16-CHANNEL MULTI-FUNCTION GPIO CONTROLLER WITH I²C INTERFACE

FEATURES

- 16-bit general-purpose I/O expander
- 16 multi-function I/O, each can be configured as GPIO input or output mode independently
- Dual power supply, supporting converting between V_{DD(P)} and V_{DD(I2C-BUS)}
- Selectable push-pull or open-drain output
- Interrupt latch function
- Four programmable output drive strengths
- Open-drain active LOW interrupt output(INTN)
- 1MHz I²C interface, 2 selectable addresses
- SCL/SDA inputs supports 1.8V logic input
- Power supply: 1.65V~5.5V
- Low standby current(<0.1uA)
- BGA 3.0mmX3.0mmX0.86mm-24B package

APPLICATIONS

Cell Phone Keyboard PDA/MP3/MP4/CD/Mini display Smart home appliance

GENERAL DESCRIPTION

AW95016A is a 16 channel general purpose I/O (GPIO) expander controller. Each channel can be configured as GPIO input or output separately.

There are two supply voltages for AW95016A:

 $V_{DD(P)}$ and $V_{DD(I2C-BUS)}$. $V_{DD(I2C-BUS)}$ provides the supply voltage for the interface at the master side and the $V_{DD(P)}$ provides the supply for internal circuits and GPIOs. $V_{DD(I2C-BUS)}$ should be connected to the power of the external SCL/SDA lines. The voltage level on Port Px_x of the AW95016A is determined by the $V_{DD(P)}$.

After power-on, all channels are configured as input by default. However, the system master can enable channels as either input or output by writing to configuration bits.

In GPIO input mode, when interrupt mask is closed, open-drain interrupt (INTN) is active when any input state differs from its corresponding input port register state and can be used to indicate to the system master that an input state has changed. After reading GPIO state through I²C interface, the interrupt is cleared. In output mode, each channel can be configured as push-pull or open-drain output independently.

AW95016A is available in BGA 3.0mmX3.0mmX 0.86mm-24B package. It operates from 1.65V to 5.5V over the temperature range of -40°C to +85°C.

TYPICAL APPLICATION CIRCUIT

In this application schematic, P0_0, P0_1 are configured as GPIO open-drain output to control the sub system, and external resistors R_7 , R_8 are needed, P1_0-P1_7 are configured as GPIO push-pull output, P0_2-P0_7 are configured as GPIO input, and external resistors R_1 - R_6 are needed when external resistors R_1 - R_6 are needed R_1 - R_6 - R_1 - R_6 - R_1 - R_1 - R_1 - R_1 - R_2 - R_1 - R_1 - R_2 - R_2 - R_2 - R_1 - R_2 -Rdriver is open-drain output or the input ports are floating.

If an output in Px_x port is configured as a push-pull output, there is no need for external pull-up resistors. If an output in Px_x port is configured as an open-drain output, external pull-up resistors are required. If an input in Px_x port is floating, external pull-up resistor may be needed, unless internal pull-up/pull-down resistor is configured.

AW95016A application circuit

PIN CONFIGURATION AND TOP MARK

Y4SW - AW95016ABGR XXXX – Production Tracing Code

2 (Top View)

4

5

PIN DEFINITION

awinic

No.	NAME	DESCRIPTION
A1	P0_0	Input/output port, GPIO input mode default. Can be configured as output mode.
A2	RESETN	Active low hardware reset pin.
A3	INTN	Open-drain active low interrupt output pin, external pull-up resistor is needed.
A4	SDA	Serial data I/O for I ² C interface.
A5	SCL	Serial clock input for I ² C interface.
B1	P0_2	Input/output port, GPIO input mode default. Can be configured as output mode.
В3	VDD(I2C- BUS)	Power supply for I ² C interface: 1.65V~5.5V.
B4	VDD(P)	Power supply for internal circuit and GPIO interface: 1.65V~5.5V.
B5	AD	I ² C interface device address, connects to GND, VDD(P) for different device address of I ² C.
C1	P0_3	Input/output port, GPIO input mode default. Can be configured as output mode.
C2	P0_4	Input/output port, GPIO input mode default. Can be configured as output mode.
C3	P0_1	Input/output port, GPIO input mode default. Can be configured as output mode.

awinic 上海艾为电子技术股份有限公司 shanghai awinic technology co., Itd.

