


Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

RoHS COMPLIANT

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Capacitance Range - NP0/C0G

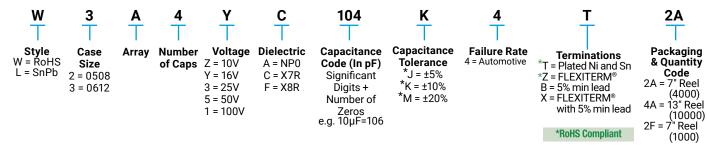
# Elements Solderinq Reflow/Wave Packaqinq Packaqinq Paper/Embossed Paper/Embossed Length (in.) (in.) Width (in.) Width (in.) Max. mm Thickness (in.) 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.083 ± 0.006 0.0126 ± 0.008 0.023	SIZE		W	2 = 050	08	W	3 = 061	12	
Soldering	# Eleme	ents		4			4		
Length			Re	flow/Wa	ave	Re	flow/Wa	ive	
Midth	Packaqi	nq	Pap	er/Embos	ssed	Pap	er/Embos	sed	
Width min (in.)	Length								
Max									
Max. mm (in.) (0.037) (0.053) (0.053) (0.053) (0.053) (0.0	Width								
WVDC		mm	,	0.94		,	1.35		
1R0 Cap 1.0 1R2 (pF) 1.2 1R5 1.5 1.8 1R8 1.8 2.2 2R7 2.7 3R3 3R9 3.9 4R7 4R7 4.7 5R6 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 391 390 471 470 470 561 560 681 680 821 821 820 102			16			16			
1R2 (pF) 1.2 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122			16	25	50	16	25	50	
1R5 1.5 1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200	1								
1R8 1.8 2R2 2.2 2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 152 1500 182 1800	VI.								
2R2									
2R7 2.7 3R3 3.3 3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200									
3R9 3.9 4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 <td>2R7</td> <td>2.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2R7	2.7							
4R7 4.7 5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 </td <td>3R3</td> <td>3.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3R3	3.3							
5R6 5.6 6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332	3R9	3.9							
6R8 6.8 8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
8R2 8.2 100 10 120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 220 272 2700 332 3300 392 3900 472 4700 562 5600									
100	1								
120 12 150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
150 15 180 18 220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
180 18 220 22 270 27 330 33 399 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 220 272 2700 332 3300 392 3900 472 4700 562 5600									
220 22 270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
270 27 330 33 390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	1								
330 33 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
390 39 470 47 560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
560 56 680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
680 68 820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 277 2700 332 3300 392 3900 472 4700 562 5600	470	47							
820 82 101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	560	56							
101 100 121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	680	68							
121 120 151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
151 150 181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
181 180 221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	1								
221 220 271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
271 270 331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
331 330 391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
391 390 471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
471 470 561 560 681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
681 680 821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	471	470							
821 820 102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600	561	560							
102 1000 122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
122 1200 152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
152 1500 182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
182 1800 222 2200 272 2700 332 3300 392 3900 472 4700 562 5600		1							
222 2200 272 2700 332 3300 392 3900 472 4700 562 5600									
272 2700 332 3300 392 3900 472 4700 562 5600									
332 3300 392 3900 472 4700 562 5600	1								
392 3900 472 4700 562 5600									
472 4700 562 5600									
562 5600	1								
682 6800									
002 0000	682	6800							
822 8200	822	8200							

= Supported Values

Capacitance Range - X7R

	SIZE				N2 =	050	8			V	V2 =	050	8			V	V3 =	061	2	
#	Elemer	nts				2						4						1		
	Soldering	1				v/Wav	e			F		//Wav	<u>—</u>			F	Reflow	/Wav	<u> </u>	
	Packaqin					aper						mboss					per/Er			
Lengt	h	mm		,,		± 0.15						± 0.15					1.60 ±			
		(in.) mm		((± 0.00 ± 0.15						± 0.00 ± 0.15			_	((2 20 -	± 0.00 ± 0.20		
Width		(in.)		((± 0.10						± 0.13				((3.20 : : 3.126			
Max.		mm				94	-,					94	-/					35	-/	
Thick	ness	(in.)				037))37)					(0.0			
101	WVDC	100	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
101	Cap	100 120																		
121 151	(PF)	150																		
181		180		М																\vdash
221		220																		
271		270																		
331		330																		
391 471		390 470																		
561		560																		
681		680																		
821		820																		
102		1000																		
122		1200																		
152 182		1500 1800																		
222		2200																		
272		2700																		
332		3300																		
392		3900																		
472 562		4700 5600																		
682		6800																		
822		8200																		
103	Сар	0.010																		
123	(μF)	0.012																		
153 183		0.015																		
223		0.018																		
273		0.027																		
333		0.033																		
393 473		0.039																		
563		0.047																		\vdash
683		0.068																		
823		0.082						L				L	L							
104		0.10																		
124		0.12																		
154 184		0.15 0.18							\vdash		<u> </u>									$\vdash\vdash\vdash$
224		0.22																		
274		0.27																		Ш
334		0.33																		7
474 564		0.47 0.56																		
684		0.56	-	H				-					\vdash				 			$\vdash\vdash$
824		0.82																		
105		1.0		Ш																Ш
125		1.2]]
155 185		1.5 1.8																		
225		2.2		Н							-				-					$\vdash\vdash$
335		3.3							l											
475		4.7																		
106		10																		
226		22 47																		
476 107		47 100																		
107		100	Ь	ш																ш

Automotive Capacitor Array (IPC)



As the market leader in the development and manufacture of capacitor arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

^{*}Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.

NPO/COG

SIZ	E	W3	= 06	12
No. of Ele	ments	Ret	flow/Wa	ive
WVD	С	16	25	50
	ар 1.0			İ
1R2 (p	F) 1.2			
1R5	1.5			
1R8	1.8			
2R2	2.2			
2R7	2.7			
3R3	3.3			
3R9	3.9			
4R7	4.7			
5R6	5.6			
6R8	6.8			
8R2	8.2			
100	10			
120	12			
150	15			
180	18 22			
220 270	27			
330	33			
390	39			
470	47			
560	56			
680	68			
820	82			
101	100			
121	120			
151	150			
181	180			
221	220			
271	270			
331	330			
391	390			
471	470			
561	560			
681	680			
821	820			
102	1000			
122	1200			
152	1500			
182	1800			
222	2200			
272	2700			
332	3300			
392	3900			
472	4700			
562	5600			
682 822	6800 8200			

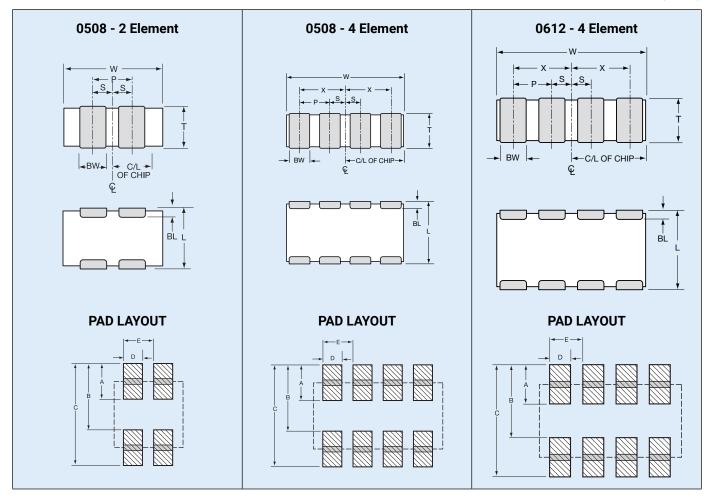
= NPO/COG

	SIZE		W2 =	0508			W2 =	0508			W	3 = 06	12	
No. o	f Elements			2			-	4				4		
1	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
101 121 151	Cap 100 (pF) 120 150													
181 221 271	180 220 270													
331 391 471	330 390 470													
561 681 821	560 680 820													
102 122 152	1000 1200 1500													
182 222 272	1800 2200 2700													
332 392 472	3300 3900 4700													
562 682 822	5600 6800 8200													
103 123 153	Cap 0 010 (μF) 0.012 0.015													
153 223 273	0.018 0.022 0.027													
333 393 473	0.033 0.039 0.047													
563 683 823	0.056 0.068 0.082													
104 124 154	0.10 0.12 0.15													

X7R

*Not RoHS Compliant

For RoHS compliant products



= X7R

PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	Т	BW	BL	Р	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	T	BW	BL	Р	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	X	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10	0.18 ^{+0.25} -0.08	0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010) -0.003	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)

Low Inductance Capacitors

Introduction

The signal integrity characteristics of a Power Delivery Network (PDN) are becoming critical aspects of board level and semiconductor package designs due to higher operating frequencies, larger power demands, and the ever shrinking lower and upper voltage limits around low operating voltages. These power system challenges are coming from mainstream designs with operating frequencies of 300MHz or greater, modest ICs with power demand of 15 watts or more, and operating voltages below 3 volts.

The classic PDN topology is comprised of a series of capacitor stages. Figure 1 is an example of this architecture with multiple capacitor stages.

An ideal capacitor can transfer all its stored energy to a load instantly. A real capacitor has parasitics that prevent instantaneous transfer of a capacitor's stored energy. The true nature of a capacitor can be modeled as an RLC equivalent circuit. For most simulation purposes, it is possible to model the characteristics of a real capacitor with one capacitor, one resistor, and one inductor. The RLC values in this model are commonly referred to as equivalent series capacitance (ESC), equivalent series resistance (ESR), and equivalent series inductance (ESL).

The ESL of a capacitor determines the speed of energy transfer to a load. The lower the ESL of a capacitor, the faster that energy can be transferred to a load. Historically, there has been a tradeoff between energy storage (capacitance) and inductance (speed of energy delivery). Low ESL devices typically have low capacitance. Likewise, higher capacitance devices typically have higher ESLs. This tradeoff between ESL (speed of energy delivery) and capacitance (energy storage) drives the PDN design topology that places the fastest low ESL capacitors as close to the load as possible. Low Inductance MLCCs are found on semiconductor packages and on boards as close as possible to the load.

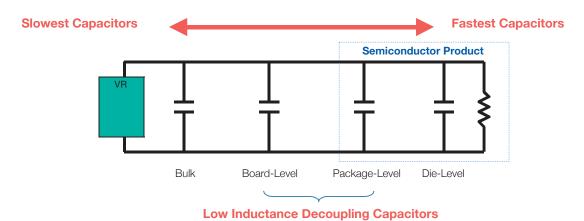


Figure 1 Classic Power Delivery Network (PDN) Architecture

LOW INDUCTANCE CHIP CAPACITORS

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL. A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer side of its rectangular shape.

When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

INTERDIGITATED CAPACITORS

The size of a current loop has the greatest impact on the ESL characteristics of a surface mount capacitor. There is a secondary method for decreasing the ESL of a capacitor. This secondary method uses adjacent opposing current loops to reduce ESL. The InterDigitated Capacitor (IDC) utilizes both primary and secondary methods of reducing inductance. The IDC architecture shrinks the distance between terminations to minimize the current loop size, then further reduces inductance by creating adjacent opposing current loops.

An IDC is one single capacitor with an internal structure that has been optimized for low ESL. Similar to standard MLCC versus LICCs, the reduction in ESL varies by EIA case size. Typically, for the same EIA size, an IDC delivers an ESL that is at least 80% lower than an MLCC.

Low Inductance Capacitors

Introduction

LAND GRID ARRAY (LGA) CAPACITORS

Land Grid Array (LGA) capacitors are based on the first Low ESL MLCC technology created to specifically address the design needs of current day Power Delivery Networks (PDNs). This is the 3rd low inductance capacitor technology developed by AVX. LGA technology provides engineers with new options. The LGA internal structure and manufacturing technology eliminates the historic need for a device to be physically small to create small current loops to minimize inductance.

The first family of LGA products are 2 terminal devices. A 2 terminal 0306 LGA delivers ESL performance that is equal to or better than an 0306 8 terminal IDC. The 2 terminal 0805 LGA delivers ESL performance that approaches the 0508 8 terminal IDC. New designs that would have used 8 terminal IDCs are moving to 2 terminal LGAs because the layout is easier for a 2 terminal device and manufacturing yield is better for a 2 terminal LGA versus an 8 terminal IDC.

LGA technology is also used in a 4 terminal family of products that AVX is sampling and will formerly introduce in 2008. Beyond 2008, there are new multi-terminal LGA product families that will provide even more attractive options for PDN designers.

LOW INDUCTANCE CHIP ARRAYS (LICA®)

The LICA® product family is the result of a joint development effort between AVX and IBM to develop a high performance MLCC family of decoupling capacitors. LICA was introduced in the 1980s and remains the leading choice of designers in high performance semiconductor packages and high reliability board level decoupling applications.

LICA® products are used in 99.999% uptime semiconductor package applications on both ceramic and organic substrates. The C4 solder ball termination option is the perfect compliment to flip-chip packaging technology. Mainframe class CPUs, ultimate performance multi-chip modules, and communications systems that must have the reliability of 5 9's use LICA®.

LICA® products with either Sn/Pb or Pb-free solder balls are used for decoupling in high reliability military and aerospace applications. These LICA® devices are used for decoupling of large pin count FPGAs, ASICs, CPUs, and other high power ICs with low operating voltages.

When high reliability decoupling applications require the very lowest ESL capacitors, LICA® products are the best option.

470 nF 0306 Impedance Comparison

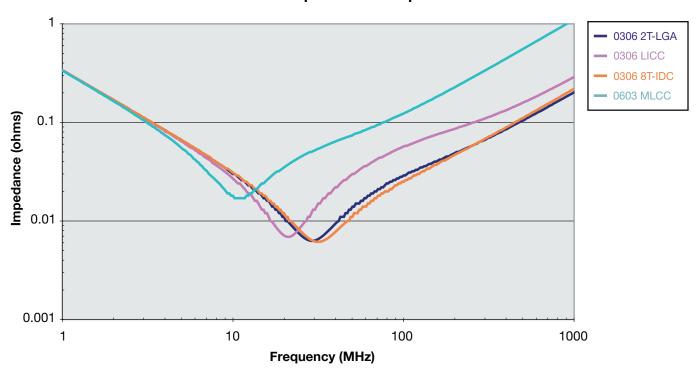
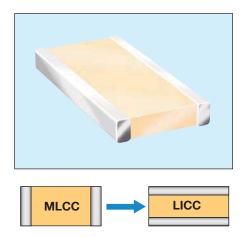


Figure 2 MLCC, LICC, IDC, and LGA technologies deliver different levels of equivalent series inductance (ESL).

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant


GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

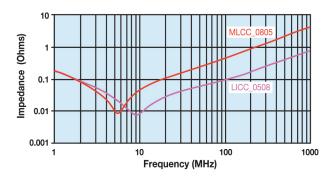
A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

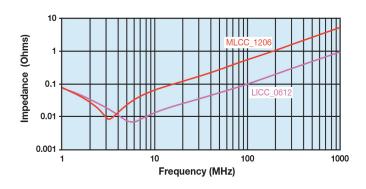
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

AVX LICC products are available with a lead-free finish of plated Nickel/Tin.

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less


HOW TO ORDER


0612	Z	D	105	M	Α	<u>T</u>	2	A *
Size 0306 0508 0612	Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V	Dielectric C = X7R D = X5R W = X6S Z = X7S	Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros	Capacitance Tolerance K = ±10% M = ±20%	Failure Rate A = N/A 4 = Automotive**	Terminations T = Plated Ni and Sn	Packaging Available 2 = 7" Reel 4 = 13" Reel	Thickness Thickness mm (in) 0.56 (0.022) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050)

^{*}See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

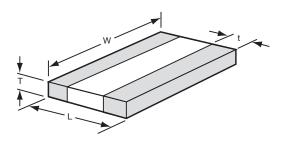
TYPICAL IMPEDANCE CHARACTERISTICS

^{**}Select voltages for Automotive version, contact factory

Low Inductance Ceramic Capacitors

LICC (Low Inductance Chip Capacitors) 0306/0508/0612 RoHS Compliant

	SIZE	0306			0508				0612							
Pac	ckaging			nboss			Embossed				Embossed					
Length	mm		0.81 + 0.15				1.27 + 0.25				1.60 + 0.25					
	(in.)			32 ± 0. 50 + 0.				(0.050 ± 0.010) 2.00 + 0.25				(0.063 ± 0.010) 3.20 + 0.25				
Width	(in.)			63 ± 0.					30 ± 0.					26 ± 0		
Cap Code	WVDC	4	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001		Α	Α	Α	Α	V	٧	٧	٧	٧	S	S	S	S	V
222	(μF) .0022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022		Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033		Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047		Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068		Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1		Α	Α	///		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15		Α	Α			S	S	٧			S	S	S	W	W
224	0.22		Α	Α			S	S	Α			S	S	٧	W	
334	0.33						٧	٧	Α			S	S	٧		
474	0.47						٧	٧	/N/			S	S	٧		
684	0.68						Α	Α				٧	٧	W		
105	1	A					Α	Α				٧	٧	Α		
155	1.5						///					W	W			
225	2.2											Α	Α			
335	3.3											//				
475	4.7															
685	6.8															
106	10															



	mm (in.)						
0306							
Code	Thickness						
Α	0.56 (0.022)						

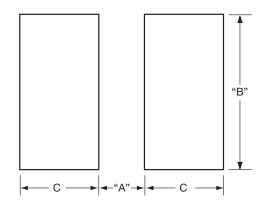
	mm (in.)						
	0508						
Code	Thickness						
S	0.56 (0.022)						
V	0.76 (0.030)						
Α	1.02 (0.040)						

mm (in.)						
0612						
Code	Thickness					
S	0.56 (0.022)					
V	0.76 (0.030)					
W	1.02 (0.040)					
Α	1.27 (0.050)					

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
0306	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
0306	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
0508	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
0306	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
0612	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
0012	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

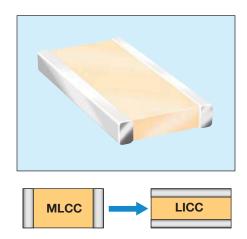
PAD LAYOUT DIMENSIONS

mm (in.)

Size	Α	С	
0306	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)
0508	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)
0612	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"


GENERAL DESCRIPTION

The key physical characteristic determining equivalent series inductance (ESL) of a capacitor is the size of the current loop it creates. The smaller the current loop, the lower the ESL.

A standard surface mount MLCC is rectangular in shape with electrical terminations on its shorter sides. A Low Inductance Chip Capacitor (LICC) sometimes referred to as Reverse Geometry Capacitor (RGC) has its terminations on the longer sides of its rectangular shape. The image on the right shows the termination differences between an MLCC and an LICC.

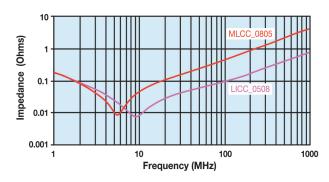
When the distance between terminations is reduced, the size of the current loop is reduced. Since the size of the current loop is the primary driver of inductance, an 0306 with a smaller current loop has significantly lower ESL then an 0603. The reduction in ESL varies by EIA size, however, ESL is typically reduced 60% or more with an LICC versus a standard MLCC.

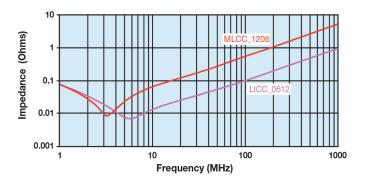
AVX LICC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues

PERFORMANCE CHARACTERISTICS

Capacitance Tolerances	K = ±10%; M = ±20%			
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C			
Temperature Coefficient	X7R, X5R = ±15%; X7S = ±22%			
Voltage Ratings	4, 6.3, 10, 16, 25 VDC			
Dissipation Factor	4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max			
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less			

*Not RoHS Compliant


HOW TO ORDER



*See the thickness tables on the next page.

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

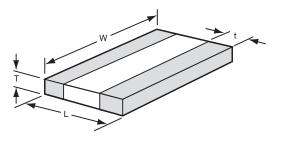
TYPICAL IMPEDANCE CHARACTERISTICS

Low Inductance Capacitors with SnPb Terminations

LD16/LD17/LD18 Tin-Lead Termination "B"

	SIZE	LD16 (0306)			LD17 (0508)					LD18 (0612)					
	ckaging mm		0.81 ± 0.15				Embossed 1.27 ± 0.25				Embossed 1.60 ± 0.25				
Length	(in.)		0.032 ±	0.006	5)		(0.05	50 ± 0	.010)			(0.06	53 ± 0.	.010)	
Width	mm (in.)	(1.60 ± 0.063		5)			00 ± 0. 30 ± 0.					20 ± 0. 26 ± 0.		
Cap Code	WVDC	6.3	10	16	25	6.3	10	16	25	50	6.3	10	16	25	50
102	Cap 0.001	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
222	(μF) .0022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
332	0.0033	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
472	0.0047	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
682	0.0068	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
103	0.01	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	٧
153	0.015	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
223	0.022	Α	Α	Α	Α	S	S	S	S	٧	S	S	S	S	W
333	0.033	Α	Α	Α		S	S	S	٧	٧	S	S	S	S	W
473	0.047	Α	Α	Α		S	S	S	٧	Α	S	S	S	S	W
683	0.068	Α	Α	Α		S	S	S	Α	Α	S	S	S	٧	W
104	0.1	Α	Α	/N/		S	S	٧	Α	Α	S	S	S	٧	W
154	0.15	Α	Α			S	S	٧			S	S	S	W	W
224	0.22	Α	Α			S	S	Α			S	S	٧	W	
334	0.33					٧	٧	Α			S	S	٧		
474	0.47					٧	٧	//			S	S	٧		
684	0.68					Α	Α				V	٧	W		
105	1					Α	Α				V	٧	Α		
155	1.5										W	W			
225	2.2										Α	Α			
335	3.3														
475	4.7														
685	6.8														
106	10														

Solid = X7R



mm (in.)					
LD16					
(0306)					
Code	Thickness				
Δ	0.56 (0.022)				

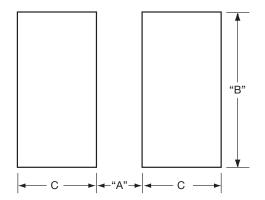
mm (in.)						
LD17						
(0508)						
Code	Thickness					
S	0.56 (0.022)					
V	0.76 (0.030)					
Α	1.02 (0.040)					

	mm (in.)						
LD18							
(0612)							
Code	Thickness						
S	0.56 (0.022)						
V	0.76 (0.030)						
W	1.02 (0.040)						
Α	1.27 (0.050)						

PHYSICAL DIMENSIONS AND PAD LAYOUT

PHYSICAL DIMENSIONS

mm (in.)


Size	L	W	t
LD16	0.81 ± 0.15	1.60 ± 0.15	0.13 min.
(0306)	(0.032 ± 0.006)	(0.063 ± 0.006)	(0.005 min.)
LD17	1.27 ± 0.25	2.00 ± 0.25	0.13 min.
(0508)	(0.050 ± 0.010)	(0.080 ± 0.010)	(0.005 min.)
LD18	1.60 ± 0.25	3.20 ± 0.25	0.13 min.
(0612)	(0.063 ± 0.010)	(0.126 ± 0.010)	(0.005 min.)

T - See Range Chart for Thickness and Codes

PAD LAYOUT DIMENSIONS

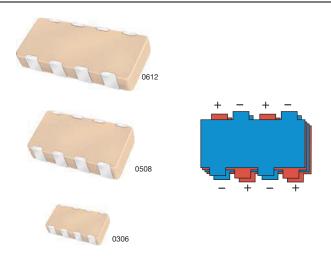
mm (in.)

