A Low Power One-key Capacitor Touch Sensor

Features

awinic

- Sensitivity adjusted by the capacitance (0~50pF) outside (Refer to the DG_AW93001_Hardware_Design_Guide for details)
- Maximum response time
 - Slow scan mode: 160ms(AW93001STR /BSTR/DNR/BDNR/CDNR/DDNR)
 - Slow scan mode: 64ms(AW93001EDNR /FDNR)
 - Fast scan mode: 48ms(AW93001STR /BSTR/DNR/BDNR/HDNR/GDNR/MDNR
 /LDNR/CSTR/DSTR/CDNR/DDNR/EDNR
 /FDNR)
- Push-pull output (AW93001STR/DSTR/DNR
 /HDNR/MDNR)
 - > Active high/low selected by pin AHLB
- Push-pull output, active high(AW93001CDNR /EDNR)
- Open-drain output, active low (AW93001BSTR /CSTR/BDNR/GDNR/LDNR/DDNR/FDNR)
- Toggle output selected by pin TOG
- Low power consumption
 - Slow scan mode (128ms): 1.3µA
 - Slow scan mode (32ms): 3.3µA
 - Fast scan mode (16ms): 5.4µA
- 2.4V~5.5V power supply
- Operation temperature range: -40°C~85°C
- Package
 - SOT23-6L
 - DFN 1.5mmx1.0mmx0.55mm-6L
 - > DFN 2.0mmx2.0mmx0.75mm-6L
 - DFN 1.0mmx1.0mmx0.37mm-4L

General Description

AW93001 is a single channel capacitive touch controller with low power consumption and wide operation voltage range.

With the help of signal processing algorithms, the device is able to track slow environmental variations, and maintain high performance operation.

AW93001 is designed for replacing traditional mechanical button. It can be applied in many fields, such as consumer electronics, white goods and appliances, etc.

Applications

Wearable device, White goods and appliances Replacing traditional mechanical button

1

Typical Application Circuit

awinic

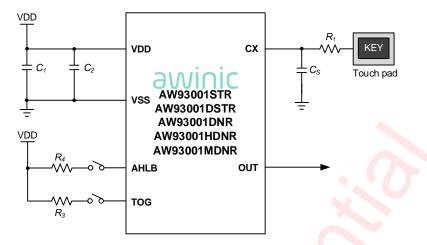


Figure 1 AW93001STR/DSTR/DNR/HDNR/MDNR Typical Application Circuit (push-pull output)

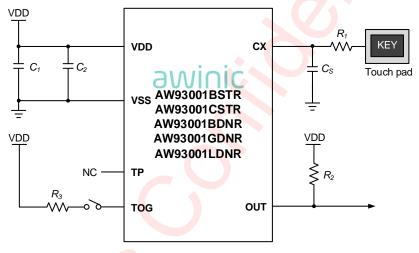


Figure 2 AW93001BSTR/CSTR/BDNR/GDNR/LDNR Typical Application Circuit (open-drain output)

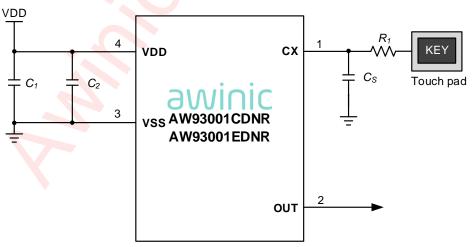


Figure 3 AW93001CDNR/EDNR Typical Application Circuit (push-pull output)

