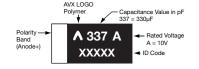

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

FEATURES

- Conductive Polymer Electrode, Multianode Design
- Benign Failure Mode Under Recommended Use Conditions
- · Extremely Low ESR
- 3x Reflow 260°C Compatible
- 100% Surge Current Tested
- Volumetric Efficiency
- · High Frequency Capacitance Retention

Electro 2010

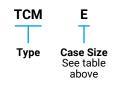


SnPb termination option is not RoHS compliant.

APPLICATIONS

- · Telecommunication Routers
- · Base Stations with High Power DC/DCs

MARKING E. V CASE


CASE DIMENSIONS:

millimeters (inches)

Code	EIA Code	EIA Metric	L±0.20 (0.008)	W+0.20 (0.008) -0.10 (0.004)	H+0.20 (0.008) -0.10 (0.004)	W ₁ ±0.20 (0.008)	A+0.30 (0.012) -0.20 (0.008)	S Min.
E	2917	7343-43	7.30 (0.287)	4.30 (0.169)	4.10 (0.162)	2.40 (0.094)	1.30 (0.051)	4.40 (0.173)
V	2924	7361-38	7.30 (0.287)	6.10 (0.240)	3.55 (0.140)	3.10 (0.122)	1.30 (0.051)	4.40 (0.173)

W₁ dimension applies to the termination width for A dimensional area only.

HOW TO ORDER

Capacitance Code
pF code: 1st two digits
represent significant
figures, 3rd digit represents
multiplier (number of zeros
to follow)

108

M T Foleranc

Tolerance M = ±20% ated DC Voltag

004

Rated DC Voltage 002 = 2.5Vdc 004 = 4Vdc 006 = 6.3Vdc 010 = 10Vdc

016 = 16Vdc 016 = 16Vdc 020 = 20Vdc 025 = 25Vdc 035 = 35Vdc 050 = 50Vdc

100 = 100Vdc

R

Packaging
R = Pure Tin 7" Reel
S = Pure Tin 13" Reel
H = Tin Lead 7" Reel
K = Tin Lead 13" Reel

0010

ESR in mΩ

Additional

Ε

Additional Character E = Black resin

TECHNICAL SPECIFICATIONS

Technical Data:	All technical data relate to an ambient temperature of +25°C
Capacitance Range:	10μF to1000μF
Capacitance Tolerance:	±20%
Leakage Current DCL:	0.1CV
Temperature Range:	-55°C to +125°C
Termination Finish:	Sn Plating (standard) and SnPb Plating

NOTE: Conductive Polymer Capacitors are designed to operate within the limits of the environmental conditions specified for each series. If operated continuously at their maximum temperature and / or humidity limit, or beyond these limits, capacitors may exhibit a parametric shift in capacitance and increases in ESR. These changes may occur earlier if the specified environmental conditions are exceeded. Similarly, their normal operational time period will be significantly extended if their general duty cycle includes operation below maximum temperature within humidity controlled environments. Careful attention should be paid to maximum temperature with associated high humidity environments as well as voltage derating, ripple current and current surges. Please reference the AVX Conductive Polymer Capacitor Guidelines for more information or contact factory for application assistance.

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors

CAPACITANCE AND RATED VOLTAGE RANGE (LETTER DENOTES CASE SIZE)

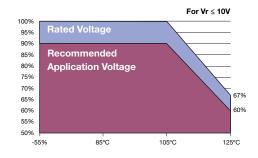
Capac	itance				Rated Voltage DC (V _R) to 105°C						
μF	Code	2.5V (e)	4V (G)	6.3V (J)	10V (A)	16V (C)	20V (D)	25V (E)	35V (V)	50V (T)	100V (A)
10	106										V(50)
15	156									E(100)	
22	226								E(25)	E(75)	
33	336							E(60)	E(60)		
47	476							E(60)	E(45,60)		
68	686						E(25)	E(50)			
100	107					E(25)	E(25)				
150	157					E(25,40)					
220	227				E(25)	E(25,40)					
330	337			E(10,15)	E(10,15)	E(15, 25)					
470	477	E(10,12)	E(10,12)	E(7,10,12)	E(15, 25)						
680	687	E(10,12)	E(10,12)	E(12)							
1000	108	E(6,10,12)	E(6,8,10,12)								

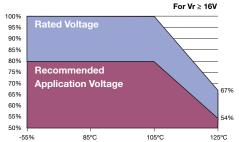
Released ratings, (ESR ratings in mOhms in parentheses)

Note: Voltage ratings are minimum values. AVX reserves the right to supply higher voltage ratings in the same case size, to the same reliability standards.