			,				
Size	Α	В	С				
LD16 (0306)	0.31 (0.012)	1.52 (0.060)	0.51 (0.020)				
LD17 (0508)	0.51 (0.020)	2.03 (0.080)	0.76 (0.030)				
LD18 (0612)	0.76 (0.030)	3.05 (0.120)	0.635 (0.025)				

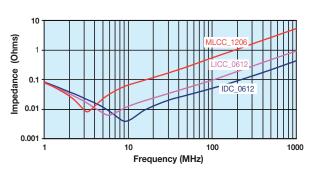
IDC Low Inductance Capacitors (RoHS)

IDC (InterDigitated Capacitors) 0306/0612/0508

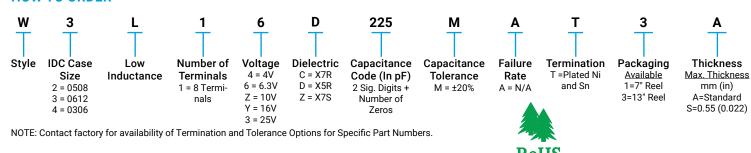
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead-free finish of plated Nickel/Tin.

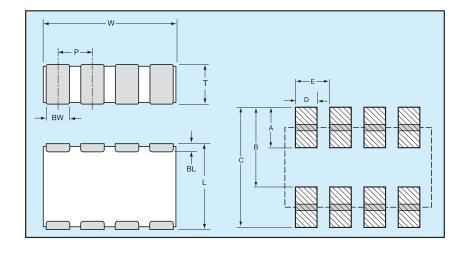
TYPICAL IMPEDANCE

HOW TO ORDER

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μ F min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (RoHS)

SIZE	Ē	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	80		W	3= Tł	nin 06	12		W3	3 = 06	512		W3	= THI	ICK 0	612
Max.	mm	0.	55		0.55.				0.95			0.55					0.95				1.3	22				
Thickness	(in.)	(0.0)	22)		(0.022	2)			(0.037)			(0.022)			(0.037)					(0.048)					
WVD	С	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (µF)	0.010																									
	0.022																									
	0.033																									
	0.047																									
	0.068																									
	0.10																									
	0.22																									
	0.33																									
	0.47																									
	0.68																									
	1.0																									
	1.5																									
	2.2																									
	3.3																									

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

SIZE	W	L	BW	BL	P
0306	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006)	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0306	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

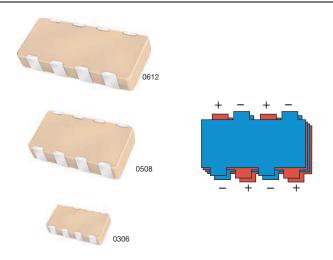
PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	E
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

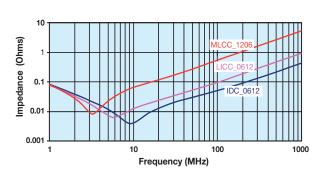
IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) 0306/0612/0508

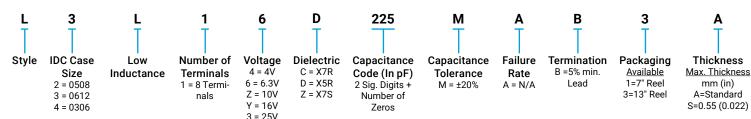
GENERAL DESCRIPTION


Inter-Digitated Capacitors (IDCs) are used for both semiconductor package and board level decoupling. The equivalent series inductance (ESL) of a single capacitor or an array of capacitors in parallel determines the response time of a Power Delivery Network (PDN). The lower the ESL of a PDN, the faster the response time. A designer can use many standard MLCCs in parallel to reduce ESL or a low ESL Inter-Digitated Capacitor (IDC) device. These IDC devices are available in versions with a maximum height of 0.95mm or 0.55mm.

IDCs are typically used on packages of semiconductor products with power levels of 15 watts or greater. Inter-Digitated Capacitors are used on CPU, GPU, ASIC, and ASSP devices produced on 0.13µ, 90nm, 65nm, and 45nm processes. IDC devices are used on both ceramic and organic package substrates. These low ESL surface mount capacitors can be placed on the bottom side or the top side of a package substrate. The low profile 0.55mm maximum height IDCs can easily be used on the bottom side of BGA packages or on the die side of packages under a heat spreader.


IDCs are used for board level decoupling of systems with speeds of 300MHz or greater. Low ESL IDCs free up valuable board space by reducing the number of capacitors required versus standard MLCCs. There are additional benefits to reducing the number of capacitors beyond saving board space including higher reliability from a reduction in the number of components and lower placement costs based on the need for fewer capacitors.

The Inter-Digitated Capacitor (IDC) technology was developed by AVX. This is the second family of Low Inductance MLCC products created by AVX. IDCs are a cost effective alternative to AVX's first generation low ESL family for high-reliability applications known as LICA (Low Inductance Chip Array).


AVX IDC products are available with a lead termination for high reliability military and aerospace applications that must avoid tin whisker reliability issues.

TYPICAL IMPEDANCE

HOW TO ORDER

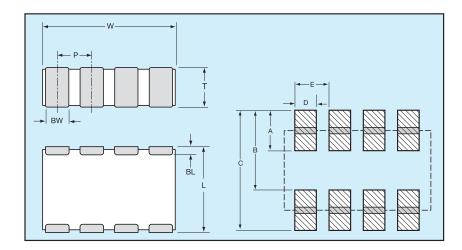
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

*Not RoHS Compliant

PERFORMANCE CHARACTERISTICS

Capacitance Tolerance	±20% Preferred
Operation Temperature Range	X7R = -55°C to +125°C X5R = -55°C to +85°C
remperature Kange	X7S = -55°C to +125°C
Temperature Coefficient	±15% (0VDC), ±22% (X7S)
Voltage Ratings	4, 6.3, 10, 16, 25 VDC
Dissipation Factor	≤ 6.3V = 6.5% max; 10V = 5.0% max; ≥ 16V = 3.5% max
Insulation Resistance (@+25°C, RVDC)	100,000MΩ min, or 1,000MΩ per μF min.,whichever is less

Dissipation Factor	No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current
CTE (ppm/C)	12.0
Thermal Conductivity	4-5W/M K
Terminations Available	Plated Nickel and Solder


IDC Low Inductance Capacitors (SnPb)

IDC (InterDigitated Capacitors) with Sn/Pb Termination 0306/0612/0508

SIZE	W4 =	0306		W2 =	Thin	0508	3		W2	2 = 05	808		W	3= Tł	nin 06	12		W3	3 = 06	512		W3	= TH	ICK 0	612
Max. mm		55			0.55.					0.95				0	.55				0.95				1.	22	
Thickness (in.)	(0.0)22)			(0.022)				(0.037)			(0.	022)			(0.037)			,	(0.048)			
WVDC	4	6.3	4	6.3	10	16	25	4	6.3	10	16	25	4	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16
Cap (μF) 0.010																									
0.022																									
0.033																									
0.047																									
0.068																									
0.10																									
0.22																									
0.33																									
0.47																									
0.68																									
1.0																									
1.5																									
2.2																									
3.3																	·								

PHYSICAL DIMENSIONS AND PAD LAYOUT

Consult factory for additional requirements

PHYSICAL CHIP DIMENSIONS

MILLIMETERS (INCHES)

SIZE	W	L	BW	BL	Р
0206	1.60 ± 0.20	0.82 ± 0.10	0.25 ± 0.10	0.20 ± 0.10	0.40 ± 0.05
0306	(0.063 ± 0.008)	(0.032 ± 0.006	(0.010 ± 0.004)	(0.008± 0.004)	(0.015 ± 0.002)
0508	2.03 ± 0.20	1.27 ± 0.20	0.30 ± 0.10	0.25 ± 0.15	0.50 ± 0.05
0508	(0.080 ± 0.008)	(0.050 ± 0.008)	(0.012 ± 0.004)	(0.010± 0.006)	(0.020 ± 0.002)
0612	3.20 ± 0.20	1.60 ± 0.20	0.50 ± 0.10	0.25 ± 0.15	0.80 ± 0.10
0012	(0.126 ± 0.008)	(0.063 ± 0.008)	(0.020 ± 0.004)	(0.010 ± 0.006)	(0.031 ± 0.004)

PAD LAYOUT DIMENSIONS

SIZE	Α	В	С	D	Е
0306	0.38	0.89	1.27	0.20	0.40
	(0.015)	(0.035)	(0.050)	(0.008)	(0.015)
0508	0.64	1.27	1.91	0.28	0.50
	(0.025)	(0.050)	(0.075)	(0.011)	(0.020)
0612	0.89	1.65	2.54	0.45	0.80
	(0.035)	(0.065)	(0.010)	(0.018)	(0.031)

LGA Low Inductance Capacitors

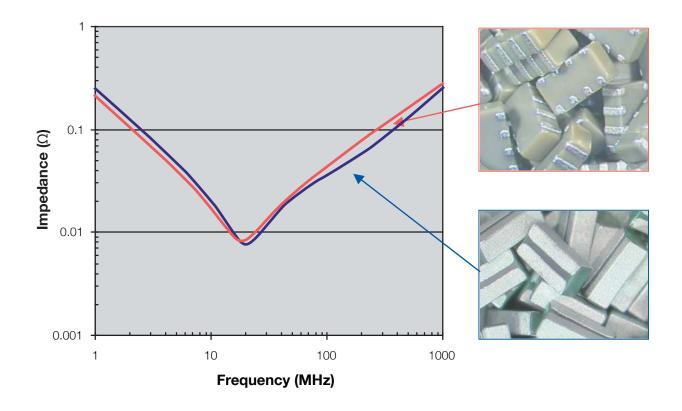
0204/0306 Land Grid Array

Land Grid Array (LGA) capacitors are the latest family of low inductance MLCCs from AVX. These new LGA products are the third low inductance family developed by AVX. The innovative LGA technology sets a new standard for low inductance MLCC performance.

Our initial 2 terminal versions of LGA technology deliver the performance of an 8 terminal IDC low inductance MLCC with a number of advantages including:

- · Simplified layout of 2 large solder pads compared to 8 small pads for IDCs
- Opportunity to reduce PCB or substrate contribution to system ESL by using multiple parallel vias in solder pads
- Advanced FCT manufacturing process used to create uniformly flat terminations on the capacitor that resist "tombstoning"
- · Better solder joint reliability

APPLICATIONS

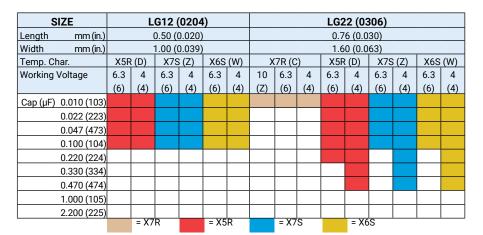

Semiconductor Packages

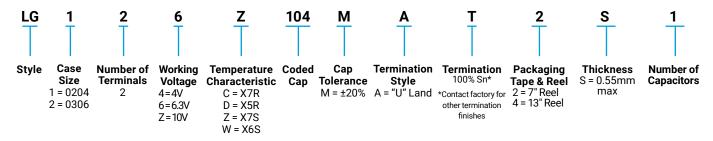
- · Microprocessors/CPUs
- · Graphics Processors/GPUs
- Chipsets
- FPGAs
- ASICs

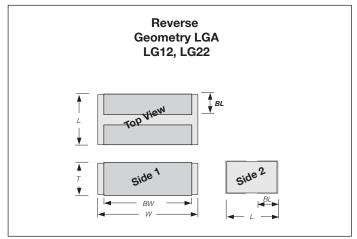
Board Level Device Decoupling

- Frequencies of 300 MHz or more
- · ICs drawing 15W or more
- · Low voltages
- · High speed buses

0306 2 TERMINAL LGA COMPARISON WITH 0306 8 TERMINAL IDC




LGA Low Inductance Capacitors



HOW TO ORDER

PART DIMENSIONS

MM (INCHES)

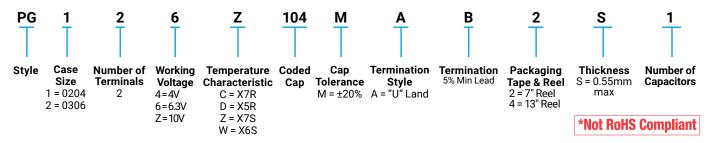
Series	L	w	Т	BW	BL
LG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
LG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

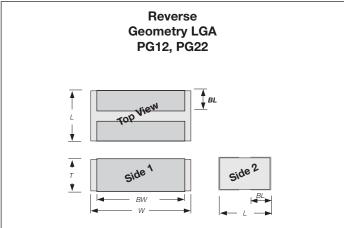
RECOMMENDED SOLDER PAD DIMENSIONS

PL V G		
G		_
	PW1	

Series	PL	PW1	G
LG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
LG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

MM (INCHES)


LGA Low Inductance Capacitors



0204/0306 Land Grid Array - Tin/Lead Termination "B"

SIZE		PG12 (0204)						PG22 (0306)							
Length mm (in.)			0.50 (0.020))		0.76				6 (0.0	(0.030)			
Width mm (in.)			1.00 (0.039))			1.60 (0.063)							
Temp. Char.	X5F	(D)	X78	(Z)	X6S	(W)	Х	7R (C)	X5R	(D)	X7S	(Z)	X6S	(W)
Working Voltage	6.3	4	6.3	4	6.3	4	10	6.3	4	6.3	4	6.3	4	6.3	4
	(6)	(4)	(6)	(4)	(6)	(4)	(Z)	(6)	(4)	(6)	(4)	(6)	(4)	(6)	(4)
Cap (µF) 0.010 (103)															
0.022 (223)															
0.047 (473)															
0.100 (104)															
0.220 (224)															
0.330 (334)															
0.470 (474)															
1.000 (105)															
2.200 (225)															
		= X7	R		= X5	R		= X7	S		= X6	S			

HOW TO ORDER

PART DIMENSIONS

MM (INCHES)

Series	L	w	Т	BW	BL
PG12 (0204)	0.5 ± 0.05	1.00 ± 0.10	0.50 ± 0.05	0.8 ± 0.10	0.13 ± 0.08
	(0.020±0.002)	(0.039 ± 0.004)	(0.020 ± 0.002)	(0.031 ± 0.004)	(0.005 ± 0.003)
PG22 (0306)	0.76 ± 0.10	1.60 ± 0.10	0.50 ± 0.05	1.50 ±0.10	0.28 ± 0.08
	(0.030 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	(0.059 ± 0.004)	(0.011 ± 0.003)

RECOMMENDED SOLDER PAD DIMENSIONS

Series	PL	PW1	G
PG12 (0204)	0.50 (0.020)	1.00 (0.039)	0.20 (0.008)
PG22 (0306)	0.65 (0.026)	1.50 (0.059)	0.20 (0.008)

AT Series - 200°C & 250°C Rated

Present military specifications, as well as a majority of commercial applications, require a maximum operating temperature of 125°C. However, the emerging market for high temperature electronics demands capacitors operating reliably at temperatures beyond 125°C. AVX's high temperature chip capacitor product line, has been extended with the BME COG chip. All AT chips have verified capabilities of long term operation up to 250°C for applications in both military and commercial businesses. These capacitors demonstrate high volumetric efficiency, high insulation resistance and low ESR/ESL for the most demanding applications, such as "downhole" oil exploration and aerospace programs.

HOW TO ORDER

AT10	3	Т	104	K	Α	Т	2	Α
	T	Τ		Т	T	Τ	T	Т
AVX	Voltage	Temperature	Capacitance Code	Capacitance	Test Level	Termination	Packaging	Special
Style	Code	Coefficient	(2 significant digits	Tolerance	A = Standard	1 = Pd/Ag	2 = 7" Reel	Code
AT03 = 0603	16V = Y	PME	+ no. of zeros)	$J = \pm 5\%$		T = 100% Sn Plated	4 = 13" Reel	A = Standard
AT05 = 0805	25V = 3	C0G 250°C = A	101 = 100pF	$K = \pm 10\%$		(RoHS Compliant)	9 = Bulk	
AT06 = 1206	50V = 5	COG 200°C = 2	102 = 1nF	$M = \pm 20\%$		7 = Ni/Au Plated		
AT10 = 1210		VHT 250°C = T	103 = 10nF			(For 250°C BME		
AT12 = 1812		VHT 200°C = 4	104 = 100nF			COG Only)		
AT14 = 2225		BME	105 = 1μF			• •		
		C0G 250°C = 5	·					
		COG 200°C = 3						

ELECTRICAL SPECIFICATIONS

Temperature Coefficient

PME COG 0±30ppm/°C, -55C to 250°C BME COG 0±30ppm/°C, -55C to 200°C

See TCC Plot for +250°C

VHT: T ±15%, -55°C to +150°C

See TCC Plot for +250°C

Capacitance Test (MIL-STD-202, Method 305) 25°C, 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

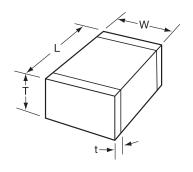
Dissipation factor 25°C

C0G: 0.15% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz VHT: 2.5% Max at 1.0 ± 0.2 Vrms (open circuit voltage) @ 1kHz

Insulation Resistance 25°C (MIL-STD-202, Method 302) $100G\Omega$ or $1000M\Omega$ -μF (whichever is less)

Insulation Resistance 125°C (MIL-STD-202, Method 302) $10G\Omega$ or $100M\Omega$ -µF (whichever is less)

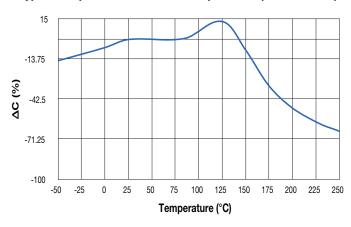
Insulation Resistance 200°C (MIL-STD-202, Method 302) $1G\Omega$ or $10M\Omega$ -μF (whichever is less)


Insulation Resistance 250°C (MIL-STD-202, Method 302) 100M Ω or 1M Ω -uF (whichever is less)

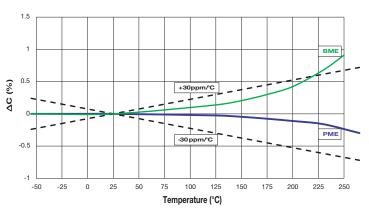
Direct Withstanding Voltage 25°C (Flash Test)

250% rated voltage for 5 seconds with 50mA max charging current

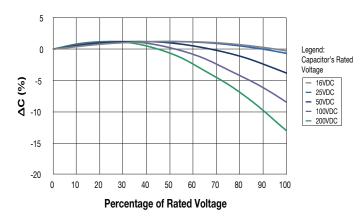
DIMENSIONS:

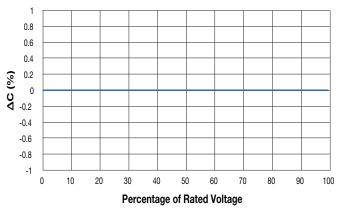

Size	AT03 = 0603	AT05= 0805	AT06=1206 AT10=1210		AT12=1812	AT14=2225
(L) Length	1.60 ± 0.15	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	5.72 ± 0.25
(L) Lengui	(0.063 ± 0.006)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
(W) Width	0.81 ± 0.15	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(vv) vvidu i	(0.032 ± 0.006)	(0.049 ± 0.008)	9 ± 0.008) $ (0.063 \pm 0.008) (0.09)$		(0.126 ± 0.008)	(0.250 ± 0.010)
(T) Thickness Max	1.02	1.30	1.52	1.70	2.54	2.54
(1) THICKHESS Wax	(0.040)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(t) min.	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
terminal max.	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
	•					

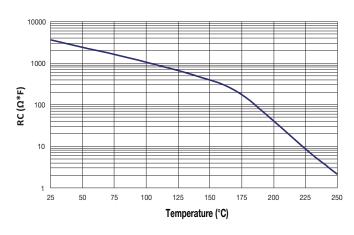
AT Series - 200°C & 250°C Rated

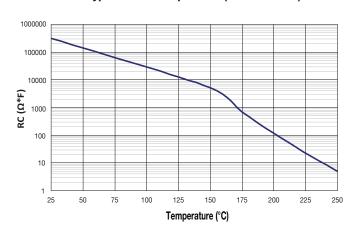


PERFORMANCE CHARACTERISTICS

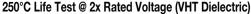

Typical Temperature Coefficient of Capacitance (VHT Dielectric)

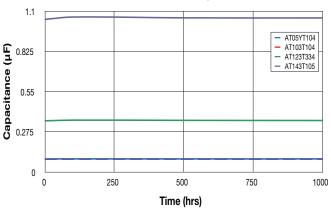

Typical Temperature Coefficient of Capacitance (COG Dielectric)


Typical Voltage Coefficient of Capacitance (VHT Dielectric)


Typical Voltage Coefficient of Capacitance (COG Dielectric)

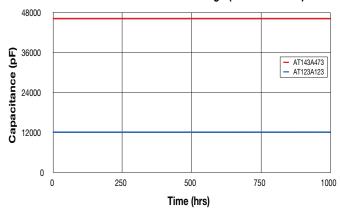
Typical RC vs Temperature (VHT Dielectric)


Typical RC vs Temperature (COG Dielectric)



AT Series - 200°C & 250°C Rated

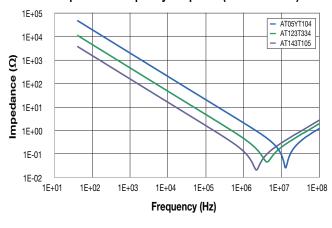
RELIABILITY



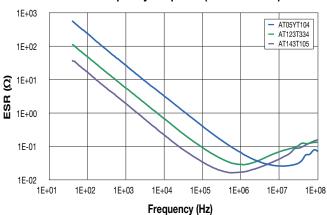
VHT - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C)	50% Rated Voltage	100% Rated Voltage							
200	0.002	0.017							
250	0.026	0.210							

^{*}Typical 1210, 1812, 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

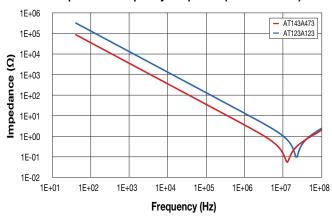
250°C Life Test @ 2x Rated Voltage (C0G Dielectric)

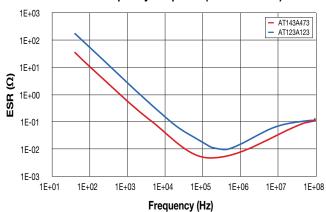


COG - Failure Rate @ 90% Confidence Level (%/1000 hours)									
Temperature (°C) 50% Rated Voltage 100% Rated Voltage									
200	0.006	0.047							
250	0.074	0.590							


^{*}Typical 1812 and 2225 Failure Rate Analysis based on 250°C testing and voltage ratings specified on the following page.