awini

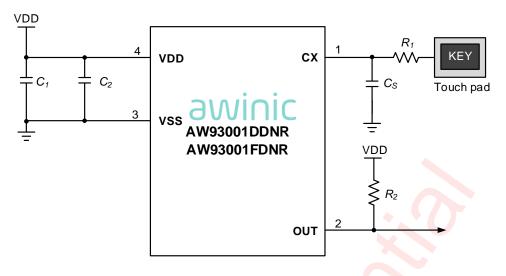
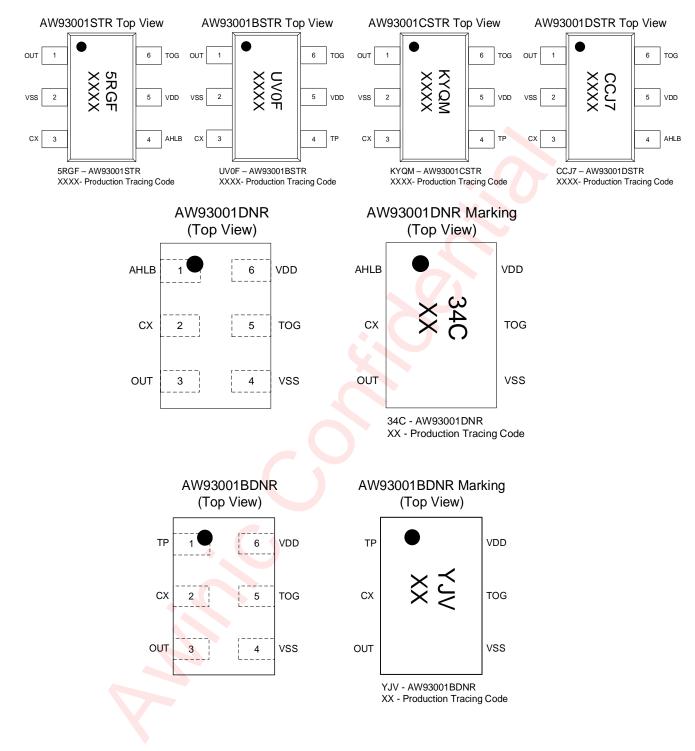
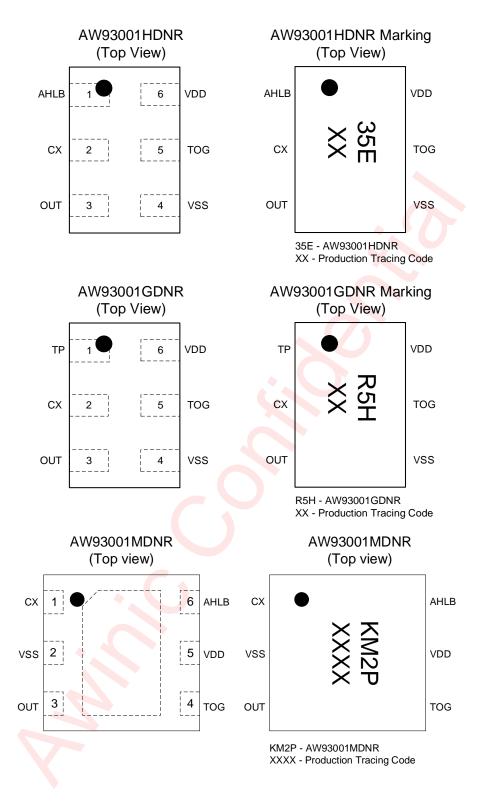
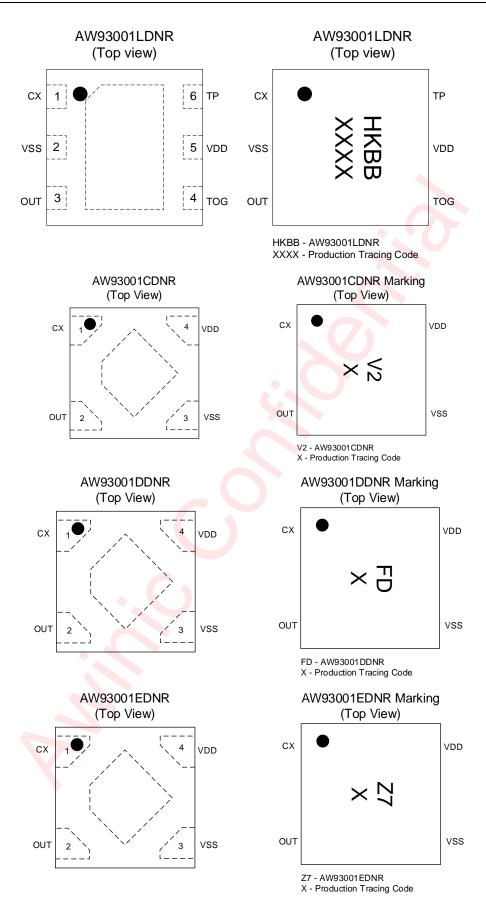
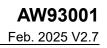