C4	P1_7	Input/output port, GPIO input mode default. Can be configured as output mode.
C5	P1_6	Input/output port, GPIO input mode default. Can be configured as output mode.
D1	P0_5	Input/output port, GPIO input mode default. Can be configured as output mode.
D2	P0_7	Input/output port, GPIO input mode default. Can be configured as output mode.
D3	P1_2	Input/output port, GPIO input mode default. Can be configured as output mode.
D4	P1_4	Input/output port, GPIO input mode default. Can be configured as output mode.
D5	P1_5	Input/output port, GPIO input mode default. Can be configured as output mode.
E1	P0_6	Input/output port, GPIO input mode default. Can be configured as output mode.
E2	GND	Ground.
E3	P1_0	Input/output port, GPIO input mode default. Can be configured as output mode.
E4	P1_1	Input/output port, GPIO input mode default. Can be configured as output mode.
E5	P1_3	Input/output port, GPIO input mode default. Can be configured as output mode.

www.awinic.com

FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW95016ABGR	-40°C~85°C	BGA 3mmX3mm-24B	Y4SW	MSL3	ROHS+HF	3000 units/ Tape and Reel

ABSOLUTE MAXIMUM RATINGS(NOTE1)

P	ARAMETERS	RANGE		
Supply voltag	ge range V _{DD(P)} ,V _{DD(I2C-BUS)}	-0.3V to 6V		
Input voltage range	SCL, SDA, RESETN	-0.3V to V _{DD(l2C-BUS)}		
Output voltage range	AD, INTN, P0_0~P1_7	-0.3V to V _{DD(P)}		
Operating fro	ee-air temperature range	-40°C to 85°C		
Maximum operati	ng junction temperature T _{JMAX}	150°C		
Storage	e temperature T _{STG}	-65°C to 150°C		
Lead temperat	ure (soldering 10 seconds)	260°C		
	ESD (NOTE 2)			
	НВМ	±2000V		
	СДМ	±1500V		
	Latch-Up			
Г	est condition:	+IT: 200mA		
JEDEC STANDAR	RD NO.78E NOVEMBER 2016	-IT: -200mA		

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: MIL-STD-883J Method 3015.9 EIA/JESD22-C101F(CDM)

ELECTRICAL CHARACTERISTICS

V_{DD(P)}=1.65V to 5.5V, V_{DDI2C-BUS}=1.65V to 5.5V, T_A=25°C for typical values (unless otherwise noted)

Pa	arameter	Test Condition	Min.	Тур.	Max.	Unit
Power s	upply voltage an	d current				
VDD(P)	Supply voltage		1.65		5.5	V
VDD(I2C- BUS)	I ² C supply voltage		1.65	.0	5.5	V
Vpor	Power-on reset voltage		0.9	1.2	1.6	V
I _{SD}	Shutdown current	I _{DD(P)} +I _{DD(I2C-BUS)} ; RESETN=GND			1	μA
		IDD(P)+IDDI2C-BUS; RESETN= VDD(I2C-BUS), SCL, SDA, AD=GND, GPIO ports=GND or VDD(P)	0	0.5	5	μΑ
I _{STB}	Stand-by current	$\label{eq:ldd} \begin{split} & I_{DD(P)} + I_{DD(I2C-BUS)}; \\ & RESETN = V_{DD(I2C-BUS)}, \\ & GPIO \ ports = GND \ or \ V_{DD(P)}, \\ & AD, \ SDA = GND, \\ & f_{SCL} = 400 kHz \end{split}$		5	20	μΑ
Alo	Additional	SCL, SDA, RESETN; one input at $V_{DD(I2C-BUS)}$ -0.6V, other inputs at $V_{DD(I2C-BUS)}$; $V_{DD(P)}$ =1.65V to 5.5V			20	μA
	supply current	P port, AD; One input at $V_{DD(P)}$ -0.6V, Other inputs at $V_{DD(P)}$; $V_{DD(P)}$ =1.65V to 5.5V			75	μA
Digital p	in input					
V···	High-level	AD, P0_0 to P0_7, P1_0 to P1_7	0.7×V _{DD(P)}			V
VIH	input voltage	SCL, SDA, RESETN	0.7× Vdd(12C-bus)			v
Ma	Low-level	AD, P0_0 to P0_7, P1_0 to P1_7			$0.3 \times V_{DD(P)}$	V
VIL	input voltage	SCL, SDA, RESETN			0.3× Vdd(12C-bus)	V