FREQUENCY RESPONSE


Impedance Frequency Response (VHT Dielectric)


ESR Frequency Response (VHT Dielectric)

Impedance Frequency Response (COG Dielectric)

ESR Frequency Response (C0G Dielectric)

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

			AT03 =	ATO)5 =	ΔΤ	06 =	AT1	0 =	AT12 =	AT14 =
(Case S	ize	0603				1210		1812	2225	
_	Solderi	ina	Reflow/Wave				v/Wave	Reflov		Reflow Only	Reflow Only
		mm	1.60±0.15	2.01 :			±0.20	3.20:		4.50±0.30	5.72±0.25
(L) I	Length	(in.)	(0.063±0.006)	(0.079			±0.008)		0.008)	(0.177±0.012)	(0.225±0.010
(W)	Width	mm	0.81 ± 0.15		±0.20		±0.20	2.50 :		3.20±0.20	6.35±0.25
(,		(in.)	(0.032±0.006) 1.02	(0.049 :			±0.008) 52	(0.098±		(0.126±0.008) 2.54	(0.250±0.010 2.54
(T) 1	Thickness	mm (in.)	(0.040)		30 151)		060)	(0.0		(0.100)	(0.100)
		min	0.25(0.010)	0.25(0.010)	0.25(0		0.25 (0.010)	0.25(0.010)
(t) T	Terminal	max	0.75 (0.030)	0.75(0.030)	0.75(1.02 (0.040)	1.02 (0.040)
Raf	ted Tem	p. (°C)	200	_	00		00	20		200	200
	np. Coef		4	4			4			4	4
	/oltage		25	25	50	25	50	25	50	50	50
	1000	102									
	1200	122									
	1500	152									
	1800	182									
	2200	222					\vdash				
	2700	272					\vdash				
Cap (pF)	3300	332									
(Pi)		-									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
	0.010	103									
	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
		-									
	0.033	333									
	0.039	393									
	0.047	473									
	0.056	563									
	0.068	683									
	0.082	823									
Cap (µF)	0.100	104									
μι)	0.120	124									
	0.150	154									
	0.180	184									
	0.220	224									
	0.270	274									
	0.270	334					\vdash				
		394					 				
	0.390	<u> </u>					 				
	0.470	474									
	0.560	564					<u> </u>	L			
	0.680	684									
	0.820	824									
	1.000	105									
١	/oltage	(V)	25	25	50	25	50	25	50	50	50
Ra	ted Tem	p. (°C)	200	20	00	2	00	20	00	200	200
			AT03 =	ATO			06 =	AT1		AT12 =	AT14 =
(Case S	ıze	0603		05		206		10	1812	2225

			AT03 =	AT()5 =	AT	06 =	AT1	0 =	AT12 =	AT14 =
Case Size Soldering		Size	0603	08			206		10	1812	2225
		rina	Reflow/Wave		/Wave		v/Wave	Reflo		Reflow Only	Reflow Only
,, , ,		mm	1.60±0.15		2.01 ± 0.20		3.20±0.20		±0.20	4.50±0.30	5.72±0.25
(L) I	(L) Length (in.)		(0.063±0.006)		(0.079±0.008)				±0.008)	(0.177±0.012)	(0.225±0.010
(///)	W) Width (in)		0.81±0.15	1.25:			±0.20		±0.20	3.20±0.20	6.35±0.25
(**)	(111.)		(0.032±0.006)	(0.049			±0.008)		±0.008)	(0.126±0.008)	(0.250±0.010
mπ	hickness	mm	1.02	1.30			52		70	2.54	2.54
(-)	(In.)		(0.040)	(0.0			060)		067)	(0.100)	(0.100)
(t) T	erminal	min	0.25(0.010)	0.25(0.010)		0.010)	0.25 (0.010)	0.25(0.010)
		max	0.75(0.030)	0.75(0.030)		0.75 (0.030)		_	0.030)	1.02 (0.040)	1.02 (0.040)
	Rated Ter		250	250		250		250		250	250
!	emp. Co		T 16	16	25	16	25	16	25	T	T
_	Voltag		10	16	25	10	25	16	25	25	25
	1000	102									
	1200	122									
	1500	152									
	1800	182				L					
	2200	222					Ì				
Сар	2700	272									
pF)	3300	332									
	3900	392									
	4700	472									
	5600	562									
	6800	682									
	8200	822									
	0.010	103									
	0.012	123									
	0.015	153									
	0.018	183									
	0.022	223									
	0.027	273									
	0.027	333									
								_			
	0.039	393									
	0.047	473									
	0.056	563									
	0.068	683									
	0.082	823									
Cap	0.100	104									
(μF)	0.120	124									
	0.150	154									
	0.180	184									
	0.220	224									
	0.270	274					<u> </u>		\vdash		
	0.330	334									
	0.390	394									
	0.470	474									
	0.560	564									
	0.680	684									
	0.820	824					 	<u> </u>			
	1.000	105					<u> </u>	\vdash			
			16	16	25	16	25	16	25	25	25
_	Voltag			_				_			
Rated Temp. (°C)			250	2	50	2	50		50	250	250
			AT03 =	AT05 =		AT06 =		AT10 =		AT12 =	AT14 =

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT Series - 200°C & 250°C Rated

CAPACITANCE RANGE
PREFERRED SIZES ARE SHADED

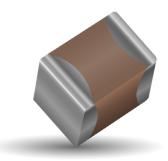
BME COG	Temp. Coefficient: 4	200°C Rated

В	ME	C)G Tem	p. Coefficie	nt: 4	200	O°C Rated		
(Case Siz	ze	AT03	=0603		AT05	=0805	AT06:	=1206
	Solderin	ng	Reflov	v/Wave		Reflov	//Wave	Reflow	/Wave
(L) I	Length	mm		±0.15			±0.20		±0.20
0.0		(in.)		±0.006)			±0.008)	(0.126:	
(W)	Width	mm (in.)		±0.15			±0.20		±0.20
m	hickness	mm		±0.006) 02			± 0.008) 30	(0.063:	
(.,	11101111000	(in.)		040))51)	(0.0)	
(t) 1	erminal	min		(0.010)			0.010)	0.25(
		max		0.030)			0.030)	0.75(
Rat	ed Temp	. (°C)	2	00		2	00	20	00
	Temp. Coefficei	nt	:	3		:	3	3	3
	/oltage (-	25	50	25		50	25	50
Сар	39	390	20	00	20	,	00	20	00
(pF)		470							
	56	560							
	68	680							
	82	820							
	100	101							
	120	121							
	150	151							
	180	181							
	220	221							
	270	271							
	330	331							
	390	391							
	470	471							
	560	561							
	680	681							
	820	821							
	1000 1200	102 122							
	1500	152							
	1800	182							
	2200	222							
	2700	272							
	3300	332							
	3900	392							
	4700	472							
	5600	562							
	6800	682							
$oxed{oxed}$	8200	822							
Cap (::E)	0.010	103							
(μF)	0.012	123							
	0.015	100							
	0.018	183							
	0.022	223							
	0.027	273 333							
	0.033	393							
	0.039	473							
	0.056	563							
	0.068	683							
	0.082	823							
L		104							
_\	oltage ((V)	25	50	25	i	50	25	50
Rat	ed Temp	. (°C)	200	200	200	0	200	200	200
(Case Siz	ze	AT03	=0603		AT05	=0805	AT06:	=1206

Case S	ize	AT03=0603	AT05=0805	AT06 = 1206
Solder	ina	Reflow/Wave	Reflow/Wave	Reflow/Wave
) Length		1.60±0.15	2.01 ± 0.20	3.20±0.20
	(in.)	(0.063±0.006)	(0.079±0.008)	(0.126±0.008)
V) Width	mm	0.81 ± 0.15	1.25±0.20	1.60±0.20
	(in.)	(0.032±0.006)	(0.049±0.008)	(0.063±0.008)
í t	mm (i)	1.02	1.30	1.52
	(in.)	(0.040)	(0.051)	(0.060)
' t			0.25(0.010) 0.75(0.030)	0.25 (0.010) 0.75 (0.030)
			250	250
		5	5	5
Voltage	(V)	25	25	25
ар 39	390			
^{F)} 47	470			
56	560			
68	680			
82	820			
100	101			
120	121			
150	151			
180	181			
220	221			
270	271			
330	331			
390	391			
470	471			
560	561			
680	$\overline{}$			
\vdash				
1000	### STATE			
\rightarrow	dTemp. (°C) 250 Temp. oefficeint 5 iltage (V) 25 39 390 47 470 56 560 68 680 88 28 20 100 101 120 121 150 151 180 181 220 221 270 271 330 331 390 391 470 471 560 561 680 681 8820 821 1000 102 12200 122 1500 152 1800 182 2200 222 2700 272 3300 332 3300 332 3300 332 3300 332 3300 332 3300 392 4700 472 5600 562 5800 682 5800 682 5800 682 5800 682 5800 682 5800 682 5800 682 5800 682 5800 1010 103 5800 1010 103 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1012 123 5800 1013 103 5800 1013 103 5800 1014 103 5800 1015 153 5800 1015 1015 1015 1015 1015 1015 1015			
1500				
-	$\overline{}$			
\rightarrow				
2700				
3300	\rightarrow			
3900				
4700	$\overline{}$			
5600				
6800	_			
8200	$\overline{}$			
0.010	-			
0.012				
$\overline{}$				
$\overline{}$				
0.027				
0.027	$\overline{}$			
$\overline{}$				
\rightarrow	$\overline{}$			
$\overline{}$				
-				
$\overline{}$				
$\overline{}$	_			
		25	25	25
			250	250
1011	(0)			200

Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

AT Series - 200°C & 250°C Rated


CAPACITANCE RANGE
PREFERRED SIZES ARE SHADED

P	ME	C0	G Temp. (Coefficient: 2	200°C Rate	ed		P	ME	CO	G Temp. 0	Coefficient: A	250°C Rate	ed	
	Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225
	Solder	ina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only		Solder	ina	Reflow/Wave	Reflow/Wave	Reflow Only	Reflow Only	Reflow Only
		mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25			mm	2.01 ± 0.20	3.20 ± 0.20	3.20 ± 0.20	4.50 ± 0.30	2.75 ± 0.25
(L) L	ength	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)	(L) L	Length	(in.)	(0.079 ± 0.008)	(0.126 ± 0.008)	(0.126 ± 0.008)	(0.177 ± 0.012)	(0.225 ± 0.010)
		mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25	440		mm	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.20	3.20 ± 0.20	6.35 ± 0.25
(W)	Width	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)	(W)	Width	(in.)	(0.049 ± 0.008)	(0.063 ± 0.008)	(0.098 ± 0.008)	(0.126 ± 0.008)	(0.250 ± 0.010)
		mm	1.30	1.52	1.70	2.54	2.54			mm	1.30	1.52	1.70	2.54	2.54
(1) 1	hickness	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)	(1)	Thickness	(in.)	(0.051)	(0.060)	(0.067)	(0.100)	(0.100)
(i) =		min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	(1) =		min	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)	0.25 (0.010)
(t) I	erminal	max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)	(t) I	erminal	max	0.75 (0.030)	0.75 (0.030)	0.75 (0.030)	1.02 (0.040)	1.02 (0.040)
Ra	ted Tem	p. (°C)	200	200	200	200	200	Ra	ated Tem	p. (°C)	250	250	250	250	250
Te	mp. Coef	ficeint	2	2	2	2	2	Te	mp. Coe	fficeint	Α	Α	Α	Α	A
	Voltage		50	50	50	50	50		Voltage		25	25	25	25	25
	100	101							100	101					
	120	121							120	121					
	150	151							150	151					
	180	181							180	181					
	220	221							220	221					
İ	270	271							270	271					
İ	330	331							330	331					
İ	390	391							390	391					
İ	470	471							470	471					
	560	561							560	561					
	680	681							680	681					
Cap	820	821						Cap	820	821					
Cap (pF)	1000	102						Cap (pF)	1000	102					
	1200	122							1200	122					
	1500	152							1500	152					
	1800	182							1800	182					
	2200	222							2200	222					
	2700	272							2700	272					
	3300	332							3300	332					
	3900	392							3900	392					
	4700	472							4700	472					
	5600	562							5600	562					
	6800	682							6800	682					
\perp	8200	822							8200	822					
	0.010								0.010						
	0.012								0.012	123					
	0.015								0.015						
	0.018								0.018						
	0.022								0.022	223					
Can	0.027	273						Can	0.027	273					
Cap (µF)	0.033	_						Cap (µF)	0.033	333					
[]	0.039	393						" /	0.039	393					
	0.047	_							0.047	473					
	0.056	_							0.056	-					
	0.068	_							0.068						
	0.082	_							0.082						
	0.100								0.100						
-	/oltage	<u> </u>	50	50	50	50	50		Voltage	<u> </u>	25	25	25	25	25
Rat	ed Tem		200	200	200	200	200	Rat	ted Tem	p. (°C)	250	250	250	250	250
	Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225		Case S	ize	AT05 = 0805	AT06 = 1206	AT10 = 1210	AT12 = 1812	AT14 = 2225

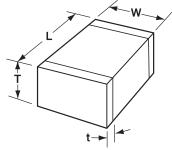
Voltage rating per table. Capacitance values specified at 25°C, derate capacitance value based on TCC and VCC Plots on page 107. NOTE: Contact factory for non-specified capacitance values.

For 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip products. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips)


NEW 630V RANGE

HOW TO ORDER

1808	A 	A T	<u>271</u>	<u>M</u>	<u>A</u>	1 	<u>2</u>	<u>A</u>
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225 3640	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient NPO (COG) = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF = 105	Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level A = Standard	Termination* 1 = Pd/Ag T = Plated Ni and Sn (RoHS Compliant)	Packaging 1 or 2 = 7" Reel** 3 or 4 = 13" Reel	Special Code A = Standard

Notes:

- Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.
- *Terminations with 5% minimum lead (Pb) is available, see pages 100 and 101 for LD style. Leaded terminations are available, see pages 102-106.
- **The 3640 Style is not available on 7" Reels.
- *** AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS millimeters (inches)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*	3640*
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.72 ± 0.25	9.14 ± 0.25
	(0.083 ± 0.008)	(0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.225 ± 0.010)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.35 ± 0.25	10.2 ± 0.25
	(0.049 ±0.008)	(0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.250 ± 0.010)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	2.54	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.100)	(0.100)
(t) terminal min. max.	0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
	(0.020 ± 0.008)	(0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

For 600V to 5000V Applications

NPO (COG) DIELECTRIC - PERFORMANCE CHARACTERISTICS

Capacitance Range	10 pF to 0.100 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case			080				1206						210							808							18				
(L) Length	ering mm		flow/\ .10 ± 0				low/W 30 + 0.					3 30	w Only + 0.40						Reflov 4 60 -	<u>w Only</u> + 0.50	/			-			Reflov 4.60 -	v Only			
, , -	(in.)	(0.0	085 ± 0	(800.0		(0.13	30 + 0.	012)			(0.130	+ 0.01	6)				(().181 ·	+ 0.02).177 -	0.012	2)		
W) Width	mm (in.)		.25 ± 0)49 ± 0		((· 1.60 + 0.063	+0.30/				(1	2.50	+ 0.30 + 0.01					((· 2.00 · 0.079	+ 0.20 + 0.00						((3.20 -	+ 0.30 + 0.008	5)		
(T) Thickness	mm	10.0	1.35				1.80		J -1)			2.	.80	<u> </u>					2.	20	0)						2.	80	<i></i>	_	
(t) Terminal	(in.) mm	10	$\frac{(0.05)}{.50 + 0}$				$\frac{(0.071)}{50 + 0}$					0.75	110) + 0.35)87) + 0.35				-			(0.1 0.75 ·	00) - 0.35			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(in.)	(0.0	20 + 0	(800.0		(0.0)	4 + 0.	(800				(.030)	0.014)					(.030)	0.014							(.030)	0.014)			
Voltag			630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Cap (pF)	.5 OR:)	A	C																											
	1.2 1R2	2	Α	С																											
	1.5 1R		A	C	X	X	X	X	X										_				_	ļ							
	1.8 1R 2.2 2R		A	C	X	X	X	X	X								С	С		С		С	С								
	2.7 2R		A	C	X	X	X	X	X								C	C	С	C	С	C	C								
	3.3 3R3		A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	3.9 3R9 4.7 4R		A	C	X	X	X	X	X								C	C	C	C	C	C	C								
	5.6 5R		A	C	X	X	X	X	X								С	C	C	C	C	C	C								
	6.8 6R		A	С	X	X	X	X	X			\vdash					С	С	С	С	С	С	С								
	8.2 8R2 10 100		A	C	C	C	C	C	C	C	М	М	D	М	F	С	C	C	C	C	C	C	C	С	С	С	С	С	С	С	F
	12 120) A	Α	С	С	С	С	С	С	Č	М	М	D	М	F	С	С	С	С	С	С	С	С	С	С	С	C	C	C	C	Е
	15 150		A	С	C	C	C	C	C	С	M	M	D D	M	F	C	С	C	С	С	С	С	С	С	С	С	С	С	C	O	E
	18 180 22 220		A	C	C	C	C	C	C	C	M	M	D	M	F	C	C	C	C	C	C	C	C E	C	C	C	C	C	C	C	F
	27 27		A	C	Č	Č	C	Č	Č	Č	M	M	D	М	F	С	C	C	C	C	C	С	E	C	C	С	C	F	C	C	E
	33 330		A	C	C	C	C	C	Ç	C	М	M	D	М	F	С	C	C	C	C	C	С	F	C	C	С	C	F	С	С	E
	39 390 47 470		A	C	C	C	C	C	C	C	M	M	D D	M	F	C	C	C	C	C	C	C	C	C	C	C	C	F	C	C	F
	56 560		A	C	Č	Č	C	Č	Č	Č	M	M	C	С	F	С	C	C	C	C	C	С		C	C	С	C	F	С	C	F
	68 680		A	С	C	C	С	С	C	C	М	М	C	С	F	С	С	С	С	С	С	С		С	С	С	С	F	С	O	F
	82 820 100 10		X	X	C	C	C	C	C	C	M	M C	C	C	F	C	C	C	C	C	C F	C		C	C	C	C	F	C	C	F
	120 12		C	Ĉ	Č	č	Č	Ē	Ē	C	M	Č	Č	C	F	С	C	Ċ	C	C	F	F		C	C	C	C	F	C	C	G
	150 15		С	С	С	C	Č	E	E	С	М	Č	E	E	F	С	С	С	F	F	F	F		С	С	С	С	F	С	С	G
	180 18° 220 22°		C	C	C	C	F	E F	E F	C	M	E	늗	E	F	C	C	C	F	F	F	F		C	C	C	C	F	F	F	
	270 27		C	C	Č	Č	Ē	Ē	Ē	Č	M	Ē	Ē	E	G	C	F	C	F	F	F	F		C	C	C	C	F	F	F	
	330 33		C	С	C	C	E	E	Ē	С	М	E	Ē	E		С	F	F	F	F	F	F		С	С	С	F	F	F	ᆔ	
	390 39 470 47		C	С	C	C	F	E F	E F	C	M	E	F	E		C	F	F	F	F	F	F		C	C	C	F	F	F	F	
	560 56		C		С	С	Ē			Č	М	Е	Ē	Ε		С	F	F	F	F		F		C	C	F	F	F	F	F	
	680 68		C		C	C	E F		_	С	М	E	F	Ē		С	F	F	F	F			_	С	C	F	F	F	G	G	
	750 75° 820 82°		C		E	E	E			C	M	E	G	E		C	F	F	E	F				C	C	F	F	F	G	G	
	1000 103	2	С		Е	Е	E			С	С	Е	F	F		С	F	F	E	F				С	С	F	F	F	G	G	
	1200 12		C	_	E	E F	Е		<u> </u>	С	C	E F		F		C E	F	F	Е	F				С	C	F	E	F			
	1500 15 1800 18		C		E	E		\vdash		C	C	G		G		E	F	F		F			 	C	C	F	G	F			
	2200 22	2	C		Е	Е				Е	С	G				Е	F	F						С	С	Ē	G	G			
	2700 273 3300 333		1	1	E	E	-	_	-	E F	C	G		_	-	E	F	F	-		_	 	-	C	C	E F	G	G			
	3900 39		+	+	E	E			<u> </u>	E	C	G				E	F						1	C	C	F		G			
	4700 473	2			Е	Е				E	С					Е	F							С	С	G					
	5600 563 6800 682		+	\vdash	\vdash	\vdash	-	<u> </u>	-	Е	E		-	<u> </u>	-	E	F	-	-	_	<u> </u>	\vdash	-	C	C	G		-			
	8200 822		+	 	\vdash	\vdash	1		 		F		 				F		1			\vdash	1	E	C		<u> </u>	 	\vdash		
Cap (µF)	0.010 103	3									F						F							F	F		<u> </u>				
	0.012 123 0.015 153		+	\vdash	\vdash	\vdash	-	<u> </u>	-	<u> </u>	G	-	-	<u> </u>	-		_	-	-	_	<u> </u>	\vdash	-	F G	F G		-	-			
	0.018 183		+	 	\vdash	\vdash	1		 			\vdash	 					 	1			\vdash	1	G	G		<u> </u>	 	\vdash		
	0.022 223	3																							F		<u> </u>				
	0.027 273 0.033 333		+	\vdash	\vdash	\vdash	-	-	-	\vdash	\vdash	-	-	-	-		-	-	-		<u> </u>	-	-	-	G		-	-			
	0.033 333		+												<u> </u>										G						
	0.056 563				<u> </u>		ļ												ļ				ļ	ļ							
	0.068 683		+-	\vdash	-	\vdash	-	_	-	_		_		_	-			-	-		_	_	-	-	-	-	-				
Voltag	ge (V)	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	3000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
Case	Size		0805	5			1206					12	210						18	808							18	12			

Letter	Α	С	Е	F	G	Х	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

NPO (COG) CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

Case Siz						325								2220									2225	i								3640				
Solderin	_					w Onl	у							flow (flow (flow (
(L) Length	mm (in.)			(± 0.50 ± 0.020	0)							5.70 0.5 224 0.0									70 ± 0. 25 ± 0.									14 ± 0. 60 ± 0.				
W) Width	mm					± 0.40								.00 0.4									.30 0.4									0.2 ± 0				
vv) vvidili	(in.)			(± 0.016	5)						(0.1	197 0.0	16)				_			(0.2	50 ± 0	.010)							(0.4	00 ± 0.	.010)			
(T) Thickness	mm (in.)					.40 134)								3.40 (0.134	`								3.40 (0.100	١								2.54 (0.100	١			
(t) T	mm					± 0.35								.85 0.3									85 ± 0.									76 (0.0				
(t) Terminal	max					± 0.014								33 ± 0.									33 ± 0.									52 (0.0				
Voltage (\ Cap (pF) 1.5	_	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
1.8																																				\Box
2.2																																				\blacksquare
3.3																																			$\vdash\vdash$	\vdash
3.9																																				$\overline{}$
4.7																																				\Box
5.6																	-		_					-											$\vdash\vdash$	$\vdash\vdash$
8.2																																			\Box	\vdash
10		Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F									二
12		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F				_		-		$\vdash\vdash$	-
18		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F								\vdash	-
22		Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F									
33		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E E	E	E	E	E	E	F	F				<u> </u>		-		$\vdash\vdash$	-
39		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F								\vdash	-
47		Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G									G
56		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G G								$\vdash\vdash$	G G
82		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	G									G
100		Ε	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G				G	G	G	G	G	G
120		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G G			-	G G	G	G	G G	G G	G G
180		E	E	G	E	F	E	F	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G				G	G	G	G	G	G
220		Е	Е	G	Е	F	Е	F	F	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е	Е	Е	Е	Е	Е	G	G				G	G	G	G	G	G
330		E	E	G G	E	F	E	F	F	E	E	E	E	E	E	E	-		E	E	E	E	E	E	E	G	G				G	G	G	G	G	G G
390		E	E	G	E	F	E	F		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G					G	G	G	G	G	G
470		Е	Е	G	Е	F	Е	F		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G					G	G	G	G	G	G
560		E	E	G G	E	F	E F	F G		E	E	E	E	E	E F	E F			E	E	E	E	E	E	E	G					G	G	G	G G	G G	G G
750		E	E	G	E	F	F	G		E	E	E	E	E	F	F			E	E	E	E	E	E	E						G	G	G	G	G	G
820		Е	Е	G	Е	F	F	G		Е	Е	Е	Е	Е	F	F			Е	Е	Е	Е	Е	F	Е						G	G	G	G	G	G
1000		E	E	G G	E	F	F G	G		E	E	E	E	E	F G	F G	-		E	E	E	E	E	E F	E F			G G	G	G	G	G	G	G G	G	\vdash
1500		E	E	G	F	G	G	G		E	E	E	F	F	G	G			E	E	E	E	E	F	F			G	G	G	G	G	G	G	Ů	-
1800		Е	Е	G	F	G	G	G		E	E	Е	F	F	G	G			E	E	Е	E	Е	G	G			G	G	G	G	G	G	G		
2200		E	E	G G	G G	G		G		E	E	E	G	G					E	E	E	E F	E F					G G	G	G	G	G	G	G G	\vdash	\square
3300	332	Е	Е	G	G	G				Е	Е	Е	G	G					Е	Е	Е	F	F					G	G	G	G	G	G			
3900		E	Е	G	G	G				E	E	E	G	G					E	E	E	G	G					G	G	G	G	G	G		\Box	\Box
4700 5600		E F	E F	G G	G G	G				E F	E F	E F	G G	G G		-			F	F	F	G G	G			\vdash		G G	G G	G	G	G G			\vdash	$\overline{}$
6800	682	F	F	G		G				F	F	F							F	F	F	G	G					G	G	G	G	G				
8200		F	F	G	<u> </u>	G			_	G 7	G 7	G 7							G	G	G	<u> </u>		<u> </u>	_			G	G G	G G	G		_		\sqcup	\square
Cap (μF) 0.010 0.012	103		F	G G						7	7	7							G G	G G	G							G G	G	_	G				\vdash	
0.015	153	F	F																G	G								G	G	G						
0.018			F			-	-		-	-		<u> </u>					-		G G	G G		-	-	-	-			G G	G G	G G		-	-		$\vdash\vdash$	
0.022			F				\vdash						\vdash		\vdash				G	G					\vdash	\vdash		G	G	G			<u> </u>		\vdash	-
0.033	333	F	F																G	G								G	G							
0.039	393 473		G G																G	G				-				G	G		-				\vdash	
0.047			G																G	G		\vdash						3	9						\vdash	
0.068	683	G	G																G	G																
0.100 Voltage () 104 V)	600	620	1000	1500	2000	2500	3000	4000	600	620	1000	1500	2000	2500	3000	4000	5000	600	620	1000	1500	2000	2500	3000	4000	5000	600	620	1000	1500	2000	2500	3000	4000	5000
Case Siz		000	030	1000		2000 3 25	Z300	13000	4000	000	030	1000		2220		3000	14000	3000	000	030	1000	1300	2225		13000	4000	3000	000	030	11000	1300	3640		3000	4000	3000
									_		_	_	_																_		_		_			$\overline{}$