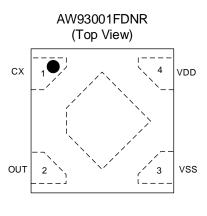
Figure 4 AW93001DDNR/FDNR Typical Application Circuit (open-drain output)

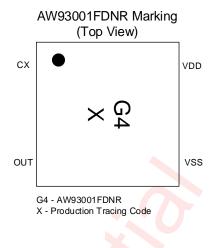
www.awinic.com


Pin Configuration And Top Mark


4


awinic





AW93001 Feb. 2025 V2.7

Pin Definition

awinio

Table 1 AW93001STR/DSTR/DNR/HDNR/MDNR Pin Definition

		Pin No.		
NAME	AW93001 STR/DSTR	AW93001 DNR/HDNR	AW93001 MDNR	DESCRIPTION
OUT	1	3	3	Push-pull output
VSS	2	4	2	Ground
CX	3	2	1	Capacitive detector input
AHLB	4	1	6	Output active high or low selection, internal pull-down resistor of $50k\Omega$ Floating : Active high; Tied high: Active low
VDD	5	6	5	Power supply (2.4V~5.5V), requires decoupling capacitor
TOG	6	5	4	Output type option, internal pull-down resistor of $50k\Omega$ Floating : Direct output; Tied high: Toggle output

Table 2 AW93001BSTR/CSTR/BDNR/GDNR/LDNR Pin Definition

		Pin No.		
NAME	AW93001 BSTR/CSTR	AW93001 BDNR/GDNR	AW93001 LDNR	DESCRIPTION
OUT	1	3	3	Open-drain output, requires pull-up resistor
VSS	2	4	2	Ground
CX	3	2	1	Capacitive detector input
TP	4	1	6	Test pin, typically floating
VDD	5	6	5	Power supply (2.4V~5.5V), requires decoupling capacitor
TOG	6	5	4	Output type option, internal pull-down resistor of $50k\Omega$ Floating : Direct output; Tied high: Toggle output

NAME	Pin No.	DESCRIPTION
СХ	1	Capacitive detector input
OUT	2	Push-pull output (AW93001CDNR/EDNR) Open-drain output (AW93001DDNR/FDNR), require pull-up resistor
VSS	3	Ground
VDD	4	Power supply (2.4V~5.5V), requires decoupling capacitor

Table 3 AW93001CDNR/DDNR/EDNR/FDNR Pin Definition

Device Comparison

			•		
Device	Package	Scan	mode	мот	Output Mode
Device	Гаскауе	Fast scan	Fast scan Slow scan		Output Mode
AW93001STR	SOT23-6L	16ms	128ms		Push-pull
AW93001BSTR	SOT23-6L	16ms	128ms		Open-drain
AW93001DNR	DFN1510-6L	16ms	128ms		Push-pull
AW93001BDNR	DFN1510-6L	16ms	128ms	16s	Open-drain
AW93001HDNR	DFN1510-6L	16ms		105	Push-pull
AW93001GDNR	DFN1510-6L	16ms			Open-drain
AW93001MDNR	DFN2x2-6L	16ms			Push-pull
AW93001LDNR	DFN2x2-6L	16ms	-		Open-drain
AW93001CSTR	SOT23-6L	16ms		100s	Open-drain
AW93001DSTR	SOT23-6L	16ms		1005	Push-pull
AW93001CDNR	DFN1x1-4L	16ms	128ms		Push-pull
AW93001DDNR	DFN1x1-4L	16 <mark>ms</mark>	128ms	16s	Open-drain
AW93001EDNR	DFN1x1-4L	16ms	32ms	105	Push-pull
AW93001FDNR	DFN1x1-4L	16ms	32ms		Open-drain