May. 2022 V1.1

Р	arameter	Test Co	ndition	Min.	Тур.	Max.	Unit			
lı∟	Input leakage current	P port; $V_I = V_I$ $V_{DD(P)} = 1.6$	_{DD(P)} or GND; S5V to 5V			1	μA			
R _{PD}	internal pull- down resistance	RES	ETN		1		MΩ			
Digital p	in output									
		101	V _{DD(P)} =1.65V		V _{DD(P)} -225					
		ISOURCE=10MA	V _{DD(P)} =3.3V		VDD(P)-80					
V _{OH} ^[1]	High-level		V _{DD(P)} =5.0V		V _{DD(P)} -70		m\/			
	output voltage		V _{DD(P)} =1.65V		VDD(P)-175		- 111V			
		Isource=8mA	V _{DD(P)} =3.3V		Vdd(p)-75					
			V _{DD(P)} =5.0V		V _{DD(P)} -55					
	Low-level output voltage					VDD(P)=1.65V		120		
		I _{SINK} =10mA	V _{DD(P)} =3.3V		50					
V [1]			V _{DD(P)} =5.0V		35		- mV			
VOL		e Isink=8mA	V _{DD(P)} =1.65V		95					
			V _{DD(P)} =3.3V		40					
			V _{DD(P)} =5.0V		30					
			V _{DD(P)} =1.65V	2.2	3.3					
		V _{OH} =0.8 V _{DD(P)}	V _{DD(P)} =3.3V	12	16					
I [2][3]	High-level		V _{DD(P)} =5.0V	25	33					
IOH ₁₇][0]	output current		V _{DD(P)} =1.65V	1.2	2		mA			
		V _{OH} =0.9 V _{DD(P)}	V _{DD(P)} =3.3V	6.5	9					
			V _{DD(P)} =5.0V	14	18					
			V _{DD(P)} =1.65V	2.5	4					
		Vol=0.2	V _{DD(P)} =3.3V	8	11					
1[2][4]	Low-level		V _{DD(P)} =5.0V	11	15		^			
IOL	output current		V _{DD(P)} =1.65V	4.5	6		- mA			
		Vol=0.4	V _{DD(P)} =3.3V	14	20					
			V _{DD(P)} =5.0V	21	30					

^[1] Register P0DSR/P1DSR =0xFF

^[2] Register P0DSR/P1DSR =0x00

^[3] The total current sourced by all I/Os must be limited to 160mA.

^[4] Each I/O must be externally limited to a maximum of 30mA, for a device total of 200mA

I2C INTERFACE TIMING

		FAST	MODE	FAST MOD	E PLUS	
	PARAMETER	MIN	MAX	MIN	MAX	UNIT
Fscl	Interface clock frequency	-	400	-	1000	kHz
Thd:sta	(Repeat-start) START condition hold time	0.6	-	0.26	-	μs
TLOW	Low level width of SCL	1.3	-	0.5	-	μs
Тніgн	High level width of SCL	0.6	-	0.26	-	μs
Tsu:sta	(Repeat-start) START condition setup time	0.6	-	0.26	-	μs
T _{HD:DAT}	Data hold time	0		0	-	μs
T _{SU:DAT}	Data setup time	0.1		0.05	-	μs
T _R	Rising time of SDA and SCL	-	0.3	-	0.12	μs
T _F	Falling time of SDA and SCL		0.3	-	0.12	μs
T _{SU:STO}	STOP condition setup time	0.6	-	0.26	-	μs
TBUF	Time between start and stop condition	1.3	-	0.5	-	μs

I²C Interface Timing

DETAILED FUNCTIONAL DESCRIPTION

OVERVIEW

AW95016A is a 16 channel GPIO controller with I²C interface. Each I/O port can be configured as output or input independently. After power-on, all channels are configured as inputs.

When configured as input, the user can turn on the interrupt function. At this time, port state changes are indicated by the INTN. The INTN can be cleared by reading GPIO through I²C or enable interrupt mask. When configured as output, push-pull or open-drain modes can be selected.

OPERATION MODE AND RESET

RESET

Power On Reset

Upon initial power-up, the AW95016A is reset by internal power-on-reset, and all registers are reset to default value, and the chip is shut down.

Once the supply voltage $V_{DD(P)}$ drops below the threshold voltage $V_{POR}(1.2V)$, the power-on-reset will reset the chip again. By reading the bit PUST of the register STATE (address 60h), whether the chip has been reset can be detected.