Letter	A	С	Е	F	G	Х	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)
Inickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.1

For 600V to 5000V Applications

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K M Ω min. or 1000 M Ω - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE - PREFERRED SIZES ARE SHADED

C	ase Size)		0805				1206					1210						18	308							18	12			
S	oldering			low/W				low/V					flow O							w Only							Reflow				
(L) Le		mm (in.)		2.10 0.2 85 ± 0.				30 ± 0. 30 ± 0.					.30 0.4 130 0.0					,		± 0.50 ± 0.020	۸					,	4.60 ± 0.177 ±				
		nm		25 ± 0.				+0.30					.50 0.0							0.020)						3.20 ±)		
W) Wi	ulli (în.)		49 ± 0.			(0.063	+0.012		l)			0.0 890					(0.079	± 0.008)					(0.126 ±	0.008))		
(T) Th		mm în.)		1.35 (0.053))			1.80 (0.071					2.80 (0.110)	1					(0.0	.20 087)							2.8 (0.1	00)			
(t) Ter	rminal	mm		50 ± 0.:				60 ± 0.				0	. /5 0.3	5				,	0./5	± 0.35	,						0.75 ±				
	oltage (V)	max		20 ± 0. 630		600		24 ± 0.	1500	2000	600		30 ± 0.0 1000		2000	600	630			± 0.014		3000	4000	600	630		0.030 ±			3000	14000
Cap (pF		101	X	X	C	C	C	E	E	E	E	E	E	E	E	000	000	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	4000
Оарты	120	121	X	X	С	С	C	E	E	E	E	E	E	E	E																\vdash
	150	151	X	X	С	С	C	E	E	E	E	E	E	E	E											-					\vdash
	180	181	X	X	С	С	С	E	E	E	E	E	E	E	E					-		-								\vdash	₩
-	220	221	X	X	С	С	С	E	E	E	E	E	E	E	E					-		-				-					├
					С	С		_	E	E	E	E		E	E									_	-	-	-	-			
	270	271	X	X	C	C	C	E	E	E	E	E	E E	E	E	_	_	_	_	-	_	_		E E	E	E	E E	E			₩
	330	331		X	_			E	E	_	E	E		E	E	E	E	E	E	E	E	F		E	E			E E			-
	390	391	Х	_	С	С	С	_	_	E	_	_	E	_	_	_	E	_	_	_	_	-			_	E	E		_		_
	470	471	Х	Х	С	С	С	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F		E	E	E	E	E	E	E	
	560	561	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	Е	Е	
	680	681	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
	750	751	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
	820	821	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
	1000	102	Х	Х	Х	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F	
	1200	122	Х	Х	Х	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	F	F	
	1500	152	Х	Х	Х	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G	
	1800	182	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F		F	F	F	F	F	G	G	
	2200	222	Х	Х	Х	С	С	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	F	F	F			F	F	F	F	F	G	G	
	2700	272	С	С		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G	
_	3300	332	С	С		С	С	Е			Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G	
	3900	392	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	F	F	G	G	
	4700	472	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	F	F	G	G	
	5600	562	С	С		С	С	Е			Е	Е	Е	F		Е	Е	Е	F					F	F	F	G	G	G		
	6800	682	С	С		С	С	Е			Е	Е	Е			Е	Е	Е	F					F	F	F	G	G			
	8200	822	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	F	G	G		L	
Cap (µF		103	С	С		С	С	Е			Е	Е	Е			Е	Е	Е						F	F	F	G	G			
	0.015	153	С	С		Е	Е	Е			Е	Е	Е			F	F	F						F	F	F	G				
	0.018	183	С	С		Е	Е				Е	Е	Е			F	F	F						F	F	G					
	0.022	223	С	С		Е	Е				Е	Е	F			F	F							F	F	G				L	
	0.027	273				Е	Е				Е	Е				F	F							F	F	G					
	0.033	333				Е	Е				Е	Е				F	F							F	F	G				L	
	0.039	393									Е	Е				F	F					ļ		F	F	G	\Box			<u> </u>	
	0.047	473									Е	Е				F	F			<u> </u>				F	F	G				<u> </u>	
	0.056	563									F	F				F	F							F	F						
	0.068	683									F	F				F	F			<u> </u>				F	F					<u> </u>	
	0.082	823									F	F										ļ		F	F					<u> </u>	
<u></u>	0.100	104									F	F								L		ļ		F	F					L	
	0.150	154																		_				G	G					<u> </u>	
	0.220	224																		L		ļ		G	G					<u> </u>	
	0.270	274																												<u> </u>	
	0.330	334																		<u> </u>		ļ								<u> </u>	
	0.390	394		ļ			ļ		ļ													ļ				ļ				<u> </u>	<u> </u>
	0.470	474																		_										<u> </u>	
	0.560	564																												<u> </u>	
_	0.680	684		_			_		_											<u> </u>	_	-				_				<u> </u>	₩
	0.820	824																													
	1.000	105																													
	oltage (V)		600		1000	600	630		1500	2000	600	630	1000	1500	2000	600	630	1000		2000	2500	3000	4000	600	630	1000			2500	3000	4000
	Case Size			0805				1206					1210						18	308							18	12			

Le	etter	Α	С	Е	F	G	Х	7
М	lax.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thic	kness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

For 600V to 5000V Applications

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	ze				18	25								2220									222	5								3640)			
Solderin	_					w Only								low 0									flow (flow C				
(L) Length	mm (in.)				4.60 : 0.181 :	± 0.50 ± 0.02								0 ± 0. 4 ± 0.									70 ± 0 25 ± 0									14 ± 0 60 ± 0				
W) Width	mm				6.30 :	± 0.40							5.0	0 ± 0.	40							6.3	30 ± 0	1.40							10	0.2 ± 0	.25			
(T)	(in.) mm			((3.	± 0.01 40	0)							7 ± 0. 3.40							_		3.40							_	(0.4	00 ± 0 2.54				
Thickness	(in.) mm				0.75	134)								0.134 5 ± 0.									(0.100					(0.100) 0.76 (0.030)								
(t) Terminal	max			(0	0.030 :	± 0.01	4)						(0.03	3 ± 0.	014)				0.85 ± 0.35 (0.033 ± 0.014)										1.3	52 (0.0	060)					
Voltage (600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Cap (pF) 100						ļ	<u> </u>	<u> </u>	ļ														_										ļ	Ш	<u> </u>	
120	_					-	-	-	-																								-	\vdash	<u> </u>	
150									1																									H	\vdash	
220	_								1														1											Н	\vdash	\vdash
270																																		H	H	
330									1														+										1	Н	\vdash	\vdash
390	_																																	H	М	
470																																		\Box	Г	
560									1							П						İ	T	İ										П	Г	
680	681								İ																								1		\Box	
750	751																																		Г	
820	821																																			
1000	102	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1200	122	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1500		F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
1800	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2200	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
2700	_	F	F	F	F	F	F	F	_	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3300	_	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G
3900	_	F	F	F	F	F	F	F	_	F	F	F	F	F	F	G			F	F	F	F	F	F	F			G G	G	G	G	G	G	G	G	\vdash
4700 5600		F	F	F	F	F	F	F	-	F	F	F	F	F	F	G G			F	F	F	F	F	F	F			G	G G	G	G G	G G	G	G G	G G	
6800	_	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	
8200		F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G		
Cap (µF) 0.010		F	F	F	G	G	G	G		F	F	F	G	G	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	\Box	
0.015		F	F	F	G	G	G			F	F	F	G	G	G				F	F	F	G	G	G	G			G	G	G	G	G	G	G		
0.018	183	F	F	F	G	G				F	F	F	G	G	G				F	F	F	G	G	G				G	G	G	G	G	G	G		
0.022	223	F	F	F	G	G			ĺ	F	F	F	G	G					F	F	F	G	G	G				G	G	G	G	G	G			
0.027	273	F	F	F	G					F	F	F	G	G					F	F	F	G	G					G	G	G	G	G				
0.033	333	F	F	F	G					F	F	F	G						F	F	F	G	G					G	G	G	G					
0.039	393	F	F	F	G					F	F	F	G						F	F	F	G						G	G	G	G					
0.047	473	F	F	F	Р				ļ	F	F	F	G						F	F	F	G						G	G	G	G				<u> </u>	
0.056	_	F	F	F	G				<u> </u>	F	F	F	G						F	F	F	G						G	G	G	G			Ш	<u> </u>	
0.068		F	F	G					ļ	F	F	G							F	F	F	G						G	G	G	G			Ш	<u> </u>	
0.082		F	F	G		-	-	-	<u> </u>	F	F	G							F	F	G							G	G				-	╙	<u> </u>	
0.100		F	F	G		-	-	-	-	F	F	G							F	F	G		-					G	G					\vdash	⊢-'	
0.150		F	F			-	\vdash	\vdash	-	F	F	G							F	F	G		-					G	G				-	₩		\vdash
0.220		F	F			-	\vdash	\vdash	1	F	F	G			\vdash	\vdash			F	F			\vdash					G G	G G		\vdash		-	\vdash	 '	$\vdash\vdash\vdash$
0.270		F	F				\vdash	\vdash	+	F	F					\vdash			F	F			\vdash		\vdash			G	G		\vdash			\vdash	-	$\vdash\vdash\vdash$
0.390		F	F			\vdash			+-	F	F		 		\vdash	\vdash			F	F		<u> </u>	\vdash	<u> </u>	\vdash			G	G				 	\vdash	ш	\vdash
0.470		F	F				\vdash	\vdash	 	F	F					\vdash			F	F								G	G				\vdash	Н	ш	$\vdash \vdash \vdash$
0.560		G	G				\vdash	\vdash	1	G	G								F	F			\vdash					G	G					H	Г	
0.680							t	t	1	G	G								G	G														М	\Box	
0.820									i i										G	G		l		l										П	$ abla^{\prime}$	
1.000	105								İ																											
Voltage ((V)	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000
Case Siz	ze				18	25								2220									222	5								3640)			

Letter	Α	С	E	F	G	Χ	7
Max.	0.813	1.448	1.8034	2.2098	2.794	0.940	3.30
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)	(0.130)

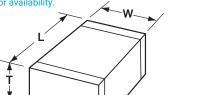
AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages, a full range of values that we are offering in this "B" termination.

Larger physical sizes than normally encountered chips are used to make high voltage MLC chip product. Special precautions must be taken in applying these chips in surface mount assemblies. The temperature gradient during heating or cooling cycles should not exceed 4°C per second.

The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

For 1825, 2225 and 3640 sizes, AVX offers leaded version in either thru-hole or SMT configurations (for details see section on high voltage leaded MLC chips).

NEW 630V RANGE


HOW TO ORDER

LD08	A	A	271	<u>K</u>	<u>A</u>	B	1	A
AVX Style LD05 - 0805 LD06 - 1206 LD10 - 1210 LD08 - 1808 LD12 - 1812 LD13 - 1825 LD20 - 2220 LD14 - 2225 LD40 - 3640	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF = 105	Capacitance Tolerance C0G: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -2	Test Level A = Standard 4 = Automotive*	Termination* B = 5% Min Pb X = FLEXITERM® 5% min. Pb*	Packaging 2 = 7" Reel** 4 = 13" Reel	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

- * FLEXITERM is not available in the LD40 Style
- ** The LD40 Style is not available on 7" Reels.
- *** AVX offers nonstandard chip sizes. Contact factory for details.

* Not all values are supported in Automotive grade. Please contact factory for availability

NOT RoHS Compliant

millimeters (inches)

SIZE	LD05 (0805) LD06 (1206)	LD10* (1210)	LD08* (1808)	I D12* (1812)	I D13* (1825)	I D20* (2220)	I D14* (2225)	LD40* (3640)
SIZE			- ' - '						
(L) Length	2.10 ± 0.20	3.30 ± 0.30	3.30 ± 0.40	4.60 ± 0.50	4.60 ± 0.50	4.60 ± 0.50	5.70 ± 0.50	5.70 ± 0.50	9.14 ± 0.25
(L) Length	(0.083 ± 0.008)	3) (0.130 ± 0.012)	(0.130 ± 0.016)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.181 ± 0.020)	(0.224 ± 0.020)	(0.224 ± 0.020)	(0.360 ± 0.010)
(W) Width	1.25 ± 0.20	1.60 ± 0.20	2.50 ± 0.30	2.00 ± 0.20	3.20 ± 0.30	6.30 ± 0.40	5.00 ± 0.40	6.30 ± 0.40	10.2 ± 0.25
(vv) vvidui	(0.049 ± 0.008)	3) (0.063 ± 0.008)	(0.098 ± 0.012)	(0.079 ± 0.008)	(0.126 ± 0.012)	(0.248 ± 0.016)	(0.197 ± 0.016)	(0.248 ± 0.016)	(0.400 ± 0.010)
(T) Thickness	1.35	1.80	2.80	2.20	2.80	3.40	3.40	3.40	2.54
Max.	(0.053)	(0.071)	(0.110)	(0.087)	(0.110)	(0.134)	(0.134)	(0.134)	(0.100)
(t) mi	n. 0.50 ± 0.20	0.60 ± 0.20	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.75 ± 0.35	0.85 ± 0.35	0.85 ± 0.35	0.76 (0.030)
terminal ma	x. (0.020 ± 0.00	8) (0.024 ± 0.008)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.030 ± 0.014)	(0.033 ± 0.014)	(0.033 ± 0.014)	1.52 (0.060)

^{*}Reflow Soldering Only

DIMENSIONS

Performance of ceramic capacitors can be simulated by using the online SpiMLCC software program - http://spicat.avx.com/mlcc Custom values, ratings and configurations are also available.

Tin/Lead Termination "B" - 600V to 5000V Applications

NP0 (C0G) Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.047 μF (25°C, 1.0 ±0.2 Vrms at 1kHz, for ≤ 1000 pF use 1 MHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≤ 1000 pF use 1 MHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

HIGH VOLTAGE COG CAPACITANCE VALUES

VOLTA	GE	LD05 (0805)	LD06 (1206)	LD10 (1210)	LD08 (1808)	LD12 (1812)	LD13 (1825)	LD20 (2220)	LD14 (2225)	LD40 (3640)
600/630	min.	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
000/030	max.	330 pF	1200 pF	2700 pF	3300 pF	5600 pF	0.012 μF	0.012 pF	0.018 μF	0.047 μF
1000	min.	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
1000	max.	180 pF	560 pF	1500 pF	2200 pF	3300 pF	8200 pF	0.010 pF	0.010 μF	0.022 μF
1500	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
1300	max.	_	270 pF	680 pF	820 pF	1800 pF	4700 pF	4700 pF	5600 pF	0.010 μF
2000	min.	_	10 pF	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF	100 pF
2000	max.	-	120 pF	270 pF	330 pF	1000 pF	1800 pF	2200 pF	2700 pF	6800 pF
2500	min.	-	-	-	10 pF	10 pF	10 pF	100 pF	100 pF	100 pF
2300	max.	-	-	_	180 pF	470 pF	1200 pF	1500 pF	1800 pF	3900 pF
3000	min.	_	-	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
3000	max.	-	-	-	120 pF	330 pF	820 pF	1000 pF	1200 pF	2700 pF
4000	min.	_	-	_	10 pF	10 pF	10 pF	10 pF	10 pF	100 pF
4000	max.	-	-	-	47 pF	150 pF	330 pF	470 pF	560 pF	1200 pF
5000	min.	_	_	_	_	_	_	10 pF	10 pF	10 pF
3000	max.	_	_	_	_	_	_	220 pF	270 pF	820 pF

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.56 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

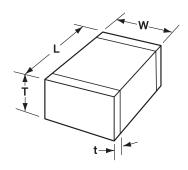
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES

VOLTA	AGE	0805	1206	1210	1808	1812	1825	2220	2225	3640
600/630	min.	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 μF	0.010 µF	0.010 μF	0.010 μF
000/030	max.	6800 pF	0.022 μF	0.056 μF	0.068 μF	0.120 μF	0.390 μF	0.270 µF	0.330 μF	0.560 μF
1000	min.	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	1000 pF	0.010 µF
1000	max.	1500 pF	6800 pF	0.015 μF	0.018 μF	0.039 μF	0.100 μF	0.120 µF	0.150 μF	0.220 µF
1500	min.	_	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF	1000 pF
1500	max.	_	2700 pF	5600 pF	6800 pF	0.015 µF	0.056 µF	0.056 µF	0.068 µF	0.100 µF
2000	min.	-	10 pF	100 pF	100 pF	100 pF	100 pF	1000 pF	1000 pF	1000 pF
2000	max.	_	1500 pF	3300 pF	3300 pF	8200 pF	0.022 µF	0.027 µF	0.033 µF	0.027 µF
2500	min.	_	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
2500	max.	_	_	_	2200 pF	5600 pF	0.015 μF	0.018 µF	0.022 μF	0.022 µF
3000	min.	_	-	-	10 pF	10 pF	100 pF	100 pF	100 pF	1000 pF
3000	max.	_	_	_	1800 pF	3900 pF	0.010 μF	0.012 µF	0.015 μF	0.018 µF
4000	min.	_	-	-	-	-	-	-	-	100 pF
4000	max.	_	_	_	_	_	_	_	_	6800 pF
5000	min.	_	_	-	_	_	_	-	_	100 pF
3000	max.	_	_	_	_	_	_	_	_	3300 pF

FLEXITERM® - 600V to 5000V Applications

High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

To make high voltage chips, larger physical sizes than are normally encountered are necessary. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. In response to this, and to follow from the success of the FLEXITERM® range of low voltage parts, AVX is delighted to offer a FLEXITERM® high voltage range of capacitors, FLEXITERM®.


The FLEXITERM® layer is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor, giving customers a solution where board flexure or temperature cycle damage are concerns.

HOW TO ORDER

1808	A 	<u>c</u> 	<u>272</u>	<u>K</u>	<u>A</u>	z 	<u>1</u>	<u>A</u>
AVX Style 0805 1206 1210 1808 1812 1825 2220 2225	Voltage 600V/630V = C 1000V = A 1500V = S 2000V = G 2500V = W 3000V = H 4000V = J 5000V = K	Temperature Coefficient COG = A X7R = C	Capacitance Code (2 significant digits + no. of zeros) Examples: 10 pF = 100 100 pF = 101 1,000 pF = 102 22,000 pF = 223 220,000 pF = 224 1 µF =105	Capacitance Tolerance COG: J = ±5% K = ±10% M = ±20% X7R: K = ±10% M = ±20% Z = +80%, -20%	Test Level	Termination* Z=FLEXITERM® 100%Tin (RoHS Complian	Packaging 2 = 7" Reel 4 = 13" Reel nt)	Special Code A = Standard

Notes: Capacitors with X7R dielectrics are not intended for applications across AC supply mains or AC line filtering with polarity reversal. Contact plant for recommendations. Contact factory for availability of Termination and Tolerance options for Specific Part Numbers.

^{***} AVX offers nonstandard chip sizes. Contact factory for details.

DIMENSIONS

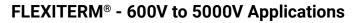
MILLIMETERS (INCHES)

SIZE	0805	1206	1210*	1808*	1812*	1825*	2220*	2225*
(L) Length	2.10 ± 0.20 (0.083 ± 0.008)	3.30 ± 0.30 (0.130 ± 0.012)	3.30 ± 0.40 (0.130 ± 0.016)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	4.60 ± 0.50 (0.181 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)	5.70 ± 0.50 (0.224 ± 0.020)
(W) Width	1.25 ± 0.20 (0.049 ±0.008)	$1.60^{+0.30}_{-0.10}$ $(0.063^{+0.012}_{-0.004})$	2.50 ± 0.30 (0.098 ± 0.012)	2.00 ± 0.20 (0.079 ± 0.008)	3.20 ± 0.30 (0.126 ± 0.012)	6.30 ± 0.40 (0.248 ± 0.016)	5.00 ± 0.40 (0.197 ± 0.016)	6.30 ± 0.40 (0.248 ± 0.016)
(T) Thickness Ma	(. 1.35 (0.053)	1.80 (0.071)	2.80 (0.110)	2.20 (0.087)	2.80 (0.110)	3.40 (0.134)	3.40 (0.134)	3.40 (0.134)
(t) terminal mi	(0.60 ± 0.20 (0.024 ± 0.008)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.75 ± 0.35 (0.030 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)	0.85 ± 0.35 (0.033 ± 0.014)

^{*}Reflow Soldering Only

Performance of SMPS capacitors can be simulated by downloading SpiCalci software program - http://www.avx.com/SpiApps/default.asp#spicalci
Custom values, ratings and configurations are also available.