Table 4 Device Comparison

Functional Block Diagram

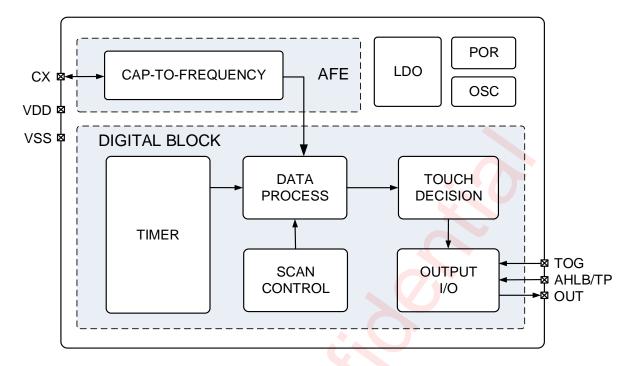
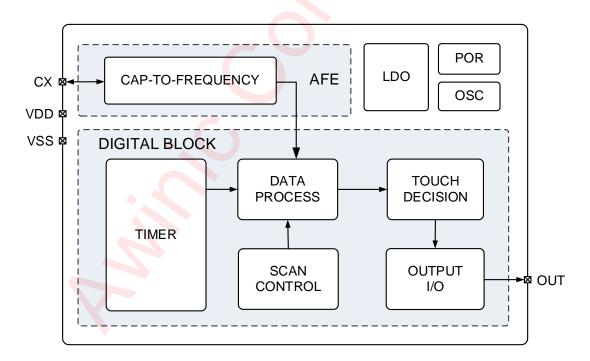



Figure 5 AW93001STR/BSTR/CSTR/DSTR/DNR/BDNR/HDNR/GDNR/MDNR/LDNR Functional Block Diagram

Figure 6 AW93001CDNR/DDNR/EDNR/FDNR Functional Block Diagram

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW93001STR	-40°C~85°C	SOT23-6L	5RGF	MSL3	ROHS+HF	3000 units/ Tape and Reel
AW93001BSTR	-40°C~85°C	SOT23-6L	UV0F	MSL3	ROHS+HF	3000 units/ Tape and Reel
AW93001CSTR	-40°C~85°C	SOT23-6L	KYQM	MSL3	ROHS+HF	3000 units/ Tape and Reel
AW93001DSTR	-40°C~85°C	SOT23-6L	CCJ7	MSL3	ROHS+HF	3000 units/ Tape and Reel
AW93001DNR	-40°C~85°C	DFN 1.5mmx1.0mm-6L	34C	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001BDNR	-40°C~85°C	DFN 1.5mmx1.0mm-6L	ΥJV	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001HDNR	-40°C~85°C	DFN 1.5mmx1.0mm-6L	35E	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001GDNR	-40°C~85°C	DFN 1.5mmx1.0mm-6L	R5H	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001MDNR	-40°C~85°C	DFN 2.0mmx2.0mm-6L	KM2P	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW93001LDNR	-40°C~85°C	DFN 2.0mmx2.0mm-6L	нквв	MSL1	ROHS+HF	3000 units/ Tape and Reel
AW93001CDNR	-40°C~85°C	DFN 1.0mmx1.0mm-4L	V2	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001DDNR	-40°C~85°C	DFN 1.0mmx1.0mm-4L	FD	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001EDNR	-40°C~85°C	DFN 1.0mmx1.0mm-4L	Z7	MSL1	ROHS+HF	4500 units/ Tape and Reel
AW93001FDNR	-40°C~85°C	DFN 1.0mmx1.0mm-4L	G4	MSL1	ROHS+HF	4500 units/ Tape and Reel