When the $V_{DD(P)}$ and $V_{DD(12C-BUS)}$ ramps up above the threshold voltage V_{POR} (1.2V) and RESETN is high, POR is pulled high, meanwhile the chip enters into active mode. Only in active mode, registers could be configured. Once $V_{DD(P)}$ is below V_{POR} , POR is triggered and all registers are reset to their default value. The recommended operation timing is shown as bellow.

Note: The rising curve of VDD(I2C-BUS) in this figure is the latest rising curve, VDD(I2C-BUS) should finish rising before this curve.

Power On Timing

Software Reset

By writing 00h to register RESET (address 70h), the software reset is triggered. Then all registers will be reset to the default value.

OPERATING MODE

Shutdown mode

The AW95016A enters into shutdown mode automatically when RESETN is pulled low. In this mode, I²C interface is not accessible, all registers will be reset and can't be configured.

Active mode

If pin RESETN is high, the chip enters into active mode. During this period, all registers are configurable with

full function.

awinic

AW95016A operating mode transition

FEATURE DESCRIPTION

The following figure is the schematic of GPIO. In this figure 'read pulse' is the response signal generated by I²C module during reading data from P0DI/P1DI (address 00h/01h). The letter 'x' in the names of registers in the figure represents '0' or '1'.

GPIO OUTPUT

If a bit in registers P0DIR/P1DIR (address 06h/07h) is set to '1', the corresponding port pin is enabled as output. The output data of ports can be configured by P0DO/P1DO (address 02h/03h).

User can choose push-pull or open-drain mode of each port by setting the corresponding bit in P0DOMD/P1DOMD (address 16h/17h) to '0' or '1'. The default value is '0' as push-pull mode.

The output drive strength of GPIO is controlled by registers P0DSR1/P0DSR2/P1DSR1/P1DSR2 (address 08h/09h/0Ah/0Bh). Each port can be configured independently by two bits of those registers. The relationship between two bits and GPIO output drive strength is 00b = 0.25x, 01b = 0.5x, 10b = 0.75x or 11b = 1x.

GPIO INPUT

If a bit in registers P0DIR/P1DIR (address 06h/07h) is set to '0', the corresponding port pin is enabled as a high-impedance input. Read-only registers P0DI/P1DI (address 00h/01h) reflect the incoming logic levels of the pins and the value can be read by I²C interface. If a bit in registers P0INVEN/P1INVEN (address 04h/05h) is set to '1', the corresponding bit read from P0DI/P1DI will be inverted.

The port level can be configured as '0' or '1' by setting POPEN/P1PEN (address 0Eh/0Fh) and POPMD/P1PMD (address 10h/11h) as a fixed port level. User can enable internal pull-up/pull-down resistors for each I/O pins by setting corresponding bit of registers POPEN/P1PEN (address 0Eh/0Fh) to '1'. Meanwhile, a 100k Ω resistor of pull-up or pull-down for I/O pins can be configured by setting POPMD/P1PMD (address 10h/11h) to '0' or '1'.

INTERRUPT

After power on reset, each bit of registers P0MSK/P1MSK (address 12h/13h) is set to '1', which means the interrupt function are disabled. User can set each bit in those registers to '0' to enable the interrupt function of corresponding port.

When one port is configured as input and the interrupt function is enabled, any changes of input data of the port will set the corresponding bit in POINTST/P1INTST (address 14h/15h) to '1', and at the same time generate an interrupt event. Reading registers P0DI/P1DI by I²C interface will clear the value of registers P0INTST/P1INTST. The sequence diagram is shown as below:

Interrupt function is enabled and non-latched

When interrupt function is enabled and a bit in registers P0LEN/P1LEN (address 0Ch/0Dh) is '0', the corresponding input pin state is not latched (as default). When the input data changes, an interrupt is generated. If the input data recovers, the interrupt is cleared. The sequence diagram is shown as below:

Interrupt function is enabled and non-latched

In contrast, when a bit in registers P0LEN/P1LEN is '1', the corresponding input pin state is latched. When the input data of port changes, an interrupt is generated. Even if the input data recovers, the interrupt is not cleared until P0DI/P1DI are read. During the interruption the value read from P0DI/P1DI reflects the value that caused the interrupt. After reading, the interrupt is cleared. If read again, P0DI/P1DI will reflect the current input data of the port. The sequence diagram is shown as below:

Interrupt function is enabled and latch enabled

Note: In addition, when the register address read by the host is 00 or 01, the address will only jump between 00 and 01.