FLEXITERM® - 600V to 5000V Applications



NP0 (COG) Dielectric Performance Characteristics

Capacitance Range	10 pF to 0.100 μF (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Capacitance Tolerances	±5%, ±10%, ±20%
Dissipation Factor	0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	0 ±30 ppm/°C (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K MΩ min. or 100 MΩ - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size		0805				1206		1210 1808 Reflow Only Reflow Only											1812 Reflow Only										
Soldering	R	Reflow/V			Ref	low/W						nly																	
(L) Length mm (in.)		2.10 ± 0. 0.083 ± 0.				.30 ± 0. 30 ± 0.					30 ± 0. 30 ± 0.							± 0.50 ± 0.020))						4.60 ± 0.181 ±)		
W) Width mm		1.25 ± 0.	20	1	1.60	± 0.30	/-0.10	4)		2.	50 ± 0. 50 ± 0.	30					2.00	± 0.20 ± 0.008							3.20 ±	₹ 0.30			
(T) Thickness (in.)		0.049 ± 0. 1.35		<u> </u>	(0.063	1.80		4)			2.80						2.	20)						0.126 ± 2.8	80)		
mm (III.)	+	(0.053 0.50 ± 0.) 20		0	(0.071 .60 ± 0.					(0.110) 75 ± 0.							087) ± 0.35							(0.1 0.75 ±				
(t) Ferminal max	(0	$0.020 \pm 0.$	(800.		(0.0	24 ± 0.	(800.			(0.0	30 ± 0.	014)					(0.030)	± 0.014							$0.030 \pm$	0.014			
Voltage (V) Cap (pF) 1.5 1F		0 630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000
1.8 1F		A		X	X	X	X	X																					
2.2 2F				Х	X	X	Х	Х																					
2.7 2F 3.3 3F				X	X	X	X	X								C	C	C	C	C									
3.9 3F		Α		Х	Х	Х	Х	Х								С	С	С	С	С									
4.7 4F 5.6 5F				X	X	X	X	X								C	C	C	C	C				-					
6.8 6F				X	X	X	X	X								C	C	C	C	C				1					
8.2 8F				Х	Х	Х	Х	Х								С	С	С	С	С									_
10 10			A	X	X	X	X	X	C	C	D D	D D	D D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
15 15	50 A	Α	Α	Х	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	E
18 18			A	X	X	X	X	X	C	C	D D	D D	D D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E F
27 27	70 A	Α	Α	X	Х	Х	Х	Х	С	С	D	D	D	С	С	С	С	С	С	С	С	С	С	С	С	С	С	С	Ē
33 33			A	X	X	X	D D	D D	СС	C	D D	D D	D D	СС	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
39 39 47 47		, ,,	A	X	X	M	D	D	C	C	D	D	D	C	C	C	C	C	C	C	C	C	C	C	C	C	C	C	E
56 56	50 A		Α	Х	Х	М	С	С	С	С	D	С	С	С	С	С	С	С	С	С		С	С	С	С	С	С	С	F
68 68 82 82			A X	X	X	M C	C	C	C	C	D D	C	C	C	C	C	C	C	C	C		C C C C C C C C C C							
100 10	_		X	X	X	C	C	C	C	С	С	C	С	C	C	C	C	C	F	F		C	C	C	C	C	C	C	F
120 12			С	Х	Х	С	E	E	С	С	С	С	С	С	С	С	С	С	F	F		С	С	С	С	С	С	С	G
150 15 180 18		C	C	X	X	C E	E	E	C	C	C E	E	E	C	C	C	F	F	F	F		C	C	C	C	C	C F	C F	G
220 22	21 C	С	Ŭ	Х	Х	Е	Е	E	С	С	Е	E	Е	С	С	С	F	F	F	F		С	С	С	С	С	F	F	
270 27 330 33				C	C	E	E	E F	C	C	E	E	E	C	C	C F	F	F	F	F	_	C	C	C	C	C F	F	F	
390 39				C	C	E	E	E	С	C	E	E	E	С	C	F	F	F	F	F		C	C	C	F	F	F	F	
470 47		_		С	С	E	Е	Е	С	С	E	E	E	С	С	F	F	F	F	F		С	С	F	F	F	F	F	
560 56 680 68				C	C	E F			C	C	E F	E F	E F	C C	C	F	F	F				C	C	F	F	F	F G	F G	
750 75	51 C	С		Е	Е	Е			С	С	Е	G	G	С	С	F	F	F				С	С	F	F	F	G	G	
820 82 1000 10		С		E E	E F	E			C C	C	E	G	G	C	C	F	E F	E F				C	C	F	F	F	G	G G	
1200 12	22			Е	E				С	C	Е			E	E	F	E	E				С	C	F	E	E		J	
1500 15 1800 18		_	<u> </u>	E	E				C	C	G G			E E	E	F						C	C	F	F	F			
2200 22				E	E				E	E	G			E	E							C	C	E	G	G			
2700 27				E	E				E	E				E	E							С	С	E	G	G			
3300 33 3900 39		+	 	E	E		1	<u> </u>	E	E			\vdash	E	E		1		1		 	C	C	F	<u> </u>		 		
4700 47	72								Е	Е				Е	Е							С	С	G					
5600 56 6800 68		-	-	\vdash	1	1			Е	Е				E	E		1		-		-	C	C					-	
8200 82																						E	E						
Cap (μF) 0.010 10)3																					Е	Е						
0.012 12	_				_																	F	F						
0.015 15	_		_	<u> </u>	-																-	G	G						
0.018 18	_		-	-	1															-		G	G						
0.022 22	_	+		\vdash																									
0.033 33	_	+		\vdash	\vdash		1	 	 					 					-				1	1					
0.056 56	_	+			 																								
0.068 68	_																												
0.100 10																													
Voltage (V)	60	0 630 0805		600	630	1000 1206		2000	600	630	1000 1210	1500	2000	600	630	1000		2000 08	2500	3000	4000	600	630	1000			2500	3000	4000
Case Size		0805				1206					1210						18	υδ							18	12			

NPO (COG) CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size					1	825								2220)							5					
Soldering					Reflo	ow Onl	у						R	eflow (Only							Re	eflow (Only			
I (I) I ength	mm	Į.				± 0.50								.70 ± 0									72 ± 0				
	(in.)					± 0.02								224 ± C									25 ± 0				
(W) Width	mm (in.)) ± 0.40 3 ± 0.01								.00 ± 0 197 ± 0									35 ± 0 50 ± 0				
	(in.) mm					3.40	0)						(0.	3.40								(0.2	3.40				
	(in.)	i				.134)								(0.134									(0.134				
i (t) Terminai	mm					± 0.35								.85 ± 0								0.	85 ± 0	.35			
Voltage (V)	max	600	630	1000		± 0.01	2500	3000	4000	600	630	1000		033 ± 0		3000	4000	5000	600	630	1000			2500	3000	4000	5000
Cap (pF) 1.5	1R5	000	030	1000	1300	2000	2300	3000	4000	000	030	1000	1300	2000	2300	3000	4000	3000	000	030	1000	1300	2000	2300	3000	4000	3000
1.8	1R8																										
2.2																								ļ			
2.7																											
3.9																											
4.7																								ļ			
5.6																											
8.2																											
10	100	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F
12		E	Е	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
15		E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
22	220	E	E	E	E	E	Ē	E	E	E	E	Ē	E	E	E	E	E	E	E	Ē	Ē	E	E	E	E	F	F
27	270	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F
33		E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F	F
47	470	E	E	E	E	E	E	E	E F	E	E	E	E	E	E	E	E E	E	E	E	E	E	E	E	E	F	F G
56		E	E	E	Ē	Ē	Ē	E	F	E	Ē	Ē	Ē	Ē	Ē	E	E	E	Ē	Ē	Ē	Ē	Ē	Ē	Ē	F	G
68		Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	G
82 100	820 101									E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	F G	G G
120		E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	E	G	G
150		Е	Е	Е	Е	Е	Е	Е	F	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	G	G
180	181	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G	G
220	221 271	E	E	E	E	E	E	E	F	E	E	E	E	E	E	E	F	F	E	E	E	E	E	E	E	G G	G G
330		E	E	E	E	E	Ē	E	F	E	E	Ē	E	E	Ē	E			Ē	Ē	Ē	E	E	E	E	G	
390		Е	Е	Е	Е	Е	Е	Е		Е	Е	Е	Е	Е	Е	Е			Е	Е	Е	Е	Е	Е	Е	G	
470 560		E	E	E	E	E	E	E		E	E	E	E	E	E	E			E	E	E	E	E	E	E	G G	
680	681	E	E	E	E	E	F	F		E	E	Ē	E	E	F	F			E	E	E	E	E	Ē	E	G	
750		Е	Е	Е	Е	Е	F	F		Е	Е	Е	Е	Е	F	F			Е	Е	Е	Е	Е	Е	Е		
820		E	E	E	E	E	F	F		E	E	E	E	E	F	F			E	E	E	E	E	F	E		
1000	_	E E	E	E	E	E	F G	F G		E	E	E	E	E	F G	F G			E	E	E	E	E	E F	E F		
1500		E	E	E	F	F	G	G		E	E	Ē	F	F	G	G			E	Ē	Ē	E	E	F	F		
1800	182	Ε	Е	Е	F	F	G	G		Е	Е	Е	F	F	G	G			Ε	Е	Е	Е	Е	G	G		
2200		E	E	E	G G	G G				E	E	E	G	G G					E	E E	E	E F	E F				
2700 3300		E	E	E	G	G				E	E	E	G G	G					E	E	E	F	F				
3900	392	Е	Е	E	G	G				E	E	E	G	G					Е	E	E	G	G				
4700	472	E	Е	E	G	G				E	E	E	G	G					F	F	F	G	G				
5600 6800	_	F	F	F	G	G				F	F	F			-				F	F	F	G	G				
8200		G	G	G						G	G	G							G	G	G	G	G				
Cap (μF) 0.010	103																		G	G	G						
0.012																			G	G	G						
0.015 0.018		\vdash						-	-										G G	G G	G G	-		-	-		
0.018						\vdash													G	G	G						\vdash
0.033	333																		G	G	G						
0.047																			G	G	G						
0.056 0.068		\vdash				-		<u> </u>		-		-							G G	G G	G G	-		-			
0.100	_	\vdash						\vdash	 	\vdash									G	G	9	 			 		\vdash
Voltage (V)		600	630	1000			2500	3000	4000	600	630	1000	1500			3000	4000	5000			1000	1500			3000	4000	5000
Case Size					1	825								2220)								2225				

Letter	Α	С	E	F	G	X
Max.	0.813	1.448	1.803	2.210	2.794	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.037)

FLEXITERM® - 600V to 5000V Applications

X7R Dielectric

Performance Characteristics

Capacitance Range	10 pF to 0.82 μF (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances	±10%; ±20%; +80%, -20%
Dissipation Factor	2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range	-55°C to +125°C
Temperature Characteristic	±15% (0 VDC)
Voltage Ratings	600, 630, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC)	100K MΩ min. or 1000 MΩ - μF min., whichever is less
Insulation Resistance (+125°C, at 500 VDC)	10K M Ω min. or 100 M Ω - μF min., whichever is less
Dielectric Strength	Minimum 120% rated voltage for 5 seconds at 50 mA max. current

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

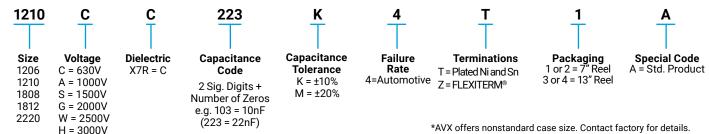
Selfow Plane Self	Case Size	<u>.</u>		0805		l		1206		1210 1808 Peffow Only Reflow Only											1812 Reflow Only											
Color Colo							Ref														,											
Wilson			(0.0	.10 0.2 83 + 0.0	.0 008)													-	4.60 : (0.181	± 0.50 + 0.020))						4.60 ±	£ 0.50 £ 0.020)			
Common C	W) Width m	nm	1	.25 0.2	.0	(1.60	+0.30/	-0.10	4)		2	.50 0.3	0					2.00	0.20							3.20 ±	£ 0.30				
O	(T) Thickness M	nm)			1.80					2.80						2.	20							2.8	80				
Very March			0.	50 ± 0.2	20		0.	60 ± 0.	20									-	0.75	± 0.35	1))			
120 121 X X X C C C C C E E E E E		iux				600				2000	600				2000	600	630					3000	4000	600	630					3000	4000	
150 151 X X X C C C C E E F F E E E E E E E E E E E E	Cap (pF) 100	101	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																	
180 181 X	120	121	Х	Х	С	С	С	Е	Е	Е	Е	Е	Е	Е	Е																	
272 271 X X C C C E E E E E E E	150	151	Χ		_	С							Е																			
270		_		-	_		-	_		_				_																		
330 331 X X Z C C C C E E E E E E E E E E E E E E E		_		-	_	_	-	_		_			_	_																		
990 991 X		_						_		_				_	_									_	_							
A A A A A A A A C C		_			_								_		_	_		_			_	_		_	_							
\$60 \$61 X X X C C C E E E E E E E E E E E E E E		_					_	_					_		_	_		_		_	_			_	_	_			_	_		
Sep 681				-		_	-	_					_		_		_	_	_		_	_		_	_				_		<u> </u>	
750 75 X		_				_		_		_				_	_	_		_						_	_				_			
R27 R27				_	_	_		_	_	_	_	_		_	_	_		_	-	_	_	_		_	_	_	_	_	_	_	\vdash	
1000 102		_			_	_		_		_	_		_	_	_	_		_	_	_	_	F			_	_	_	_	_			
1200 122 X		_			_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	F		_	_	_	_	_	_			
1500 152		_						_		_				_	_	_		_	_	_	_	F		_	_		_	_	_	_		
1800 182		_			_		_	_		_			_	_	_	_		_				F			_		_		_	_		
2200 272 X X X C C E E E E E E E E		_	Х			С	С	Е	Е	Е	Е	Е	Е	_	Е	Е	Е	Е	Е	Е	F	F										
Sand Saz X						С		Е	Е		Е	Е	Е	F	Е	Е			F		F			F	F	F	F	F				
3900 392	2700	272	Х	Х		С	С	Е	Е		Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G		
4700 472 X	3300	332	Х	Х		С	С	Е			Е	Е	Е	F	Е	Е	Е	Е	F	F				F	F	F	F	F	G	G		
Second S	3900	392	Χ	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G		
6800 682 X X X C C E E E E E E E E	4700	472	Χ	Х		С	С	Е			Е	Е	Е	G		Е	Е	Е	F					F	F	F	F	F	G	G		
820 822 X X X C C E E E E E E E E E E E E E E E		_					_	_					_	G		_	_	_	_						_	_		_				
Cap (µF) 0.010 103 C C C C E F F F G G IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		_					_	_					_			_	_	_	F									_				
0.015 153 C C E E E E E E E E																									_							
0.018 183 C C E E E E E E E F F F																											_	G				
0.022 223 C C C E E E E E E E F F F							_	E										_							_	_	G					
0.027 273																		Г				-			_							
0.033 333			U	C							_		_																			
0.039 393		_					_																		_	_						
0.047 473		_				_	_																									
0.068 683		_																				<u> </u>			_							
0.082 823	0.056	563			İ						F	F				F	F		İ		İ			F	F			İ	İ			
0.100 104		_									F	F				F	F							F	F							
0.150 154	0.082	823									F	F												F	F							
0.220 224	0.100	104									F	F												F F								
0.270 274		$\overline{}$																														
0.330 334		_																						G	G							
0.390 394		-																			_										L_	
0.470 474		_				<u> </u>					<u> </u>											1										
0.560 564		$\overline{}$		<u> </u>		<u> </u>	<u> </u>				Ь—				_				_	ļ		ļ				ļ					<u> </u>	
0.680 684		-		_		_	_				<u> </u>							_	-	_	-	_				_					<u> </u>	
0.820 824		-				-	-				<u> </u>									-	-	-		_		-					\vdash	
1.000 105 Voltage (V) 600 630 1000 600 630 1000 1500 2000 600 630 1000 1500 2000 600 630 1000 1500 2000 600 630 1000 1500 2000 600 630 1000 1500 2000 2500 3000		_				\vdash					\vdash					<u> </u>				-	1	-		-		-					\vdash	
Voltage (V) 600 630 1000 600 630 1000 500 600 600 1000 1000 1000 2000 600 600 600 1000 10		$\overline{}$				 					 					-		<u> </u>		 	1	\vdash	\vdash	-	<u> </u>	 						
		100	600	630	1000	600	630	1000	1500	2000	600	630	1000	1500	2000	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	
Case Size 0003 1200 1210 1000 1612	Case Size	: 🗆		0805				1206					1210																			

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Size				18	25					2220						2225									3640											
Soldering				Reflo									low 0									flow C					Reflow Only 9.14 ± 0.25									
(L) Length mm			(4.60 0.181	0.50)							70 0.5 24 0.0									72 ± 0 25 ± 0									360 ± 0					
W) Width mm				6.30	0.40							5.	00 0.4	0								35 ± 0								5	.72 ± 0	.25				
(in.)			(().248 : 3.	± 0.01	6)							97 0.0 3.40	116)							(0.2	50 ± 0 2.54								(0.2	225 ± 0 2.54					
Thickness (in.)				(0.1									0.134)								2.54 (0.100)									(0.100))				
(t) Terminal mm				0.75									85 0.3									35 ± 0									76 (0.0					
·· max	600	Lcoo			± 0.01		Loono	14000	600	600	1000		3 ± 0.		Ioooo	14000	5000	600		Iaooo			0.014)	loooo	14000	L 5000	600	1 600	11000		.52 (0.0		Loono	14000	15000	
Voltage (V) Cap (pF) 100 101	600	630	1000	1500	2000	2500	3000	4000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	
120 121									\neg																								-	 	\vdash	
150 151																																	\vdash		\vdash	
180 181																																			\Box	
220 221																																				
270 271																																				
330 331																																		<u> </u>		
390 391		_	_	_	_	<u> </u>	<u> </u>	\sqcup	_							_	Щ					<u> </u>	_		_		<u> </u>	_	_	1	_		ـــــ	Ь—	oxdot	
470 471		<u> </u>				-	-	\vdash	_								\vdash					<u> </u>	_				<u> </u>	-	-	1	-		Ь—	<u> </u>	+	
560 561 680 681		-	\vdash	-	-	-	-	\vdash	-					-			\vdash		-			\vdash	\vdash	-	-		<u> </u>	\vdash	-	+	\vdash	_	\vdash	\vdash	+-	
680 681 750 751	-	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\dashv				\vdash	\vdash		\vdash	$\vdash\vdash$		\vdash			\vdash	\vdash		\vdash		\vdash	\vdash	\vdash	+	\vdash	\vdash	\vdash	\vdash	+-	
750 751 820 821	\vdash	1	<u> </u>	<u> </u>	<u> </u>	1	1	++	-							<u> </u>	\vdash		<u> </u>						<u> </u>		┢	<u> </u>	1	+	<u> </u>	<u> </u>	\vdash	\vdash	+	
1000 102	F	F	F	F	F	F	F		F	F	F	F	F	F	G		\vdash	F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1200 122	F	F	F	F	F	F	F		F	F	F	F	F	F	G		\vdash	F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1500 152	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
1800 182	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
2200 222	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
2700 272	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
3300 332	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G	G	
3900 392	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
4700 472	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
5600 562	F	F	F	F	F	F	F		F	F	F	F	F	F	G			F	F	F	F	F	F	F			G	G	G	G	G	G	G	G		
6800 682	F	F	F	G	G	G	G		F	F	F	F	F	G	G			F	F	F	F	F	G	G			G	G	G	G	G	G	G	G	<u> </u>	
8200 822	F	F	F	G	G	G	G		F	F	F	G	G	G	G		\vdash	F	F	F	F	F	G	G			G	G	G	G	G	G	G	<u> </u>	\sqcup	
Cap (µF) 0.010 103	F	F	F	G	G	G	G		F	F	F	G	G	G	G		-	F	F	F	F	F	G	G			G	G	G	G	G	G	G	<u> </u>	\vdash	
0.015 153	F	F	F	G	G	G			F	F	F	G	G	G			\vdash	F	F	F	G	G	G	G			G	G	G	G	G	G	G	<u> </u>	\vdash	
0.018 183	+	F	F	G	G	_	-		F	F	F	G	G	G	_		\vdash	F	F	F	G	G	G		_		G	G	G	G	G	G	G	—	\vdash	
0.022 223	F	F	_	G	G		-		-		F	G	G					_	_	F	G	G	G				G	G	G	G	G	G			$\perp \! \! \perp \! \! \mid$	
0.027 273	F	F	F	G	—	-	-	\vdash	F	F	F	G	G	-		-	$\vdash \vdash$	F	F	F	G	G			<u> </u>	\vdash	G	G	G	G	G		₩	\vdash	+-	
0.033 333	F	F	F	G	_	-	-		F	F	F	G					\vdash	F	F	F	G	G		-	_		G G	G	G	G		-	\vdash	\vdash	+-	
0.039 393 0.047 473	F	F	F	G P		-	-	\vdash	F	F	F	G G		-			\vdash	F	F	F	G		-				G	G	G G	G			\vdash	\vdash	+-	
0.047 473 0.056 563	-	F	-	G		-	-		-	F	F	G		 			$\vdash\vdash$	F	F	F	G		<u> </u>		<u> </u>	\vdash	G	G	G	G		-	\vdash	\vdash	+-	
0.068 683	F	F	G	-		1	1		F	F	G	9				 	\vdash	F	F	F	G		\vdash		\vdash	\vdash	G	G	G	G		 	\vdash	\vdash	\vdash	
0.082 823	F	F	G			-	-		F	F	G			 			\vdash	F	F	G	- 0						G	G					\vdash	\vdash	\vdash	
0.100 104	F	F	G			 	 		F	F	G			 			\vdash	F	F	G							GGG									
0.150 154	F	F	-			<u> </u>	<u> </u>		F	F	G						H	F	F	G							G	G		1			\vdash	\vdash	\vdash	
0.220 224	F	F				t	t		F	F	G		\vdash				\vdash	F	F			\vdash					G	G		+		<u> </u>	\vdash	\vdash	+	
0.270 274	F	F							F	F							Н	F	F								G	G							\vdash	
0.330 334	F	F				İ	İ		F	F								F	F								G	G								
0.390 394	F	F							F	F								F	F								G	G								
0.470 474	F	F							F	F								F	F								G	G								
0.560 564	G	G						\sqcup	G	G							Ш	F	F								G	G					ullet	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	\sqcup	
0.680 684									G	G								G	G								L			1			↓	<u> </u>	oxdot	
0.820 824		-	_	<u> </u>	<u> </u>	-	-	\Box	G	G			_	_	_	<u> </u>	\vdash	G	G			_	-		_	\vdash	⊢	-	_	1	-		₩	₩	\sqcup	
1.000 105 Voltage (V)	600	630	1000	1500	2000	2500	3000	4000	G 600	G 630	1000	1500	2000	2500	3000	4000	5000	G 600	G 630	1000	1500	2000	2500	3000	4000	5000	600	630	1000	1500	2000	2500	3000	4000	5000	
Case Size	000	1 030	1000	18		12300	10000	14000	JUU	030	1000		2220		10000	14000	3000	000	030	1000		2225		13000	14000	3000	000	030	1000	1300	3640		13000	4000	1 3000	
													0																					_		

Letter	Α	С	Е	F	G	Р	Х
Max.	0.813	1.448	1.8034	2.2098	2.794	3.048	0.940
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.120)	(0.037)

High Voltage MLC Chip Capacitors

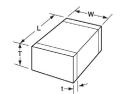

Modern automotive electronics could require components capable to work with high voltage (e.g. xenon lamp circuits or power converters in hybrid cards). AVX offers high voltage ceramic capacitors qualified according to AEC-Q200 standard.

High value, low leakage and small size are diffocult parameters to obtain in cpacitors for high voltage systems. AVX special hgih voltage MLC chip capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/dc blocking. These high voltage chip designs exhibit low ESRs at high frequencies.

Due to high voltage nature, larger physical dimensions are necessary. These larger sizes require special precautions to be taken in applying of MLC chips. The temperature gradient during heating or cooling cycles should not exceed 4°C per second. The preheat temperature must be within 50°C of the peak temperature reached by the ceramic bodies through the soldering process. Chip sizes 1210 and larger should be reflow soldered only. Capacitors may require protective surface coating to prevent external arcing.

To improve mechanical and thermal resistance, AVX recommend to use flexible terminations system -FLEXITERM®.

HOW TO ORDER



*AVX offers nonstandard case size. Contact factory for details.