RATINGS & PART NUMBER REFERENCE

AVX Part No.		Capacitance (μF)	Rated Voltage (V)	Maximum Operating Temperature (°C)	DCL Max. (μA)	DF Max. (%)	ESR Max. @ 100kHz (mΩ)	100kHz RMS Current (mA)			
	Case Size							45°C	85°C	125°C	MSL
				2.5 Volt	@ 105°C						
TCME477M002#0010E	E	470	2.5	125	117.5	10	10	6400	4500	1600	3
TCME477M002#0012E	E	470	2.5	125	117.5	10	12	5800	4100	1500	3
TCME687M002#0010E	E	680	2.5	125	170	10	10	6400	4500	1600	3
TCME687M002#0012E	Е	680	2.5	125	170	10	12	5800	4100	1500	3
TCME108M002#0006E	E	1000	2.5	125	250	10	6	8300	5800	2100	3
TCME108M002#0010E	E	1000	2.5	125	250	10	10	6400	4500	1600	3
TCME108M002#0012E	Е	1000	2.5	125	250	10	12	5800	4100	1500	3
				4 Volt	@ 105°C						
TCME477M004#0010E	E	470	4	125	188	8	10	6400	4500	1600	3
TCME477M004#0012E	Е	470	4	125	188	8	12	5800	4100	1500	3
TCME687M004#0010E	Е	680	4	125	272	8	10	6400	4500	1600	3
TCME687M004#0012E	Е	680	4	125	272	8	12	5800	4100	1500	3
TCME108M004#0006E	Е	1000	4	125	400	8	6	8300	5800	2100	3
TCME108M004#0008E	Е	1000	4	125	400	8	8	7200	5000	1800	3
TCME108M004#0010E	Е	1000	4	125	400	8	10	6400	4500	1600	3
TCME108M004#0012E	Е	1000	4	125	400	8	12	5800	4100	1500	3
				6.3 Volt	@ 105°C						
TCME337M006#0010E	Е	330	6.3	125	198	8	10	6400	4500	1600	3
TCME337M006#0015E	Е	330	6.3	125	198	8	15	5200	3600	1300	3
TCME477M006#0007E	Е	470	6.3	125	282	10	7	7700	5400	1900	3
TCME477M006#0010E	Е	470	6.3	125	282	10	10	6400	4500	1600	3
TCME477M006#0012E	Е	470	6.3	125	282	10	12	5800	4100	1500	3
TCME687M006#0012E	Е	680	6.3	125	408	8	12	5800	4100	1500	3
				10 Volt	@ 105°C	ı		ı		I.	
TCME227M010#0025E	Е	220	10	125	220	8	25	4000	2800	1000	3
TCME337M010#0010E	Е	330	10	125	330	8	10	6400	4500	1600	3
TCME337M010#0015E	Е	330	10	125	330	8	15	5200	3600	1300	3
TCME477M010#0015E	Е	470	10	125	470	10	15	5200	3600	1300	3
TCME477M010#0025E	Е	470	10	125	470	10	25	4000	2800	1000	3
				16 Volt	@ 105°C						
TCME107M016#0025E	E	100	16	125	160	8	25	4000	2800	1000	3
TCME157M016#0025E	Е	150	16	125	240	8	25	4000	2800	1000	3
TCME157M016#0040E	Е	150	16	125	240	8	40	3200	2200	800	3
TCME227M016#0025E	E	220	16	125	352	8	25	4000	2800	1000	3
TCME227M016#0040E	E	220	16	125	352	8	40	3200	2200	800	3
TCME337M016#0015E	E	330	16	125	528	8	15	5200	3600	1300	3
TCME337M016#0025E	E	330	16	125	528	8	25	4000	2800	1000	3
		555			@ 105°C						
TCME686M020#0025E	Е	68	20	125	136	8	25	4000	2800	1000	3
TCME107M020#0025E	E	100	20	125	200	8	25	4000	2800	1000	3


			Rated	Maximum			ESR Max.	100kH			
AVX Part No.	Case Size	Capacitance (µF)	Voltage (V)	Operating Temperature (°C)	DCL Max. (μA)	DF Max. (%)	@ 100kHz (mΩ)	45°C	85°C	125°C	MSL
25 Volt @ 105°C											
TCME336M025#0060E E 33 25 125 82.5 8 60 2600 1800 700 3									3		
TCME476M025#0060E	E	47	25	125	117.5	8	60	2600	1800	700	3
TCME686M025#0050E	E	68	25	125	170	8	50	2900	2000	700	3
				35 Volt	@ 105°C						
TCME226M035#0025E	E	22	35	125	77	8	25	4000	2800	1000	3
TCME336M035#0060E	Е	33	35	125	115.5	8	60	2600	1800	700	3
TCME476M035#0045E	E	47	35	125	164.5	8	45	3000	2100	800	3
TCME476M035#0060E	E	47	35	125	164.5	8	60	2600	1800	700	3
				50 Volt	@ 105°C						
TCME156M050#0100E	E	15	50	125	75	10	100	2000	1400	500	3
TCME226M050#0075E	Е	22	50	125	110	10	75	2300	1600	600	3
				100 Volt	@ 105°C						
TCMV106M100R/S0050E	V	10	100	125	100	8	50	2900	2000	700	3