I²C INTERFACE

awini

The AW95016A supports the I²C protocol. The maximum frequency supported by the I²C is 1MHz. The pull-up resistor for the SDA and SCL can be selected from 1k to 10k Ω . Usually, 4.7k Ω is recommended for 400 kHz I²C, 1k Ω is recommended for 1MHz I²C. The voltage from 1.8V to 3.3V is allowed for the I²C interface. Additionally, the I²C chip supports continuous read and write operations. Particularly, if register address is 00h or 01h, the slave chip will poll register address between 00h and 01h.

CHIP ADDRESS

The I²C chip address is 7-bit (A7~A1), followed by the bit R/W (A0). Set A0 to "0" for writing and "1" for reading. The values of bit A1 and A2 are depended on the pin AD0. There are 2 options: $V_{DD(P)}$ and GND. The A7 to A3 is "01000" constantly. The chip also supports using a broadcast slave address of 1Ch. All slave addresses as followed.

AD PIN	A7:A3	A2:A1	A0	Chip Address	Broadcast Address
GND	01000	00	0/1	20h	1Cb
V _{DD(P)}	01000	01	0/1	21h	

PC START/STOP

All transactions begin with a START and are terminated by a STOP sent by master to slave. A high-to-low transition on the SDA input/output while the SCL input is high defines a START condition. A low-to-high transition on the SDA input/output while the SCL input is high defines a STOP condition.

In particular, the bus stays busy when a repeated START (Sr) is generated instead of a STOP signal corresponding to the last START (S). Sr and S are usually regarded as equivalent.

DATA VALIDATION

When SCL is high level, SDA level must be constant. SDA can be changed only when SCL is low level. Each SCL pulse corresponds to one bit data transaction.

Data Validation Diagram

ACK (ACKNOWLEDGEMENT)

ACK means the successful transaction of I²C bus data. During writing cycle, after master sends 8-bit data, SDA must be released by master and SDA is pulled down to GND by slave chip when slave sends ACK.

During reading cycle, after slave chip sends 8-bit data, slave releases the SDA and waits for ACK from master. If master sends ACK with STOP condition, slave chip sends the next data. If master sends NACK, slave chip stops sending data and waits for I²C stop.

WRITE CYCLE

awinia

One data bit is transferred during each clock pulse. Data is sampled during the high state of the serial clock (SCL). Consequently, throughout the clock's high period, the data should remain stable. Any changes on the SDA line aborts the current transaction during the high state of the SCL. New data should be sent to SDA bus during the low SCL state. This protocol allows a single data line to transfer both command/control information and data using the synchronous serial clock.

Each data transaction is composed of a start condition, a number of byte transfers and a stop condition to terminate the transaction. Every byte written to the SDA bus must be 8 bits and is transferred with the most significant bit first. After each byte, an ACK signal must follow.

- 1. In a write process, the following steps should be followed:
- 2. Master chip generates START condition. The "START" signal is generated by pulling down the SDA signal while the SCL signal is high.
- 3. Master chip sends slave address (7-bit) and the data direction bit (R/W = 0).
- 4. Slave chip sends acknowledge signal if the slave address is correct.
- 5. Master sends control register address (8-bit).
- 6. Slave sends acknowledge signal.
- 7. Master sends data byte to write to the addressed register.
- 8. Slave sends acknowledge signal.
- 9. If master send more data bytes, the control register address will be incremented by one after acknowledge signal (repeat step f and g).
- 10. Master generates STOP condition to indicate write cycle ends.

I²C Write Byte Cycle

READ CYCLE

In a read cycle, the following steps should be followed:

- 1. Master chip generates START condition
- 2. Master chip sends slave address (7-bit) and the data direction bit (R/W = 0).
- 3. Slave chip sends acknowledge signal if the slave address is correct.

- 4. Master sends control register address (8-bit)
- 5. Slave sends acknowledge signal

awini

- 6. Master generates STOP condition followed with START condition or REPEAT START condition
- 7. Master chip sends slave address (7-bit) and the data direction bit (R/W = 1).
- 8. Slave chip sends acknowledge signal if the slave address is correct.
- 9. Slave sends data byte from addressed register.
- 10. If the master chip sends acknowledge signal, the slave chip will increase the control register address by one, then send the next data from the new addressed register. In particular, if register address is 00h or 01h, the slave chip will poll register address between 00h and 01h.
- 11. If the master chip generates STOP condition, the read cycle ends.