Notes: Capacitors with X7R dielectrics are not indeded for applications across AC supply mains or AC line filtering with polarity reversal. Please contact AVX for recommendations

CHIP DIMENSIONS DESCRIPTION

(See capacitance range chart on page 128)

L = Length W = Width T = Thickness

X7R DIELECTRIC PERFORMANCE CHARACTERISTICS

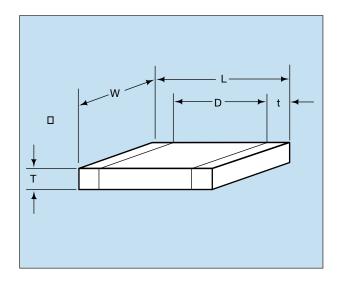
Parameter/Test	Specification Limits	Measuring Conditions
Operating Temperature Range	-55°C to +125°C	Temperature Cycle Chamber
Capacitance Dissipation Factor Capacitance Tolerance	within specified tolerance 2.5% max. ±5% (J), ±10% (K), ±20% (M)	Freq.: 1kHz ±10% Voltage: 1.0Vrm s ±0.2Vrms T = +25°C, V = 0Vdc
Temperature Characteristics	X7R = ±15%	Vdc = 0V, T = (-55°C to +125°C)
Insulation Resistance	100GΩ min. or 1000MΩ • μF min. (whichever is less) 10GΩ min. or 100MΩ • μF min. (whichever is less)	T = +25°C, V = 500Vdc T = +125°C, V = 500Vdc (t ≥ 120 sec, I ≤ 50mA)
Dielectric Strength	No breakdown or visual defect	120% of rated voltage t ≤ 5 sec, l ≤ 50mA

High Voltage MLC Chips FLEXITERM®

For 600V to 3000V Automotive Applications - AEC-Q200

X7R CAPACITANCE RANGE PREFERRED SIZES ARE SHADED

Case Siz	e			1206				12	10				18	08					18	312					2220		
Solderin				low/W	/ave		ı	Reflow		9			Reflov							w Only	,			Re	flow 0		
(L) Length	mm		3.3	30 ± 0.	.30			3.30	± 0.4				4.60 ±	± 0.50					4.60	± 0.50				5.	70 ± 0.	.50	
(L) Length	(in.)		(0.1	3 ± 0.0	012)		((0.130±	0.016	5)		(0).181 ±	£ 0.02	0)			(0).181 :	± 0.02	0)			(0.2	25 ± 0.	.020)	
W) Width	mm		1.6	50 ± 0.	.20			2.50 ±	± 0.20				2.00 ±	± 0.20					3.20 :	± 0.20			5.00 ± 0.40				
vv) vvidti	(in.)		(0.06	3 ± 0.	(800.		(0	0.098 ±	± 0.008	8)	(0.079 ± 0.008)				(0.126 ± 0.008)				(0.197 ± 0.016)								
(t) Torminal	mm		0.6	60 ± 0.	.20		0.75 ± 0.35		0.75 ± 0.35				0.75 ± 0.35				0.85 ± 0.35										
(t) Terminal	max			24 ± 0.				0.030					0.030 ±							± 0.01					33 ± 0.		
Voltage (V)	630	1000	1500	2000	2500	630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Cap (pF) 101	100	С	ш	Е	Е	Е																					
121	120	С	ш	Е	Е	Е																					
151	150	С	ш	Е	Е	Е																					
181	180	С	Е	Е	E	Е																					
221	220	С	Е	Е	Е	Е					Е	Е	Е	Е	E	E											
271	270	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	Е											
331	330	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	F	Е										
391	390	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	E	F	Е										
471	470	C	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е	Е	Е	Е	Е					
561	560	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F	Е	Е	Е	E	E	Е					1
681	680	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	F	F	F	F	E	Е	Е	E	F	F					
821	820	С	Е	Е	E	Е	Е	Е	Е	Е	Е	Е	F	F	F	F	Е	E	Е	E	F	F					
102	1000	С	Е	Е	Е	Е	Е	Е	Е	Е	Е	Е	F	F	F	F	Е	Е	E	E	F	F	F	F	F	F	G
122	1220	С	E	E	E		Е	Е	Е	Е							F	F	F	F	G	<u> </u>	F	F	F	F	G
152	1500	С	Е	Е	Е		Е	Е	Е	Е							F	F	F	F	G		F	F	F	F	G
182	1800	С	Е	Е			Е	Е	Е	Е							F	F	F	F	G		F	F	F	F	G
222	2200	С	Е	E			Е	Е	Е	Е							F	F	F	F	G		F	F	F	F	G
272	2700	С	Е	Е			Е	Е	Е	Е							F	F	F	F			F	F	F	F	
332	3300	С	Е				Е	Е	Е	Е							F	F	F	F			F	F	F	F	
392	3900	С	Е				Е	Е	Е								F	F	F	F			F	F	F	F	
472	4700	С	E				E	E	E								F	F	G	G			F	F	F	F	
562	5600	С	E				E	E	Е								F	F	G	G			F	F	F	F	
682	6800	E	Е				E	E									F	F	G	G			F	F	F	F	
822	8200	E					E	E									F	F	G	G			F	F	G	G	
103	0.01	Е					E	E									F	F	G				G	G	G	G	
123	0.012						E	E									F	F	G		-		G	G	G	G	
153	0.015						E	E									F	F	G				G	G	G	G	
183	0.018						E	E									F	F					G	G	G	G	
223	0.022						0										F	Г					G G	G	G	G	
333	0.027						Ų										F						G	G			-
393	0.033																F						G	G			\vdash
473	0.039																Х						G	G			+
563	0.056																						G	Y			
683	0.068																						G	Y			\vdash
823	0.082																 						G	Y			<u> </u>
104	0.002																l –						G	Y			1
124	0.12																						G				
154	0.15																						G				
224	0.22																										
334	0.33																										
474	0.47																										
684																											
105	1																										
155	1.5																										
225	2.2																										
335	3.3																										
475	4.7																										
106	10																										
226	22																										
WVDC		630	1000	1500	2000	2500	630	1000	1500	2000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	2500	3000	630	1000	1500	2000	3000
Size				1206					10				18							12					2220		•
																							_				


NOTE: Contact factory for non-specified capacitance values

Letter	Α	С	E	F	G	Q	Х	Υ
Max	0.813	1.448	1.8034	2.2098	2.794	1.78	2.29	2.54
Thickness	(0.032)	(0.057)	(0.071)	(0.087)	(0.110)	(0.07)	(0.09)	(0.1)

Part Number Example CDR01 thru CDR06

MILITARY DESIGNATION PER MIL-PRF-55681

Part Number Example

CDR01 BP 101 B K S M

MIL Style

Voltage-temperature
Limits

Capacitance
Rated Voltage

Capacitance Tolerance

Termination Finish

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,

CDR06

Voltage Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from -55°C to ± 125 °C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V, B = 100V

Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

T = Silver

Failure Rate

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel

per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*

Per	AVX	Lamenth (L)	14/: Jal. (14/)	Thickr	ess (T)		D	Termination Band (t)		
MIL-PRF-55681	Style	Length (L)	Width (W)	Min.	Max.	Min.	Max.	Min.	Max.	
CDR01	0805	.080 ± .015	.050 ± .015	.022	.055	.030	_	.010	_	
CDR02	1805	.180 ± .015	.050 ± .015	.022	.055	_	_	.010	.030	
CDR03	1808	.180 ± .015	.080 ± .018	.022	.080	_	_	.010	.030	
CDR04	1812	.180 ± .015	.125 ± .015	.022	.080	_	_	.010	.030	
CDR05	1825	.180 ⁺ .020 015	+.020 .250 ₀₁₅	.020	.080	_	_	.010	.030	
CDR06	2225	.225 ± .020	.250 ± .020	.020	.080	_	_	.010	.030	

*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog

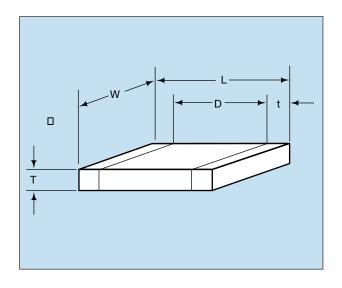
Military Part Number Identification CDR01 thru CDR06

CDR01 thru CDR06 to MIL-PRF-55681

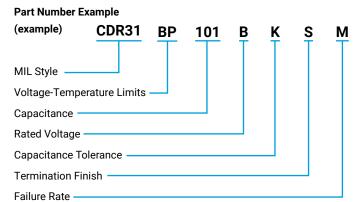
Military Type Designation	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage-	WVDC
•		toiciance	temperature limits	
AVX Style 0805	/CDR01			
CDR01BP100B	10	J,K	BP	100
CDR01BP120B	12	J	BP	100
CDR01BP150B	15	J,K	BP	100
CDR01BP180B	18	j	BP	100
CDR01BP220B	22	J,K	BP	100
CDR01BP270B	27	Ĵ	BP	100
CDR01BP330B	33	J,K	BP	100
CDR01BP390B	39	Ĵ	BP	100
CDR01BP470B	47	J,K	BP BP	100
CDR01BP560B	56	J	BP	100
CDR01BP680B	68	J,K	BP BP	100
CDR01BP820B	82	J	BP	100
CDR01BP101B	100	J,K	BP	100
CDR01B121B	120	J,K	BP,BX	100
CDR01B151B	150	J,K	BP,BX	100
CDR01B181B	180	J,K	BP,BX	100
CDR01BX221B	220	K,M	BX	100
CDR01BX271B	270	K	BX	100
CDR01BX331B	330	K,M	BX	100
CDR01BX391B	390	K,IVI	BX	100
CDR01BX471B	470	K.M	BX	
		K,IVI	BX BX	100
CDR01BX561B	560			100
CDR01BX681B	680	K,M	BX	100
CDR01BX821B	820	K	BX	100
CDR01BX102B	1000	K,M	BX	100
CDR01BX122B	1200	K	BX	100
CDR01BX152B	1500	K,M	BX	100
CDR01BX182B	1800	K	BX	100
CDR01BX222B	2200	K,M	BX	100
CDR01BX272B	2700	K	BX	100
CDR01BX332B	3300	K,M	BX	100
CDR01BX392A	3900	K	BX	50
CDR01BX472A	4700	K,M	BX	50
AVX Style 1805				
CDR02BP221B	220	J,K	BP	100
CDR02BP271B	270	J	BP	100
CDR02BX392B	3900	K	BX	100
CDR02BX472B	4700	K,M	BX	100
CDR02BX562B	5600	K	BX	100
CDR02BX682B	6800	K,M	BX	100
CDR02BX822B	8200	K	BX	100
CDR02BX103B	10,000	K,M	BX	100
CDR02BX123A	12,000	K	BX	50
CDR02BX153A	15,000	K,M	BX	50
CDR02BX183A	18,000	K	BX	50
CDR02BX223A	22,000	K,M	BX	50
	- Add appropriat - Add appropriat		nish	

Military Type	Capacitance	Capacitance	Rated temperature and voltage-	WVDC
Designation/	in pF	tolerance	temperature limits	WVDC
AVX Style 1808	CDR03	,	, ,	
CDR03BP331B	330	J,K	BP	100
CDR03BP391B	390	J	BP	100
CDR03BP471B	470	J,K	BP	100
CDR03BP561B	560	j	BP	100
CDR03BP681B	680	J,K	BP	100
CDR03BP821B	820	Ĵ	BP	100
CDR03BP102B	1000	J,K	BP	100
CDR03BX123B	12,000	K	BX	100
CDR03BX153B	15.000	K,M	BX	100
CDR03BX183B	18.000	K	BX	100
CDR03BX223B	22,000	K,M	BX	100
CDR03BX273B	27.000	K	BX	100
CDR03BX333B	33.000	K,M	BX	100
CDR03BX393A	39.000	K	BX	50
CDR03BX473A	47.000	K,M	BX	50
CDR03BX563A	56.000	K	BX	50
CDR03BX683A	68.000	K,M	BX	50
AVX Style 1812				
CDR04BP122B	1200	J	BP	100
CDR04BP152B	1500	J,K	BP	100
CDR04BP182B	1800	Ĵ	BP	100
CDR04BP222B	2200	J,K	BP	100
CDR04BP272B	2700	Ĵ	BP	100
CDR04BP332B	3300	J,K	BP	100
CDR04BX393B	39.000	K	BX	100
CDR04BX473B	47.000	K,M	BX	100
CDR04BX563B	56.000	K	BX	100
CDR04BX823A	82.000	K	BX	50
CDR04BX104A	100,000	K,M	BX	50
CDR04BX124A	120,000	K	BX	50
CDR04BX154A	150.000	K,M	BX	50
CDR04BX184A	180.000	K	BX	50
AVX Style 1825	CDR05			
CDR05BP392B	3900	J,K	BP	100
CDR05BP472B	4700	J,K	BP	100
CDR05BP562B	5600	J,K	BP	100
CDR05BX683B	68,000	K,M	BX	100
CDR05BX823B	82,000	K	BX	100
CDR05BX104B	100,000	K,M	BX	100
CDR05BX124B	120,000	K	BX	100
CDR05BX154B	150.000	K,M	BX	100
CDR05BX224A	220.000	K,M	BX	50
CDR05BX274A	270,000	K	BX	50
CDR05BX334A	330,000	K,M	BX	50
AVX Style 2225		1 112		100
CDR06BP682B	6800	J,K	BP	100
CDR06BP822B	8200	J,K	BP	100
CDR06BP103B	10,000	J,K	BP	100
CDR06BX394A	390.000	K	BX	50
CDR06BX474A	470.000	K,M	BX	50

Add appropriate failure rate


Add appropriate termination finish

Capacitance Tolerance


Capacitance Tolerance

Part Number Example CDR31 thru CDR35

MILITARY DESIGNATION PER MIL-PRF-55681

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35

Voltage-Temperature Limits:

BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with rated voltage from -55°C to +125°C

BX = $\pm 15\%$ without voltage; $\pm 15 - 25\%$ with rated voltage from -55°C to +125°C

Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF

Rated Voltage: A = 50V. B = 100V

Capacitance Tolerance: B \pm .10 pF, C \pm .25 pF, D \pm .5

pF, F ± 1%, J ± 5%, K ± 10%,

M ± 20%

Termination Finish:

M = Palladium silver

N = Silver-nickel-gold

S = Solder coated final with a minimum of 4 percent lead

U = Base metallization-barrier metal-solder coated (tin/lead alloy, with a minimum of 4 percent lead)

W = Base metallization-barrier metal-tinned (tin or tin/lead alloy)

Y = Base metallization-barrier metal-tin (100 percent)

Z = Base metallization-barrier metal-tinned (tin/lead alloy, with a minimum of 4 percent lead)

*See MIL-PRF-55681 Specification for more details

Failure Rate Level: M = 1.0%, P = .1%, R = .01%,

S = .001%

Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request.

*Not RoHS Compliant

CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35

Per MIL-PRF-55681	AVX Style	Length (L)	Width (W)	Thickness (T)	D	Terminatio	n Band (t)
Per WIL-PRF-5500 I	AVA Style	(mm)	(mm)	Max. (mm)	Max. (mm)	Min. (mm)	Max. (mm)
CDR31	0805	2.00	1.25	1.3	.50	.70	.30
CDR32	1206	3.20	1.60	1.3	-	.70	.30
CDR33	1210	3.20	2.50	1.5	_	.70	.30
CDR34	1812	4.50	3.20	1.5	_	.70	.30
CDR35	1825	4.50	6.40	1.5	_	.70	.30

CDR31 to MIL-PRF-55681/7

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	05/CDR31	(BP)		
CDR31BP1R0B	1.0	B,C	BP	100
CDR31BP1R1B	1.1	B,C	BP	100
CDR31BP1R2B	1.2	B,C	BP	100
CDR31BP1R3B	1.3	B,C	BP	100
CDR31BP1R5B	1.5	B,C	BP	100
CDR31BP1R6B	1.6	B,C	BP	100
CDR31BP1R8B	1.8	B,C	BP	100
CDR31BP2R0B	2.0	B,C	BP	100
CDR31BP2R2B	2.2	B,C	BP	100
CDR31BP2R4B	2.4	B,C	BP	100
CDR31BP2R7B	2.7	B,C,D	BP	100
CDR31BP3R0B	3.0	B,C,D	BP	100
CDR31BP3R3B	3.3	B,C,D	BP	100
CDR31BP3R6B	3.6	B,C,D	BP	100
CDR31BP3R9B	3.9	B,C,D	BP	100
CDR31BP4R3B	4.3	B,C,D	BP	100
CDR31BP4R7B	4.7	B,C,D	BP	100
CDR31BP5R1B	5.1	B,C,D	BP	100
CDR31BP5R6B	5.6	B,C,D	BP	100
CDR31BP6R2B	6.2	B,C,D	BP	100
CDR31BP6R8B	6.8	B,C,D	BP	100
CDR31BP7R5B	7.5	B,C,D	BP	100
CDR31BP8R2B	8.2	B,C,D	BP	100
CDR31BP9R1B	9.1	B,C,D	BP	100
CDR31BP100B	10	FJ,K	BP	100
CDR31BP110B	11	FJ,K	BP	100
CDR31BP120B	12	FJ,K	BP	100
CDR31BP130B	13	FJ,K	BP	100
CDR31BP150B	15	FJ,K	BP	100
CDR31BP160B	16	FJ,K	BP	100
CDR31BP180B	18	FJ,K	BP	100
CDR31BP200B	20	F,J,K	BP	100
CDR31BP220B	22	FJ,K	BP	100
CDR31BP240B	24	F,J,K	BP	100
CDR31BP270B	27	FJ,K	BP	100
CDR31BP300B	30	FJ,K	BP	100
CDR31BP330B	33	F,J,K	BP	100
CDR31BP360B	36	FJ,K	BP	100
CDR31BP390B	39	F,J,K	BP	100
CDR31BP430B	43	FJ,K	BP	100
CDR31BP470B	47	FJ,K	BP	100
CDR31BP510B	51	F,J,K	BP	100
CDR31BP560B	56	FJ,K	BP	100
CDR31BP620B	62	F,J,K	BP	100
CDR31BP680B	68	FJ,K	BP	100
CDR31BP750B	75	FJ,K	BP	100
CDR31BP820B	82	F,J,K	BP	100
CDR31BP910B	91	FJ,K	BP	100

l	
	- Add appropriate failure rate
	- Add appropriate termination finish
	- Capacitance Tolerance

Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 08	05/CDR31	(BP) con	t'd	
CDR31BP101B	100	F,J,K	BP	100
CDR31BP111B	110	F,J,K	BP	100
CDR31BP121B	120	F,J,K	BP	100
CDR31BP131B	130	F,J,K	BP	100
CDR31BP151B	150	F,J,K	BP	100
CDR31BP161B	160	F,J,K	BP	100
CDR31BP181B	180	F,J,K	BP	100
CDR31BP201B	200	F,J,K	BP	100
CDR31BP221B	220	F,J,K	BP	100
CDR31BP241B	240	F,J,K	BP	100
CDR31BP271B	270	F,J,K	BP	100
CDR31BP301B	300	F,J,K	BP	100
CDR31BP331B	330	F,J,K	BP	100
CDR31BP361B	360	F,J,K	BP	100
CDR31BP391B	390	F,J,K	BP	100
CDR31BP431B	430	F,J,K	BP	100
CDR31BP471B	470	F,J,K	BP	100
CDR31BP511A	510	F,J,K	BP	50
CDR31BP561A	560	F,J,K	BP	50
CDR31BP621A	620	F,J,K	BP	50
CDR31BP681A	680	F,J,K	BP	50
AVX Style 08	05/CDR31	(BX)		
CDR31BX471B	470	K,M	BX	100
CDR31BX561B	560	K,M	BX	100
CDR31BX681B	680	K,M	BX	100
CDR31BX821B	820	K,M	BX	100
CDR31BX102B	1,000	K,M	BX	100
CDR31BX122B	1,200	K,M	BX	100
CDR31BX152B	1,500	K,M	BX	100
CDR31BX182B	1,800	K,M	BX	100
CDR31BX222B	2,200	K,M	BX	100
CDR31BX272B	2,700	K,M	BX	100
CDR31BX332B	3,300	K,M	BX	100
CDR31BX392B	3,900	K,M	BX	100
CDR31BX472B	4,700	K,M	BX	100
CDR31BX562A	5,600	K,M	BX	50
CDR31BX682A	6,800	K,M	BX	50
CDR31BX822A	8,200	K,M	BX	50
CDR31BX103A	10,000	K,M	BX	50
CDR31BX123A	12,000	K,M	BX	50
CDR31BX153A	15.000	K,M	BX	50
CDR31BX183A	18.000	K,M	BX	50

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

Military Part Number Identification CDR32

CDR32 to MIL-PRF-55681/8

Military Type Designation 1/	Capacitance in pF	Capacitance Tolerance	Rated temperature and Voltage- Temperature Limits	WVDC
AVX Style 12	206/CDR32	(BP)		
CDR32BP1R0B	1.0	B,C	BP	100
CDR32BP1R1B	1.1	B,C	BP	100
CDR32BP1R2B	1.2	B,C	BP	100
CDR32BP1R3B	1.3	B,C	BP	100
CDR32BP1R5B	1.5	B,C	BP	100
CDR32BP1R6B	1.6	B,C	BP	100
CDR32BP1R8B	1.8	B,C	BP	100
CDR32BP2R0B	2.0	B,C	BP	100
CDR32BP2R2B	2.2	B,C	BP	100
CDR32BP2R4B	2.4	B,C	BP	100
CDR32BP2R7B CDR32BP3R0B CDR32BP3R3B	2.7 3.0 3.3	B,C,D B,C,D B,C,D	BP BP BP BP	100 100 100
CDR32BP3R6B CDR32BP3R9B CDR32BP4R3B	3.6 3.9 4.3	B,C,D B,C,D B,C,D	BP BP	100 100 100
CDR32BP4R7B	4.7	B,C,D	BP	100
CDR32BP5R1B	5.1	B,C,D	BP	100
CDR32BP5R6B	5.6	B,C,D	BP	100
CDR32BP6R2B	6.2	B,C,D	BP	100
CDR32BP6R8B CDR32BP7R5B CDR32BP8R2B CDR32BP9R1B CDR32BP100B	6.8 7.5 8.2 9.1	B,C,D B,C,D B,C,D B,C,D FJ,K	BP BP BP BP BP	100 100 100 100 100
CDR32BP110B	11	F,J,K	BP	100
CDR32BP120B	12	FJ,K	BP	100
CDR32BP130B	13	FJ,K	BP	100
CDR32BP150B	15	FJ,K	BP	100
CDR32BP160B CDR32BP180B CDR32BP200B CDR32BP220B CDR32BP240B	16	FJ,K	BP	100
	18	FJ,K	BP	100
	20	F,J,K	BP	100
	22	FJ,K	BP	100
	24	F,J,K	BP	100
CDR32BP270B CDR32BP300B CDR32BP330B CDR32BP360B	27	FJ,K	BP	100
	30	FJ,K	BP	100
	33	F,J,K	BP	100
	36	FJ,K	BP	100
CDR32BP390B	39	F,J,K	BP	100
CDR32BP430B	43	FJ,K	BP	100
CDR32BP470B	47	FJ,K	BP	100
CDR32BP510B	51	F,J,K	BP	100
CDR32BP560B	56	FJ,K	BP	100
CDR32BP620B	62	F,J,K	BP	100
CDR32BP680B	68	FJ,K	BP	100
CDR32BP750B	75	FJ,K	BP	100
CDR32BP820B CDR32BP910B	82 91	F,J,K FJ,K	BP BP	100 100 100

Add appropriate failure rate	
 Add appropriate termination finish 	
Capacitance Tolerance	

	_	<u> </u>	T	
$\begin{array}{c} \textbf{Military Type} \\ \textbf{Designation } \underline{1} / \end{array}$	Capacitance in pF	Capacitance Tolerance	Rated Temperature and Voltage- Temperature Limits	WVDC
AVX Style 12	206/CDR32	(BP) con	t'd	
CDR32BP101B	100	FJ,K	BP	100
CDR32BP111B	110	FJ,K	BP	100
CDR32BP121B	120	FJ,K	BP	100
CDR32BP131B	130	FJ,K	BP	100
CDR32BP151B	150	FJ,K	BP	100
CDR32BP161B	160	FJ,K	BP	100
CDR32BP181B	180	F,J,K	BP	100
CDR32BP201B	200	FJ,K	BP	100
CDR32BP221B	220	F,J,K	BP	100
CDR32BP241B	240	FJ,K	BP	100
CDR32BP271B	270	FJ,K	BP	100
CDR32BP301B	300	F,J,K	BP	100
CDR32BP331B	330	FJ,K	BP	100
CDR32BP361B	360	F,J,K	BP	100
CDR32BP391B	390	FJ,K	BP	100
CDR32BP431B	430	FJ,K	BP	100
CDR32BP471B	470	F,J,K	BP	100
CDR32BP511B	510	FJ,K	BP	100
CDR32BP561B	560	F,J,K	BP	100
CDR32BP621B	620	FJ,K	BP	100
CDR32BP681B	680	FJ,K	BP	100
CDR32BP751B	750	F,J,K	BP	100
CDR32BP821B	820	FJ,K	BP	100
CDR32BP911B	910	F,J,K	BP	100
CDR32BP102B	1,000	FJ,K	BP	100
CDR32BP112A	1,100	FJ,K	BP	50
CDR32BP122A	1,200	F,J,K	BP	50
CDR32BP132A	1,300	FJ,K	BP	50
CDR32BP152A	1,500	F,J,K	BP	50
CDR32BP162A	1,600	FJ,K	BP	50
CDR32BP182A	1,800	FJ,K	BP	50
CDR32BP202A	2,000	F,J,K	BP	50
CDR32BP222A	2,200	FJ,K	BP	50
AVX Style 12	206/CDR32	(BX)	Г	
CDR32BX472B CDR32BX562B	4,700 5,600	K,M K,M	BX BX BX	100 100 100
CDR32BX682B	6,800	K,M	BX	100
CDR32BX822B	8,200	K,M	BX	100
CDR32BX103B	10,000	K,M	BX	100
CDR32BX123B	12,000	K,M	BX	100
CDR32BX153B	15.000	K,M	BX	100
CDR32BX183A	18.000	K,M	BX	50
CDR32BX223A	22,000	K,M	BX	50
CDR32BX273A	27,000	K,M	BX	50
CDR32BX333A	33.000	K,M	BX	50
CDR32BX393A	39.000	K,M	BX	50