Absolute Maximum Ratings^(NOTE1)

PARAMETER	PARAMETERS				
Supply voltage rang	ge VDD	-0.3V to 6.0V			
Input voltage range	CX, TP, AHLB, TOG	-0.3V to 6.0V			
Output voltage range	OUT	-0.3V to 6.0V			
Operating free-air tempe	perating free-air temperature range -40°C to 85°C				
Maximum operating junction t	Maximum operating junction temperature T _{JMAX}				
Storage temperatur	e T _{STG}	-6 <mark>5°C to 15</mark> 0°C			
Lead temperature (solderin	ng 10 seconds)	260°C			
E	SD(Including CDM HBM) ^{(N}	IOTE2)			
НВМ		±6kV			
CDM	CDM				
	Latch-Up				
Test condition: JES	SD78E	+IT: 200mA, -IT: -200mA			

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: The human body model is a 100pF capacitor discharged through a $1.5k\Omega$ resistor into each pin. Test method: ESDA/JEDEC JS-001-2017(HBM) ESDA/JEDEC JS-002-2018(CDM).

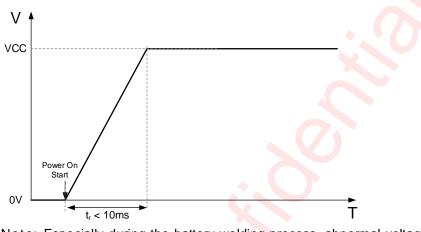
Electrical Characteristics

Note: Typical values are given for $T_A = +25^{\circ}C$, VDD=3.0V unless otherwise specified.

	PARAMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
VDD	Operation voltage	-	2.4	3.0	5.5	V
la.	Current in slow scan	Cs=20pF, scan period=128ms	-	1.3	-	μA
IsL	mode	Cs=20pF, scan period=32ms	-	3.3	-	μA
IFS	Current in fast scan mode	Cs=20pF, scan period=16ms	-	5.4	-	μA
VIH	Input high level	Pin AHLB, TOG	1.4	-	-	V
VIL	Input low level	Pin AHLB, TOG	-	-	0.4	V
Іон	Output high current	VOH≥VDD-0.4V	-	-	-4	mA
lo∟	Output low current	VOL≤0.4V	8	-	-	mA
Rpd	Input pin pull-down resistor	Pin TOG, AHLB	-	50	-	kΩ
		Fast scan mode, scan period=16ms	34	-	48	ms
TRESP	Response time ^(NOTE3)	Slow scan mode, scan period=32ms	34	-	64	ms
		Slow scan mode, scan period=128ms	34	-	160	ms

NOTE3: It has an error of \pm 10% according to the mass production test data.

Detailed Functional Description


Power On Timing

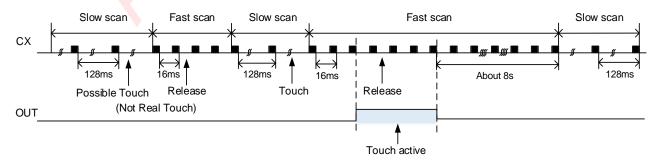
awinic

To ensure that the internal configuration parameters are correctly loaded during each power-on process of AW93001, the power design of AW93001 needs to follow the following power-on timing limit:

During the process of voltage rise or normal power supply, abnormal voltage fluctuations can not occur in the power supply. The peak to peak value of voltage fluctuation should below 200mV.

As the following timing figure:

Note: Especially during the battery welding process, abnormal voltage fluctuations may occur.


Figure 3 AW93001 Power on Timing

Initialization

After power-on, the chip executes initialization process automatically, it lasts for about 500ms. During initialization, touch decision does not work, and no touch status can be reported.