REGISTER CONFIGURATION

REGISTER LIST

ADDR	R/W	NAME	D7	D6	D5	D4	D3	D2	D1	D0	DEF
00h	R	P0DI		P0DI							00h
01h	R	P1DI		P1DI							00h
02h	RW	PODO				P0	DO				00h
03h	RW	P1D0				P1	DO				00h
04h	RW	POINVEN				POIN	IVEN				00h
05h	RW	P1INVEN				P1IN	IVEN				00h
06h	RW	P0DIR				POI	DIR				00h
07h	RW	P1DIR				P1I	DIR				00h
08h	RW	P0DSR1	P03E	DS	P02	2DS	P0 ⁻	1DS	P00)DS	00h
09h	RW	P0DSR2	P07E	DS	P06	6DS	PO	5DS	P04	4DS	00h
0Ah	RW	P1DSR1	P13E	DS	P12	2DS	P1 ⁻	1DS	P10	DS	00h
0Bh	RW	P1DSR2	P170	P17DS P16DS P15DS P14DS						00h	
0Ch	RW	POLEN		POLEN						00h	
0Dh	RW	P1LEN				P1L	EN				00h

May. 2022 V1.1

ADDR	R/W	NAME	D7	D6	D5	D4	D3	D2	D1	D0	DEF
0Eh	RW	P0PEN		POPEN							00h
0Fh	RW	P1PEN		P1PEN							00h
10h	RW	P0PMD				P0F	PMD				00h
11h	RW	P1PMD				P1F	PMD				00h
12h	RW	P0MSK				PON	/ISK				FFh
13h	RW	P1MSK		P1MSK						FFh	
14h	R	POINTST		POINTST						00h	
15h	R	P1INTST				P1IN	ITST				00h
16h	RW	P0DOMD				P0D0	OMD				00h
17h	RW	P1DOMD				P1D	OMD	X			00h
1Ah	RW	GGCR				-			EC	9C	-
60h	R	STATE	- PUST -						00h		
61h	RW	GCR2		- BSDIS -						00h	
70h	RW	RESET				RESI	ET/ID				80h

REGISTER DETAILED DESCRIPTION

P0DI/P1DI: Input State Register (Address 00h/01h)

Bit	Symbol	R/W	Description	Default
7:0	P0DI	R	P0 input state 0: low level 1: high level	00h
7:0	P1DI	R	P1 input state 0: low level 1: high level	00h

P0DO/P1DO: Output State Register (Address 02h/03h)

Bit	Symbol	R/W	Description	Default
7:0	P0DO	RW	P0 output state 0: low level 1: high level	00h
7:0	P1D0	RW	P1 output state 0: low level 1: high level	00h

P0INVEN/P1INVEN: Invert Enable Register (Address 04h/05h)

Bit	Symbol	R/W	Description	Default
7:0	POINVEN	RW	P0 input state invert enable 0: disable 1: enable	00h
7:0	P1INVEN	RW	P1 input state invert enable 0: disable	00h

AW95016A

May. 2022 V1.1

	1: enable	

P0DIR/P1DIR: Direction Register (Address 06h/07h)

Bit	Symbol	R/W	Description	Default
7:0	PODIR	RW	P0 input/output direction 0: input 1: output	00h
7:0	P1DIR	RW	P1 input/output direction 0: input 1: output	00h

P0DSR1/ P0DSR2/ P1DSR1/P1DSR2: Drive Strength Register (Address 08h~0Bh)

Bit	Symbol	R/W	Description	Default
7:0	P0DSR1	RW	P0.0~P0.3 GPIO drive capability of the I/O 00: 0.25x 01: 0.5x 10: 0.75x	00h
			11: 1x	
7:0	P0DSR2	RW	P0.4~P0.7 GPIO drive capability of the I/O 00: 0.25x 01: 0.5x 10: 0.75x 11: 1x	00h
7:0	P1DSR1	RW	P1.0~P1.3 GPIO drive capability of the I/O 00: 0.25x 01: 0.5x 10: 0.75x 11: 1x	00h
7:0	P1DSR2	RW	P1.4~P1.7 GPIO drive capability of the I/O 00: 0.25x 01: 0.5x 10: 0.75x 11: 1x	00h

P0LEN/P1LEN: Latch Enable Register (Address 0Ch/0Dh)