Add appropriate failure rate

Add appropriate termination finish

Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

CDR33/34/35 to MIL-PRF-55681/9/10/11

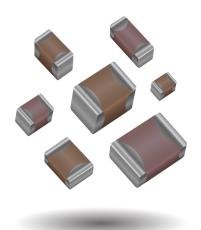
Military Type Designation 1/	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 12	10/CDR33	(BP)		
CDR33BP102B CDR33BP112B CDR33BP122B CDR33BP152B CDR33BP162B CDR33BP182B CDR33BP202B CDR33BP202B CDR33BP242A CDR33BP242A CDR33BP302A CDR33BP302A CDR33BP302A CDR33BP332A	1,000 1,100 1,200 1,300 1,500 1,600 1,800 2,000 2,200 2,400 2,700 3,000 3,300	EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K EJ,K	BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 100 50 50 50
AVX Style 12	<u> </u>	,	ы	30
		, , ,	D.V.	100
CDR33BX153B CDR33BX183B CDR33BX223B CDR33BX273B CDR33BX473A CDR33BX473A CDR33BX563A CDR33BX683A CDR33BX823A CDR33BX823A CDR33BX104A	15.000 18.000 22,000 27.000 39.000 47.000 56.000 68.000 82,000 100,000	K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX	100 100 100 100 50 50 50 50 50
AVX Style 18	12/CDR34	(BP)		
CDR34BP222B CDR34BP242B CDR34BP302B CDR34BP362B CDR34BP362B CDR34BP432B CDR34BP472B CDR34BP472B CDR34BP562A CDR34BP622A CDR34BP622A CDR34BP752A CDR34BP752A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP822A CDR34BP912A	2,200 2,400 2,700 3,000 3,300 3,600 3,900 4,300 4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100	67 K 67 K 67 K 67 K 67 K 67 K 67 K 67 K	BP BP BP BP BP BP BP BP BP BP BP	100 100 100 100 100 100 100 100 50 50 50 50 50 50

L	Add appropriate failure rate
	Add appropriate termination finish
	Capacitance Tolerance

Military Type Designation <u>1</u> /	Capacitance in pF	Capacitance tolerance	Rated temperature and voltage- temperature limits	WVDC
AVX Style 18	12/CDR34	(BX)		
CDR34BX273B CDR34BX333B CDR34BX473B CDR34BX473B CDR34BX104A CDR34BX124A CDR34BX154A CDR34BX184A	27.000 33.000 39.000 47.000 56.000 100,000 120,000 150.000 180.000	K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX	100 100 100 100 100 50 50 50 50
AVX Style 18	25/CDR35	(BP)		
CDR35BP472B— CDR35BP52B— CDR35BP52B— CDR35BP62B— CDR35BP62B— CDR35BP62B— CDR35BP92B— CDR35BP912B— CDR35BP13B— CDR35BP13A— CDR35BP13A— CDR35BP13A— CDR35BP153A— CDR35BP153A— CDR35BP163A— CDR35BP163A— CDR35BP163A— CDR35BP183A— CDR35BP183A— CDR35BP183A— CDR35BP223A—	4,700 5,100 5,600 6,200 6,800 7,500 8,200 9,100 10,000 11,000 12,000 13.000 16.000 18,000 20,000 22,000	67, K 67, K 67, K 67, K 67, K 67, K 67, K 67, K 67, K 67, K	BP BP BP BP BP BP BP BP BP BP BP BP BP B	100 100 100 100 100 100 100 100 50 50 50 50 50 50 50
AVX Style 18	25/CDR35	(BX)		
CDR35BX563B CDR35BX823B CDR35BX104B CDR35BX124B CDR35BX154B CDR35BX154A CDR35BX224A CDR35BX224A CDR35BX334A CDR35BX394A CDR35BX394A CDR35BX374A CDR35BX374A	56.000 68.000 82,000 100,000 120,000 150.000 180.000 220,000 270.000 330.000 390.000 470.000	K,M K,M K,M K,M K,M K,M K,M K,M K,M K,M	BX BX BX BX BX BX BX BX BX BX BX BX BX B	100 100 100 100 100 100 50 50 50 50 50

Add appropriate failure rate

Add appropriate termination finish


Capacitance Tolerance

^{1/} The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level.

MLCC Medical Applications – MM Series

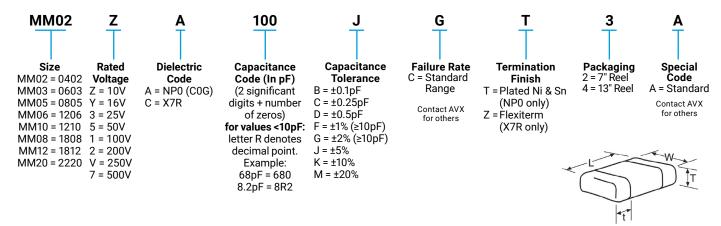
General Specifications

The AVX MM series is a multi-layer ceramic capacitor designed for use in medical applications other than implantable/life support. These components have the design & change control expected for medical devices and also offer enhanced LAT including reliability testing and 100% inspection.

APPLICATIONS

Implantable, Non-Life Supporting Medical Devices

· e.g. implanted temporary cardiac monitor, insulin pumps


External, Life Supporting Medical Devices

· e.g. heart pump external controller

External Devices

· e.g. patient monitoring, diagnostic equipment

HOW TO ORDER

COMMERCIAL VS MM SERIES PROCESS COMPARISON

	Commercial	MM Series				
Administrative	Standard part numbers; no restriction on who purchases these parts	Specific series part number, used to control supply of product				
Design	Minimum ceramic thickness of 0.020" on all X7R product	Minimum ceramic thickness of 0.022" (0.56mm)				
Dicing	Side & end margins = 0.003" min	Side & end margins = 0.004" min Cover layers = 0.003" min				
Lot Qualification Destructive Physical Analysis (DPA)	As per EIA RS469	Increased sample plan – stricter criteria				
Visual/Cosmetic Quality	Standard process and inspection	100% inspection				
Application Robustness	Standard sampling for accelerated wave solder on X7R dielectrics	Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing				
Design/Change Control	Required to inform customer of changes in: form fit function	AVX will qualify and notify customers before making any change to the following materials or processes: • Dielectric formulation, type, or supplier • Metal formulation, type, or supplier • Termination material formulation, type, or supplier • Manufacturing equipment type • Quality testing regime including sample size and accept/ reject criteria				

NP0 (C0G) - Specifications & Test Methods

Parame	ter/Test	NP0 Specification Limits	Measuring Conditions				
Operating Tem	perature Range	-55°C to +125°C	Temperature Cycle Chamber				
Capac	itance	Within specified tolerance	Freq.: 1.0 MHz ± 10% for cap ≤ 1000 pF				
(3	<30 pF: Q≥ 400+20 x Cap Value ≥30 pF: Q≥ 1000	1.0 kHz ± 10% for cap > 1000 pF Voltage: 1.0Vrms ± .2V				
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity				
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.				
	Appearance	No defects	Deflection: 2mm				
Resistance to	Capacitance Variation	±5% or ±.5 pF, whichever is greater	Test Time: 30 seconds				
Flexure Stresses	Q	Meets Initial Values (As Above)					
	Insulation Resistance	≥ Initial Value x 0.3	90 mm				
Solder	rability	≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic solder at 230 ± 5°C for 5.0 ± 0.5 seconds				
	Appearance	No defects, <25% leaching of either end terminal					
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater					
Resistance to Solder Heat	Q	Meets Initial Values (As Above)	Dip device in eutectic solder at 260°C for 60 seconds. Store at room temperature for 24 ± 2				
oolder riedt	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring electrical properties.				
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes				
	Capacitance Variation	≤ ±2.5% or ±.25 pF, whichever is greater	Step 2: Room Temp ≤ 3 minutes				
Thermal Shock	Q	Meets Initial Values (As Above)	Step 3: +125°C ± 2° 30 ± 3 minutes				
Giloun	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp ≤ 3 minutes				
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles and measure after 24 hours at room temperature				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±3.0% or ± .3 pF, whichever is greater	Charge device with twice rated voltage in test chamber set at 125°C ± 2°C				
Load Life	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	for 1000 hours (+48, -0).				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chamber and stabilize at room temperature for 24 hours before measuring.				
	Dielectric Strength	Meets Initial Values (As Above)	belove incuduming.				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±5.0% or ± .5 pF, whichever is greater	Store in a test chamber set at 85°C ± 2°C/ 85%				
Load Humidity	Q	≥ 30 pF: Q≥ 350 ≥10 pF, <30 pF: Q≥ 275 +5C/2 <10 pF: Q≥ 200 +10C	± 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied.				
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature for 24 ± 2 hours before measuring.				
	Dielectric Strength	Meets Initial Values (As Above)					

NP0/C0G Capacitance Range

PREFERRED SIZES ARE SHADED

SIZE		06	503				0805					
WVD	C 16	25	50	100	16	25	50	100	16	25	50	100
Cap 0.5 0F	₹5											
(pF) 1.0 1F	20											
1.2 1F	₹2											
1.5 1F												
1.8 1F												
2.2 2F												
2.7 2F												
3.3 3F												
3.9 3F												
4.7 4F												
5.6 5F												
6.8 6F												
8.2 8F												
10 10												
12 12												
15 15												
18 18												
22 22												
27 27												
33 33												
39 39												
47 47												
56 56												
68 68												
82 82												
100 10												
120 12												
150 15												
180 18												
220 22												
270 27												
330 33												
390 39												
470 47												
560 56												
680 68												
820 82				-								
1000 10				-								
1200 12				-								
1500 15 WVDC	16	25	50	100	16	25	50	100	16	25	50	100
SIZE	16		1 50 5 03	100	16 25 50 100 16 0805					1206		

X7R Specifications and Test Methods

Parame	ter/Test	X7R Specification Limits	Measuring (Conditions			
Operating Tem	perature Range	-55°C to +125°C	Temperature C				
Capac	itance	Within specified tolerance					
()	\leq 10% for \geq 50V DC rating \leq 12.5% for 25V DC rating \leq 12.5% for 25V and 16V DC rating \leq 12.5% for \leq 10V DC rating	Freq.: 1.0 kHz ± 10% Voltage: 1.0Vrms ± .2V				
Insulation	Resistance	100,000MΩ or 1000MΩ - μF, whichever is less	Charge device with rated voltage for 120 ± 5 secs @ room temp/humidity				
Dielectric	: Strength	No breakdown or visual defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices.				
	Appearance	No defects	Deflection	n: 2mm			
Resistance to	Capacitance Variation	≤ ±12%	Test Time: 3				
Flexure Stresses	Dissipation Factor	Meets Initial Values (As Above)	V V				
	Insulation Resistance	≥ Initial Value x 0.3	90 n				
Solder		≥ 95% of each terminal should be covered with fresh solder	Dip device in eutectic for 5.0 ± 0.5	solder at 230 ± 5°C seconds			
	Appearance	No defects, <25% leaching of either end terminal					
	Capacitance Variation	≤ ±7.5%					
Resistance to Solder Heat	Dissipation Factor	Meets Initial Values (As Above)	Dip device in eutectic s seconds. Store at room	temperature for 24 ± 2			
Colder Fleat	Insulation Resistance	Meets Initial Values (As Above)	hours before measuring	g electrical properties.			
	Dielectric Strength	Meets Initial Values (As Above)					
	Appearance	No visual defects	Step 1: -55°C ± 2°	30 ± 3 minutes			
	Capacitance Variation	≤ ±7.5%	Step 2: Room Temp	≤ 3 minutes			
Thermal Shock	Dissipation Factor	Meets Initial Values (As Above)	Step 3: +125°C ± 2°	30 ± 3 minutes			
o.i.oux	Insulation Resistance	Meets Initial Values (As Above)	Step 4: Room Temp	≤ 3 minutes			
	Dielectric Strength	Meets Initial Values (As Above)	Repeat for 5 cycles a 24 ± 2 hours at ro				
	Appearance	No visual defects					
	Capacitance Variation	≤ ±12.5%	Charge device with 1.5 r test chamber set	ated voltage (≤ 10V) in at 125°C ± 2°C			
Load Life	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	for 1000 hou	rs (+48, -0)			
	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from test chai room temperature for	24 ± 2 hours before			
	Dielectric Strength	Meets Initial Values (As Above)	measu	ring.			
	Appearance	No visual defects					
	Capacitance Variation	≤ ±12.5%	Store in a test chamber s ± 5% relative humid				
Load	Dissipation Factor	≤ Initial Value x 2.0 (See Above)	(+48, -0) with rated				
Humidity	Insulation Resistance	≥ Initial Value x 0.3 (See Above)	Remove from chamber and stabilize at room temperature and humidity for 24 ± 2 hours before measuring.				
	Dielectric Strength	Meets Initial Values (As Above)					

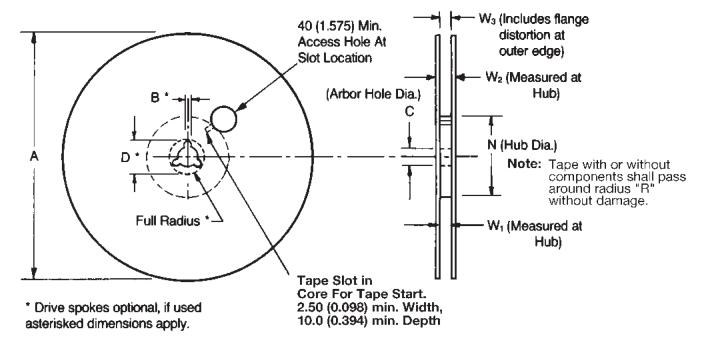
X7R Capacitance Range

PREFERRED SIZES ARE SHADED

	SIZE	.	(040	2			06	503					(080	5						12	06							12	10				1	808	В		18	12		:	222	0
		WVDC	16	25	50	10	16	25	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
Сар	220	221			00		1.0	1	100	1.00	200						200	200				- 00	1.00		200	000						200		000	- 00						200		- 00	
(pF)	270	271																					t		\Box				T		\Box	\neg					П				т	П	г	$\overline{}$
(pi)	330	331						1															t								\Box	\neg									\vdash	П	г	$\overline{}$
	390	391						 	t	1	 														\vdash			\vdash	t	t	\Box										\vdash	М	М	$\overline{}$
	470	471						1		1	<u> </u>										\vdash		H		\vdash			\vdash	_		\vdash	\neg	\neg								\vdash	П	г	$\overline{}$
	560	561							1	1													\vdash		\vdash				t		\vdash	\neg				\vdash				\vdash	т	Н	г	$\overline{}$
	680	681						1		1													H						\vdash		H	\dashv								H	\vdash	Н	H	\vdash
	820	821						1		+													\vdash						 		\vdash	\neg									\vdash	М	М	\vdash
	1000	102						+		+													\vdash		\vdash			\vdash	\vdash		\vdash	\dashv					H				Н	Н	М	\vdash
	1200	122								+													\vdash		\vdash			\vdash	\vdash		\vdash	\dashv	_			\vdash				\vdash	Н	Н	Н	\vdash
	1500	152						╁	1	+					_																						H				\vdash	Н	H	\vdash
																									\vdash						\vdash				-	\vdash	\vdash		\vdash	\vdash	\vdash	Н	ш	\vdash
	1800	182																							\vdash											\vdash	Н		\vdash	\vdash	Н	Н	ш	\vdash
	2200	222																							\vdash						\vdash					\vdash	\vdash			\vdash	\vdash	Н	\vdash	\vdash
	2700	272																							\vdash						\vdash					\vdash	Н		\vdash	\vdash	\vdash	Н	\vdash	\vdash
	3300	332																							\vdash						\vdash		-			\vdash	Н		\vdash	\vdash	\vdash	Н	\vdash	\vdash
	3900	392			-		+-	+-	+-	+	-								-	-			┢		\vdash		-	-	-	-	\vdash	-	-			\vdash			-		₩	Н	\vdash	\vdash
	4700	472						1	1	+	-												⊢		\vdash				-		\vdash		_								\vdash	Н	\vdash	\vdash
	5600	562			-		-	+	\vdash	+	_				_								⊢		\vdash				-		\vdash	\dashv	-			\vdash			\vdash	H	\vdash	Н		\vdash
	6800	682			-		\vdash	₩	-	+	-				_				-	-			⊢		\vdash			-	-	-	\vdash	-	-			\vdash			┢	<u> </u>	⊢	\vdash	├-	\vdash
	8200	822			₩		\vdash	₩	┈	╀	-								┢	┢			┢		\vdash		┝	-	┢	┢	H		-						┢			\vdash	ሥ	\vdash
	0.010	103						-	-	-	-									-	<u> </u>		⊢		\vdash				-	-	\vdash		-			H					\blacksquare	\vdash	⊢-'	\vdash
uF	0.012	123		L	-		-	-	<u> </u>	-	-				_								⊢		Н			-	-	-	\vdash		-						_			\vdash	⊢-'	⊢
	0.015	153		L	-		-	├	-														┡						_		\vdash								_			\vdash	<u> </u>	\vdash
	0.018	183		_	-		-	╄	-	-										_	_		┡					_	₩	-	\sqcup		_						-		\blacksquare	\vdash	<u> </u>	\vdash
	0.022	223		<u> </u>			-	₩	_	_	_									<u> </u>	_		┡		\vdash			<u> </u>	_	_	\sqcup		_						_		\blacksquare	\vdash	└	⊢
	0.027	273		<u> </u>			_	_	_											_			_						_		Ш					<u> </u>			_		\blacksquare	ш	<u> </u>	_
	0.033	333			_		_	_	<u> </u>											_									_	_	Ш		_									ш	<u> </u>	\vdash
	0.039	393			_		_	_	_											_	_		╙		\vdash			_	_		ш		_			lacksquare						\sqcup	<u> </u>	_
	0.047	473					<u> </u>	<u> </u>	_														_						_		Ш					_						ш	<u> </u>	
	0.056	563							<u> </u>																Ш						Ш											Ш	<u> </u>	
	0.068	683		$oxed{oxed}$	_						_						Ш								\sqcup											\vdash	Ш					\sqcup	<u> </u>	_
	0.082	823	_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1												Ш								ш											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш					\square	<u> </u>	_
	0.10	104		$ldsymbol{ldsymbol{ldsymbol{eta}}}$													Ш								Ш											$oxed{oxed}$	Ш						<u> </u>	
	0.12	124		$oxed{oxed}$	_				_	_							Щ							$ldsymbol{ldsymbol{ldsymbol{eta}}}$	\sqcup											$oxed{oxed}$	Ш							
	0.15	154	_	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1				_	_							Щ							$oxed{oxed}$	\sqcup											$ldsymbol{ldsymbol{ldsymbol{eta}}}$	Ш							
	0.22	224		$oxedsymbol{oxed}$													Ш								Ш							[$oxedsymbol{oxed}$	Ш							
	0.33	334																							\sqcup												\Box				\Box			
	0.47	474	L	L		L	L	L	\perp	\perp							oxdot						L	\Box	ШΙ						ШΙ	_]	I			L	oxdot			L	oxdot			
	0.56	564							L																Ш						\Box									Ĺ				
	0.68	684																													ШΤ		\Box T											
	0.82	824																							Ш																			
	1.0	105																																										
	1.2	125																																										
	1.5	155																							П						П													
	WVD0		16	25	50	10	16	25	50	100	200	10	16	25	50	100	200	250	10	16	25	50	100	200	250	500	10	16	25	50	100	200	250	500	50	100	200	50	100	200	250	25	50	100
							, .,				,									, .,				,	,			, .,	,_,															
	SIZE	-	(040	2			U	503					_ (080	อ						12	U6							12	10				1	808	5		18	12			222	U

Packaging of Chip Components

Automatic Insertion Packaging



TAPE & REEL QUANTITIES

All tape and reel specifications are in compliance with RS481.

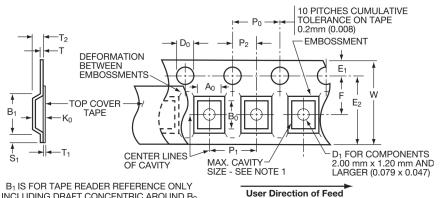
	4mm	8mm	12mm	
Paper or Embossed Carrier		0612, 0508, 0805, 1206, 1210		
Embossed Only	0101		1808	1812, 1825 2220, 2225
Paper Only		0101, 0201, 0306, 0402, 0603		
Qty. per Reel/7" Reel	4,000	1,000, 2,000, 3,000 or 4,000, 10,000, 15,000, 20,000 Contact factory for exact quantity	3,000	500, 1,000 Contact factory for exact quantity
Qty. per Reel/13" Reel		5,000, 10,000, 50,000 Contact factory for exact quantity	10,000	4,000

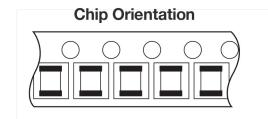
REEL DIMENSIONS

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W ₃
4mm	1.80 (7.087)	1.5 (0.059)	13.0±0.5 (0.522±0.020)	20.2 (0.795)	60.0 (2.362)	4.35±0.3 (0.171±0.011)	7.95 (0.312)	
8mm	330	1.5	13.0 ^{+0.50}	20.2	50.0	8.40 ^{+1.5} (0.331 ^{+0.059})	14.4 (0.567)	7.90 Min. (0.311) 10.9 Max. (0.429)
12mm	(12.992)	(0.059)	(0.512 ^{+0.020} _{-0.008})	(0.795)	(1.969)	12.4 ^{+2.0} (0.488 ^{+0.079})	18.4 (0.724)	11.9 Min. (0.469) 15.4 Max. (0.607)

Metric dimensions will govern.

English measurements rounded and for reference only.


⁽¹⁾ For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.