Scan Mode

The AW93001STR/BSTR/DNR/BDNR/CDNR/DDNR have two scan modes, fast scan mode and slow scan mode, In fast scan mode, the scan period is about 16ms, and the maximum response time is about 48ms. In slow scan mode, the scan period is about 128ms with lower power consumption, and the maximum response time is about 160ms. For power saving, the device automatically switches scan mode between fast and slow mode according to touch detection status. After power-on, the device enters fast scan mode directly. In fast scan mode, if there is no touch detected for 8s continuously, the device switches to slow scan mode. In slow scan mode, if touch is detected, the device returns to fast scan mode at once.

Figure 7 AW93001STR/BSTR/DNR/BDNR/CDNR/DDNR Scan Mode

awi

The AW93001EDNR/FDNR have two scan modes, fast scan mode and slow scan mode, In fast scan mode, the scan period is about 16ms, and the maximum response time is about 48ms. In slow scan mode, the scan period is about 32ms with lower power consumption, and the maximum response time is about 64ms.

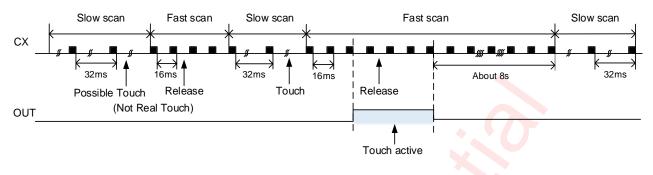


Figure 8 AW93001EDNR/FDNR Scan Mode

The AW93001CSTR/DSTR/HDNR/GDNR/MDNR/LDNR only has fast scan mode. In fast scan mode, the scan period is about 16ms, and the maximum response time is about 48ms. After power-on, the device enters fast scan mode directly and keeps it all the time.

Output Mode

For AW93001STR/DNR/HDNR/MDNR, pin OUT is a push-pull output, and the output mode depends on the initial power-on states of pin AHLB and pin TOG. Pin TOG selects direct output or toggle output, and pin AHLB selects active high or active low.

Pin TOG	Pin AHLB	Pin OUT's output mode
Floating	Floating	Direct output, active high
Floating	Tied high	Direct output, active low
Tied high	Floating	Toggle output, initial state is low
Tied high	Tied high	Toggle output, initial state is high

Table 5 AW93001STR/DSTR/DNR/HDNR/MDNR Output Mode

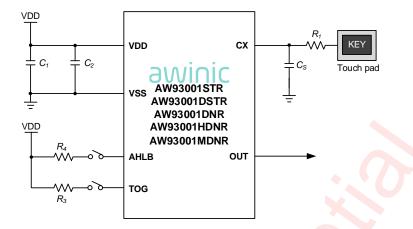
For AW93001BSTR/CSTR/BDNR/GDNR/LDNR, pin OUT is an open-drain output, and the output mode only depends on the initial power-on state of pin TOG.

Table 6 AW93001BSTR/CSTR/BDNR/GDNR/LDNR Output Mode

Pin TOG	Pin OUT's output mode					
Floating	Direct output, active low					
Tied high	Toggle output, initial state is high-Z					

When pin AHLB or pin TOG is tied high, the internal pull-down function of these pin is closed, so no additional power consumption will be generated.

For AW93001CDNR/EDNR, pin OUT is a push-pull output, and the output is high level active.


For AW93001DDNR/FDNR, pin OUT is an open-drain output, and the output is low level active.

Maximum Key-on Duration Time

In order to prevent the false touch detection caused by objects covering the touch pad, the chip sets maximum key-on duration time. For AW93001STR/BSTR/DNR/BDNR/HDNR/GDNR/MDNR/LDNR/CDNR/DDNR/EDNR/FDNR /FDNR/CDNR/DDNR/EDNR/FDNR, if the devices' touch status last over 16s, it will be released until a new touch action. For AW93001CSTR/DSTR, if the devices' touch status last over 100s, it will be released until a new touch action.