Bit	Symbol	R/W	Description	Default
7:0	POLEN	RW	P0 input state latch enable 0: disable 1: enable	00h
7:0	P1LEN	RW	P1 input state latch enable 0: disable	00h

AW95016A

May. 2022 V1.1

	1: enable	

P0PEN/P1PEN: Pull Up/Down Enable Register (Address 0Eh/0Fh)

Bit	Symbol	R/W	Description	Default
7:0	P0PEN	RW	P0 pull up/down resistors enable 0: disable 1: enable	00h
7:0	P1PEN	RW	P1 pull up/down resistors enable 0: disable 1: enable	00h

P0PMD/P1PMD: Pull Up/Down Mode Register (Address 10h/11h)

Bit	Symbol	R/W	Description	Default
7:0	P0PMD	RW	P0 pull up/down mode 0: pull down 1: pull up	00h
7:0	P1PMD	RW	P1 pull up/down mode 0: pull down 1: pull up	00h

P0MSK/P1MSK: Interrupt Mask Register (Address 12h/13h)

Bit	Symbol	R/W	Description	Default
7:0	POMSK	RW	P0 interrupt mask 0: disable 1: enable	FFh
7:0	P1MSK	RW	P1 interrupt mask 0: disable 1: enable	FFh

P0INTST/P1INTST: Interrupt State Register (Address 14h/15h)

Bit	Symbol	R/W	Description	Default
7:0	POINTST	R	P0 interrupt state 0: no interrupt occurred 1: interrupt occurred	00h
7:0	P1INTST	R	P1 interrupt state 0: no interrupt occurred 1: interrupt occurred	00h

P0DOMD/P1DOMD: Output Mode Register (Address 16h/17h)

Bit	Symbol	R/W	Description	Default
7:0	P0DOMD	RW	P0 output mode	00h

May. 2022 V1.1

			0: push pull 1: open drain	
7:0	P1DOMD	RW	P1 output mode 0: push pull 1: open drain	00h

GGCR, 1AH :GPIO Global Control Register

Bit	Symbol	R/W	Description [
7:2	reserved	-	- ***	000000				
			GPIO output edge control					
1:0	EGC	RW	01: 1ns	00				
			10: 4ns					
			11: 8ns					

STATE: UVLO Control Register (Address 60h)

Bit	Symbol	R/W	Description							
7:5	reserved	-	-	000						
4	PUST	R	Power up status 0: no power up occurred 1: Power up occurred	0						
3:0	reserved	-	-	0000						

GCR2: Global Control Register2 (Address 61h)

Bit	Symbol	R/W	Description	Default				
7:5	reserved	-	-	000				
4	BSDIS	RW	² C broadcast slave address disable): I ² C broadcast slave address enable 1: I ² C broadcast slave address disable					
3:0	reserved	-						

RESET: Reset Register (Address 70h)

Bit	Symbol	R/W	Description				
7:0	RESET	RW	Software reset/ID Write 00h will reset all registers to their default value. When read, chip ID is read out.	80h			

PCB LAYOUT CONSIDERATION

AW95016A is a 16 channel general purpose I/O (GPIO) expander controller. Each channel can be configured as GPIO input or output separately. To obtain the good thermal performance and avoid thermal shutdown, PCB layout should be considered carefully. Here are some guidelines:

- 1. The C1 $_{\sim}$ C2 $_{\sim}$ C3 $_{\sim}$ C4 should be placed as close to the chip as possible.
- 2. The GND pad must be well connected to the ground of the PCB, and add as many thermal vias as possible near the GND on the PCB for the heat conductivity of the device and PCB.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

DIMENS	DIMENSIONS AND PINT ORIENTATION								
D1	D0	A0	B0	<u>∧</u> K0	P0	P1	P2	W	
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Pin1 Quadrant
330	12.4	3.3	3.3	1.1	2	8	4	12	Q1
	All dimensions are nominal								

All dimensions are nominal

PACKAGE DESCRIPTION

Unit: mm

LAND PATTERN DATA

Unit: mm

REVISION HISTORY

Version	Date	Change Record				
V1.0	Sep. 2020	Officially released				
V1.1	May.2022	Add Ioн, Io∟ and IIL, Correct Default Vaule of Register 70h				

るいうに 上海交为电子技术股份有限公司 shanghai awinic technology co., ltd.

DISCLAIMER

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements. 单击下面可查看定价,库存,交付和生命周期等信息

>>AWINIC(艾为)