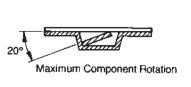
Embossed Carrier Configuration

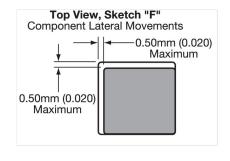
4, 8 & 12mm Tape Only

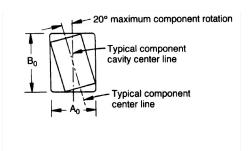
INCLUDING DRAFT CONCENTRIC AROUND BO

4, 8 & 12mm Embossed Tape **Metric Dimensions Will Govern**

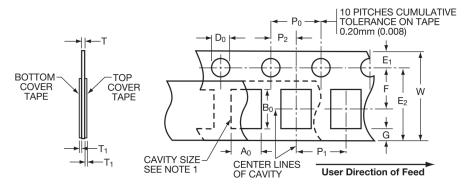
CONSTANT DIMENSIONS


Tape Size	D _o	D ₀ E ₁ P ₀		P ₂	S ₁ Min.	T Max.	T₁ Max.
4mm	0.80±0.04	0.90±0.05	2.0±0.04	1.00±0.02	1.075	0.26	0.06
	(0.031±0.001)	(0.035±0.001)	(0.078±0.001)	(0.039±0.0007)	(0.042)	(0.010)	(0.002)
8mm	$1.50_{ -0.0}^{ +0.10} \\ (0.059_{ -0.0}^{ +0.004})$	1.75 ± 0.10	4.0 ± 0.10	2.0 ± 0.05	0.60	0.60	0.10
& 12mm		(0.069 ± 0.004)	(0.157 ± 0.004)	(0.079 ± 0.002)	(0.024)	(0.024)	(0.004)


VARIABLE DIMENSIONS


Tape Size	B ₁ Max.	D ₁ Min.	E ₂ Min.	F	P ₁ See Note 5	R Min. See Note 2	T ₂	W Max.	A _o B _o K _o
8mm	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	4.00 ± 0.10 (0.157 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1
8mm 1/2 Pitch	4.35 (0.171)	1.00 (0.039)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	2.00 ± 0.10 (0.079 ± 0.004)	25.0 (0.984)	2.50 Max. (0.098)	8.30 (0.327)	See Note 1
12mm Double Pitch	8.20 (0.323)	1.50 (0.059)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	8.00 ± 0.10 (0.315 ± 0.004)	30.0 (1.181)	6.50 Max. (0.256)	12.3 (0.484)	See Note 1

- 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that:
 - b) the component does not protrude beyond the sealing plane of the cover tape.
 - c) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed.
 - d) rotation of the component is limited to 20° maximum (see Sketches D & E).
 - e) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556.
- 4. B₁ dimension is a reference dimension for tape feeder clearance only. 5. If P_1 = 2.0mm, the tape may not properly index in all tape feeders.

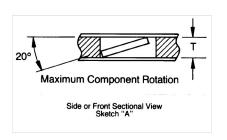


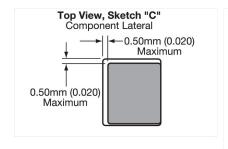
Paper Carrier Configuration

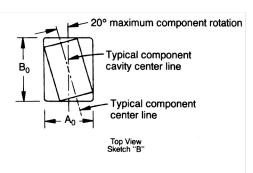
8 & 12mm Tape Only

4, 8 & 12mm Embossed Tape Metric Dimensions Will Govern

CONSTANT DIMENSIONS


Tape Size	D _o	Е	P ₀	P ₂	T ₁	G. Min.	R Min.
8mm and 12mm	1.50 ^{+0.10} (0.059 ^{+0.004})	1.75 ± 0.10 (0.069 ± 0.004)	4.00 ± 0.10 (0.157 ± 0.004)	2.00 ± 0.05 (0.079 ± 0.002)	0.10 (0.004) Max.	0.75 (0.030) Min.	25.0 (0.984) See Note 2 Min.


VARIABLE DIMENSIONS


Tape Size	P ₁ See Note 4	E₂ Min.	F	w	A ₀ B ₀	Т
8mm	4.00 ± 0.10 (0.157 ± 0.004)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} (0.315 ^{+0.012} (0.315 -0.004)	See Note 1	1.10mm (0.043) Max.
12mm	4.00 ± 0.10 (0.157 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		for Paper Base Tape and
8mm 1/2 Pitch	2.00 ± 0.05 (0.079 ± 0.002)	6.25 (0.246)	3.50 ± 0.05 (0.138 ± 0.002)	8.00 ^{+0.30} -0.10 (0.315 ^{+0.012})		1.60mm
12mm Double Pitch	8.00 ± 0.10 (0.315 ± 0.004)	10.25 (0.404)	5.50 ± 0.05 (0.217 ± 0.002)	12.0 ± 0.30 (0.472 ± 0.012)		(0.063) Max. for Non-Paper Base Compositions

NOTES:

- The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that:
 - a) the component does not protrude beyond either surface of the carrier tape;
- b)) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed;
- c) rotation of the component is limited to 20° maximum (see Sketches A & B);
- d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C).
- 2. Tape with or without components shall pass around radius "R" without damage.
- 3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556.
- 4. If P_1 = 2.0mm, the tape may not properly index in all tape feeders.

Bar Code Labeling Standard

AVX bar code labeling is available and follows latest version of EIA-556

Basic Capacitor Formulas

I. Capacitance (farads)

English:
$$C = \frac{.224 \text{ K A}}{T_{\text{D}}}$$

Metric: $C = \frac{.0884 \text{ K A}}{T_{\text{D}}}$

II. Energy stored in capacitors (Joules, watt - sec)

$$E = \frac{1}{2} CV^2$$

III. Linear charge of a capacitor (Amperes)

$$I = C \frac{dV}{dt}$$

IV. Total Impedance of a capacitor (ohms)

$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

V. Capacitive Reactance (ohms)

$$x_C = \frac{1}{2 \pi fC}$$

VI. Inductive Reactance (ohms)

$$x_i = 2 \pi fL$$

VII. Phase Angles:

Ideal Capacitors: Current leads voltage 90° Ideal Inductors: Current lags voltage 90° Ideal Resistors: Current in phase with voltage

VIII. Dissipation Factor (%)

D.F.=
$$\tan \delta$$
 (loss angle) = $\frac{\text{E.S.R.}}{X_{\text{C}}}$ = (2 π fC) (E.S.R.)

IX. Power Factor (%)

P.F. = Sine (loss angle) = $\cos \varphi$ (phase angle)

P.F. = (when less than 10%) = DF

X. Quality Factor (dimensionless)

Q = Cotan
$$\delta$$
 (loss angle) = $\frac{1}{D.E}$

XI. Equivalent Series Resistance (ohms)

E.S.R. = (D.F.) (Xc) = (D.F.) / (2
$$\pi$$
 fC)

XII. Power Loss (watts)

Power Loss = $(2 \pi fCV^2)$ (D.F.)

XIII. KVA (Kilowatts)

 $KVA = 2 \pi fCV^2 \times 10^{-3}$

XIV. Temperature Characteristic (ppm/°C)

T.C. =
$$\frac{Ct - C_{25}}{C_{25} (T_t - 25)} \times 10^6$$

XV. Cap Drift (%)

C.D. =
$$\frac{C_1 - C_2}{C_1}$$
 x 100

XVI. Reliability of Ceramic Capacitors

$$\begin{array}{c} L_{o} = \left(\frac{V_{t}}{V_{o}} \right) X & \left(\frac{T_{t}}{T_{o}} \right) \end{array} \label{eq:loss_problem}$$

XVII. Capacitors in Series (current the same)

Any Number:
$$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} - \cdots \frac{1}{C_N}$$
 Two: $C_T = \frac{C_1 \ C_2}{C_1 + C_2}$

XVIII. Capacitors in Parallel (voltage the same)

$$C_T = C_1 + C_2 --- + C_N$$

XIX. Aging Rate

A.R. = $\%\Delta$ C/decade of time

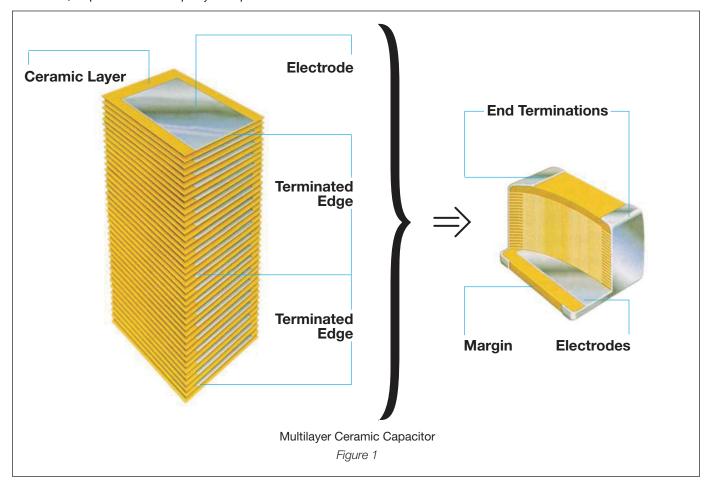
XX. Decibels

$$db = 20 \log \frac{V_1}{V_2}$$

METRIC PREFIXES

Dies	V 10-12
Pico	X 10 ⁻¹²
Nano	X 10 ⁻⁹
Micro	X 10 ⁻⁶
Milli	X 10 ⁻³
Deci	X 10 ⁻¹
Deca	X 10 ⁺¹
Kilo	X 10 ⁺³
Mega	X 10 ⁺⁶
Giga	X 10 ⁺⁹
Tera	X 10 ⁺¹²

SYMBOLS


K = Dielectric Constant	f = frequency	L _t = Test life
A = Area	L = Inductance	V _t = Test voltage
T _D = Dielectric thickness	δ = Loss angle	V _o = Operating voltage
V = Voltage	φ = Phase angle	T _t = Test temperature
t = time	X & Y = exponent effect of voltage and temp.	T _o = Operating temperature
R _s = Series Resistance	L _o = Operating life	

Basic Construction – A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in

today's electronic equipment.

Formulations – Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2.

Class 1 – Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are COG (NPO) temperature compensating capacitors (negative-positive 0 ppm/°C).

Class 2 – EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only ±15% over the temperature range of -55°C to 125°C. It finds applications where stability over a wide temperature range is required.

The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30°C to 85°C temperature range.

All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap.

Table 1: EIA and MIL Temperature Stable and General Application Codes

EIA CODE Percent Capacity Change Over Temperature Range						
RS198	Temperature Range					
X7	-55°C to +125°C					
X6	-55°C to +105°C					
X5	-55°C to +85°C					
Y5	-30°C to +85°C					
Z5	+10°C to +85°C					
Code	Percent Capacity Change					
D	±3.3%					
E	±4.7%					
F	±7.5%					
Р	±10%					
R	±15%					
S	±22%					
T	+22%, -33%					
U	+22%, - 56%					
V	+22%, -82%					

EXAMPLE – A capacitor is desired with the capacitance value at 25°C to increase no more than 7.5% or decrease no more than 7.5% from -30°C to +85°C. EIA Code will be Y5F.

MIL CODE								
Symbol	Temperature Range							
Α	-55°C t	to +85°C						
В	-55°C to	o +125°C						
С	-55°C to	o +150°C						
Comple ed	Cap. Change	Cap. Change Rated Volts						
Symbol	Zero Volts							
R	+15%, -15%	+15%, -40%						
S	+22%, -22%	+22%, -56%						
W	+22%, -56%	+22%, -66%						
X	+15%, -15%	+15%, -25%						
Υ	+30%, -70%	+30%, -80%						
7	+20%20%	+20%30%						

Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor.

In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system.

Effects of Voltage – Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage.

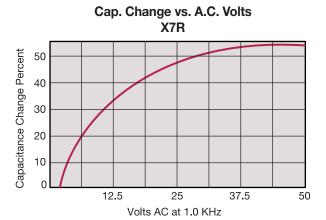


Figure 2

Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages.

D.F. vs. A.C. Measurement Volts X7R

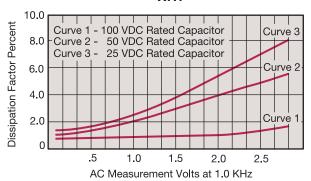
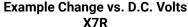
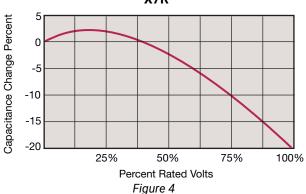




Figure 3

Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic.

Example Cap. Change vs. Temperature X7R

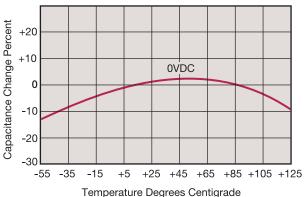


Figure 5

Effects of Time – Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6.

If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125°C for 4 hours or 150°C for 1/2 hour will suffice) the part will de-age and return to its initial capacitance and dissi-pation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twentyfour hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed.

Example Curve of Aging Rate X7R

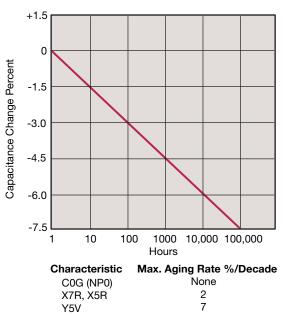


Figure 6

Effects of Frequency – Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com.

Effects of Mechanical Stress – High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications.

Reliability – Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is:

$$\frac{L_o}{L_t} = \left(\frac{V_t}{V_o}\right) X \left(\frac{T_t}{T_o}\right) Y$$

where

 $\begin{array}{ll} \textbf{L}_{\text{o}} = \text{operating life} & \textbf{T}_{\text{t}} = \text{test temperature and} \\ \textbf{L}_{\text{t}} = \text{test life} & \textbf{T}_{\text{o}} = \text{operating temperature} \\ \textbf{V}_{\text{t}} = \text{test voltage} & \text{in } ^{\circ}\text{C} \end{array}$

 V_0 = operating voltage X,Y = see text

Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8.

A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is:

$$C = \frac{.224 \text{ KA}}{t}$$

C = capacitance (picofarads)

K = dielectric constant (Vacuum = 1)

A = area in square inches

t = separation between the plates in inches (thickness of dielectric)

.224 = conversion constant (.0884 for metric system in cm)

Capacitance – The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level.

Dielectric Constant – In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum.

Dielectric Thickness – Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume.

Area – Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group.

Energy Stored – The energy which can be stored in a capacitor is given by the formula:

$$E = \frac{1}{2}CV^2$$

E = energy in joules (watts-sec)

V = applied voltage

C = capacitance in farads

Potential Change – A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor:

$$I_{ideal} = C \frac{dV}{dt}$$

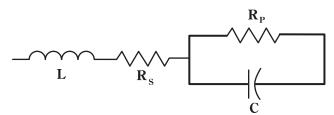
where

I = Current

C = Capacitance

dV/dt = Slope of voltage transition across capacitor

Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation.


Equivalent Circuit – A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is:

C = Capacitance L

L = Inductance

R_s = Series Resistance

R_p = Parallel Resistance

Reactance – Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is:

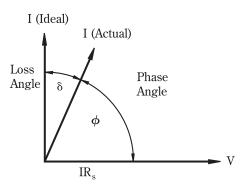
$$Z = \sqrt{R_S^2 + (X_C - X_L)^2}$$

where

Z = Total Impedance

R_s = Series Resistance

 X_c = Capacitive Reactance = $\frac{1}{2 \pi fC}$


 X_1 = Inductive Reactance = $2 \pi fL$

ance with frequency determi

The variation of a capacitor's impedance with frequency determines its effectiveness in many applications.

Phase Angle – Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90°.

In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and:

> Power Factor (P.F.) = $\cos \varphi$ or $\sin \delta$ Dissipation Factor (D.F.) = $tan \delta$

for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry.

Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection.

Dissipation Factor - The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor.

Dissipation Factor =
$$\frac{\text{E.S.R.}}{X_{\odot}}$$
 = (2 π fC) (E.S.R.)

The watts loss are:

Watts loss = $(2 \pi fCV^2)$ (D.F.)

Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors.

Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation:

$$V = L \frac{di}{dt}$$

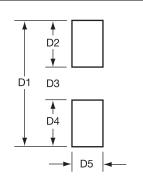
The $\frac{dl}{dt}$ seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage.

Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation:

$$f_{\text{res}} = \frac{1}{2\pi\sqrt{\text{LC}}}$$

Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance RP shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm farads or more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law).

Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil.


Dielectric Absorption - A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions.

Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures.

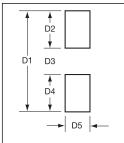
MLC Chip Capacitors

REFLOW SOLDERING

Case Size	D1	D2	D3	D4	D5
0201	0.85 (0.033)	0.30 (0.012)	0.25 (0.010)	0.30 (0.012)	0.35 (0.014)
0402	1.70 (0.067)	0.60 (0.024)	0.50 (0.020)	0.60 (0.024)	0.50 (0.020)
0603	2.30 (0.091)	0.80 (0.031)	0.70 (0.028)	0.80 (0.031)	0.75 (0.030)
0805	3.00 (0.118)	1.00 (0.039)	1.00 (0.039)	1.00 (0.039)	1.25 (0.049)
1206	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	1.60 (0.063)
1210	4.00 (0.157)	1.00 (0.039)	2.00 (0.079)	1.00 (0.039)	2.50 (0.098)
1808	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	2.00 (0.079)
1812	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	3.00 (0.118)
1825	5.60 (0.220)	1.00 (0.039)	3.60 (0.142)	1.00 (0.039)	6.35 (0.250)
2220	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	5.00 (0.197)
2225	6.60 (0.260)	1.00 (0.039)	4.60 (0.181)	1.00 (0.039)	6.35 (0.250)

Dimensions in millimeters (inches)

Component Pad Design


Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is:

· Pad width equal to component width. It is permissible to

decrease this to as low as 85% of component width but it is not advisable to go below this.

- · Pad overlap 0.5mm beneath component.
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering.

WAVE SOLDERING

Case Size	D1	D2	D3	D4	D5
0603	3.10 (0.12)	1.20 (0.05)	0.70 (0.03)	1.20 (0.05)	0.75 (0.03)
0805	4.00 (0.15)	1.50 (0.06)	1.00 (0.04)	1.50 (0.06)	1.25 (0.05)
1206	5.00 (0.19)	1.50 (0.06)	2.00 (0.09)	1.50 (0.06)	1.60 (0.06)

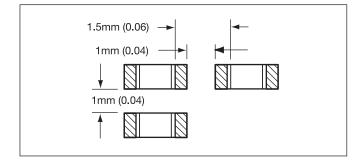
Dimensions in millimeters (inches)

Component Spacing

For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required.

Preheat & Soldering

The rate of preheat should not exceed 4°C/second to prevent thermal shock. A better maximum figure is about 2°C/second.


For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150°C. In all other cases this differential should not exceed 100°C.

For further specific application or process advice, please consult AVX.

Cleaning

Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor.

Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse.

Recommended Soldering Profiles

REFLOW SOLDER PROFILES

AVX RoHS compliant products utilize termination finishes (e.g.Sn or SnAg) that are compatible with all Pb-Free soldering systems and are fully reverse compatible with SnPb soldering systems. A recommended SnPb profile is shown for comparison; for Pb-Free soldering, IPC/ JEDECJ- STD-020C may be referenced. The upper line in the chart shows the maximum envelope to which products are qualified (typically 3x reflow cycles at 260°C max). The center line gives the recommended profile for optimum wettability and soldering in Pb-Free Systems.

Preheat:

The pre-heat stabilizes the part and reduces the temperature differential prior to reflow. The initial ramp to 125°C may be rapid, but from that point (2-3)°C/sec is recommended to allow ceramic parts to heat uniformly and plastic encapsulated parts to stabilize through the glass transition temperature of the body (~ 180 °C).

Reflow:

In the reflow phase, the maximum recommended time > 230°C is 40secs. Time at peak reflow is 10secs max.; optimum reflow is achieved at 250°C, (see wetting balance chart opposite) but products are qualified to 260°C max. Please reference individual product datasheets for maximum limits

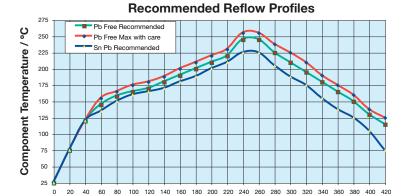
Cool Down:

Cool down should not be forced and 6°C/sec is recommended. A slow cool down will result in a finer grain structure of the reflow solder in the solder fillet.

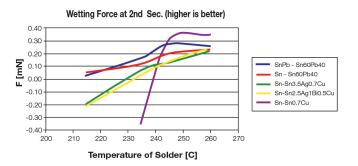
WAVE SOLDER PROFILES

For wave solder, there is no change in the recommended wave profile; all standard Pb-Free (SnCu/SnCuAg) systems operate at the same 260°C max recommended for SnPb systems.

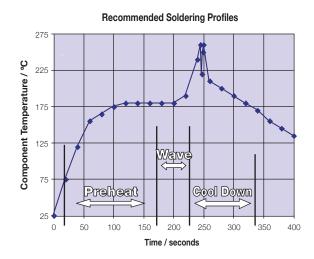
Preheat:


This is more important for wave solder; a higher temperature preheat will reduce the thermal shock to SMD parts that are immersed (please consult individual product data sheets for SMD parts that are suited to wave solder). SMD parts should ideally be heated from the bottom-Side prior to wave. PTH (Pin through hole) parts on the topside should not be separately heated.

Wave:


250°C - 260°C recommended for optimum solderability.

Cool Down:


As with reflow solder, cool down should not be forced and 6°C/sec is recommended. Any air knives at the end of the 2nd wave should be heated.

Time / secs

IMPORTANT NOTE: Typical Pb-Free reflow solders have a more dull and grainy appearance compared to traditional SnPb. Elevating the reflow temperature will not change this, but extending the cool down can help improve the visual appearance of the joint.

MLC Chip Capacitors

APPLICATION NOTES

Storage

The components should be stored in their "as received packaging" where possible. If the components are removed from their original packaging then they should be stored in an airtight container (e.g. a heat sealed plastic bag) with desiccant (e.g. silica gel). Storage area temperature should be kept between +5 degrees C and +30 degrees C with humidity < 70% RH. Storage atmosphere must be free of gas containing sulfur and chlorine. Avoid exposing the product to saline moisture or to temperature changes that might result in the formation of condensation. To assure good solderability performance we recommend that the product be used within 6 months from our shipping date, but can be used for up to 12 months. Chip capacitors may crack if exposed to hydrogen (H2) gas while sealed or if coated with silicon, which generates hydrogen gas.

Solderability

Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 245°C +/- 5°C for 5 +0/-0.5 seconds.

Leaching

Terminations will resist leaching for at least the immersion times and conditions shown below.

Termination Type	Solder Tin/	Solder	Immersion	
	Lead/Silver	Temp °C	Time Seconds	
Nickel Barrier	60/40/0	260 ± 5	30 ± 1	

Lead-Free Wave Soldering

The recommended peak temperature for lead-free wave soldering is 250°C-260°C for 3-5 seconds. The other parameters of the profile remains the same as above.

The following should be noted by customers changing from lead based systems to the new lead free pastes.

- A. The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large.
- B. Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified.

General

Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods.

Handling

Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors.

Preheat

It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4°C/second and a target figure 2°C/second is recommended. Although an 80°C to 120°C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150°C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases.

Soldering

Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools.

Cooling

Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4°C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above.

Cleaning

Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD-202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors.

Prevention of Metallic Migration

Note that when components with Sn plating on the end terminations are to be used in applications that are likely to experience conditions of high humidity under bias voltage, we strongly recommend that the circuit boards be conformally coated to protect the Sn from moisture that might lead to migration and eventual current leakage.

When using Capacitor Arrays we recommend that there is no differential in applied voltage between adjacent elements.

MLC Chip Capacitors

POST SOLDER HANDLING

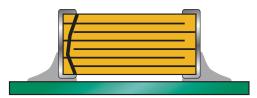
Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection.

Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes.

Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms:

Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping.

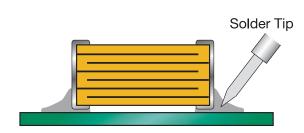
COMMON CAUSES OF MECHANICAL CRACKING


The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, v-cutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken.

A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components.

Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards.

Type A: Angled crack between bottom of device to top of solder joint.

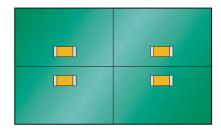


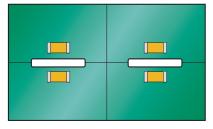
Type B: Fracture from top of device to bottom of device.

REWORKING OF MLCS

Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow.

However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300°C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor.


Preferred Method - No Direct Part Contact


Poor Method - Direct Contact with Part

PCB BOARD DESIGN

To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located.

No Stress Relief for MLCs

Routed Cut Line Relieves Stress on MLC

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

FOLLOW US: O 🗷 🖪 D in

VISIT US AT WWW.AVX.COM

North America

Tel: +1 864-967-2150

Central America

Tel: +55 11-46881960

Europe

Tel: +44 1276-697000

Asia

Tel: +65 6286-7555

Japan

Tel: +81 740-321250

单击下面可查看定价,库存,交付和生命周期等信息

>>AVX