Moisture Sensitivity Level (MSL) is defined according to J-STD-020. All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5RMS with DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes. ESR allowed to move up to 1.25 times catalog limit post mounting. For typical weight and composition see page 276. **NOTE: AVX reserves the right to supply higher voltage ratings or tighter tolerance part in the same case size, to the same reliability standards.**

RECOMMENDED DERATING FACTOR

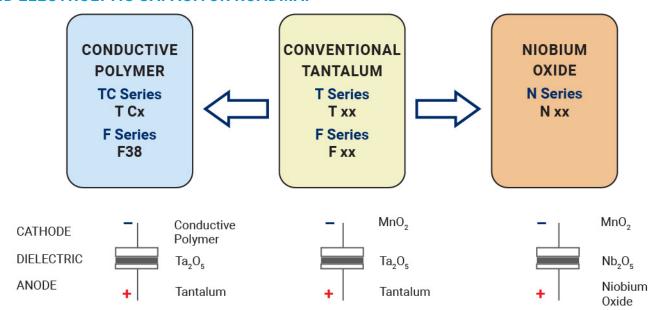
Voltage and temperature derating as percentage of Vr.

Rated	Operating Temperature							
voltage	≤85°C	105°C	125°C					
≤10V	90%	90%	60%					
≥16V	80%	80%	54%					

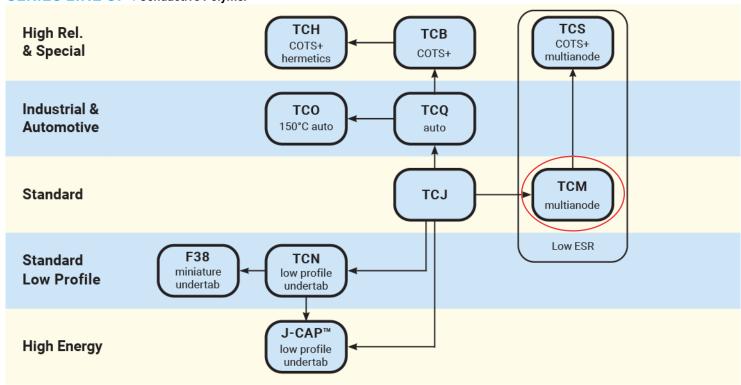
QUALIFICATION TABLE

			TCM serie	es (Temperature rang	je -55°C to	+125°C						
TEST		Condition			Cha	Characteristics						
				Visual examination	no visible damage							
		tage (Ur) at 105°C		DCL	1.25 x in	1.25 x initial limit						
Endurance Appl voltacircum temporal before tem		125°C for 2000 ho nce of ≤0.1Ω/V. Sta		ΔC/C	within ±2	20% of initia	l value					
		r 1-2 hours before		DF	1.5 x init	ial limit						
	temperature ro	i i z nodis belole	ineasuring.	ESR	no visible damage							
				Visual examination	no visible	e damage						
	Store at 125°C.	no voltage applied	l. for 2000	DCL	2 x initia							
Storage Life	1	at room temperat		ΔC/C	within ±2	within ±20% of initial value						
_	before measuring.			DF	1.5 x init	1.5 x initial limit						
				ESR	2 x initia	2 x initial limit						
				Visual examination	no visib	no visible damage						
	Store at 65°C and 95% relative humidity for 500 hours, with no applied voltage. Stabilize at room temperature and humidity for 1-2 hours before measuring.			DCL		3 x initial limit						
Humidity				ΔC/C	within +	within +30/-20% of initial value						
•				DF	1.5 x ini	1.5 x initial limit						
	ineasuring.			ESR	2 x initia	2 x initial limit						
	Step	Temperature°C	Duration(min)		+20°C	-55°C	+20°C	+85°C	+125°C	+20°C		
	1	+20	15		-			-				
Temperature	2 3	-55 +20	15 15	DCL	IL*	n/a	IL*	10 x IL*	12.5 x IL*	IL*		
	4	+85	15	ΔC/C	n/a	+0/-20%	+10%	+20/-0%	+30/-0%	+10%		
•	5	+125	15					-				
	6	+20	15	DF	L*	1.5 x IL*	IL*	1.5 x IL*	2xIL*	IL*		
	Apply 1.3x category voltage (Uc) at 125°C for			Visual examination	no visible	no visible damage						
O V-4		duration 6 min (30		DCL	initial lim	initial limit						
Surge Voltage		scharge) through a		ΔC/C	within +2	20/-30% of i	nitial value	ļ				
ı	discharge resis	tance of 1000Ω		DF	1.25 x in	1.25 x initial limit						

*Initial Limit


Initial measurement max. 1hr after the removal from dry pack or after pretreatment at 85°C for 24 hours.

Conductive Polymer Solid Electrolytic Chip Multianode Capacitors


SOLID ELECTROLYTIC CAPACITOR ROADMAP

FIVE CAPACITOR CONSTRUCTION STYLES

SERIES LINE UP: Conductive Polymer

/

单击下面可查看定价,库存,交付和生命周期等信息

>>AVX