Application Information

awinic

Figure 9 AW93001STR/DSTR/DNR/HDNR/MDNR Typical Application Circuit (push-pull output)

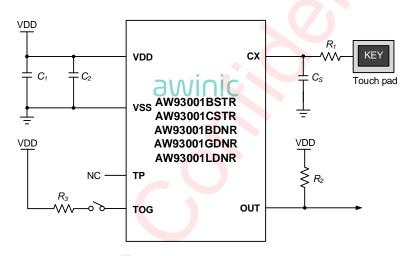
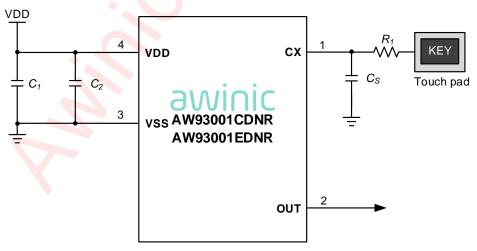



Figure 10 AW93001BSTR/CSTR/BDNR/GDNR/LDNR Typical Application Circuit (open-drain output)

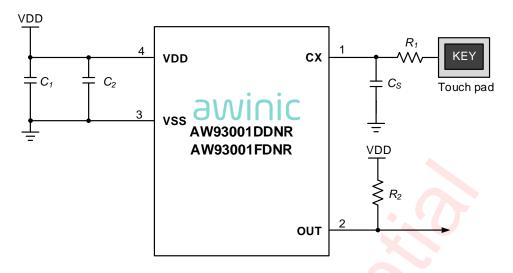


Figure 12 AW93001DDNR/FDNR Typical Application Circuit(open-drain output)

To obtain the optimal performance, the capacitive touch controller's application circuit should be considered carefully. Here are some guidelines:

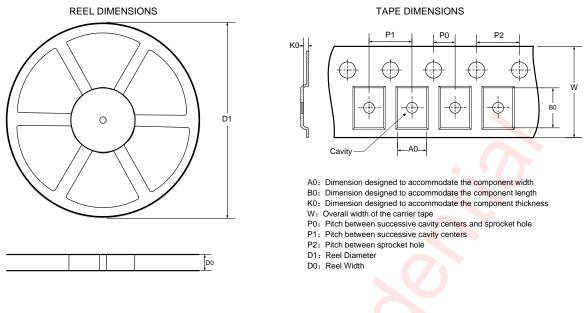
- 1. The chip should be supplied by stable power, otherwise it may cause abnormal sensitivity or false detection.
- 2. Add a resistor R1 between Cs and Touch pad to improve ESD protection and reduce EMI.
- 3. Sensitivity can be adjusted by C_s. The smaller the C_s, the higher the sensitivity, the higher the power consumption. It is suggested to use temperature insensitive capacitors to adjust the sensitivity, such as NP0 capacitors.
- 4. Sensitivity can be adjusted by the electrode size. Using a larger electrode size can increase sensitivity, but the electrode size must be used in the effective scope.
- 5. Sensitivity can be adjusted by the panel thickness. Using a thinner panel can increase sensitivity, but the panel thickness must be used in the effective scope.

Component	Name	Description	Тур.	Unit
	C 1	-	1	μF
С	C ₂	-	0.1	μF
Ŭ	Cs	5% resolution Low temperature coefficient	-	pF
	R1	5% resolution	4.7	kΩ
R	R ₂	5% resolution	100	kΩ
ĸ	R ₃ 5% resolution		4.7	kΩ
	R ₄	5% resolution	4.7	kΩ

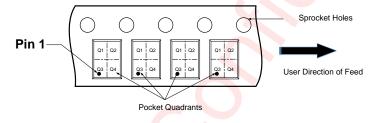
Recommended Components List

awin

PCB Layout Consideration

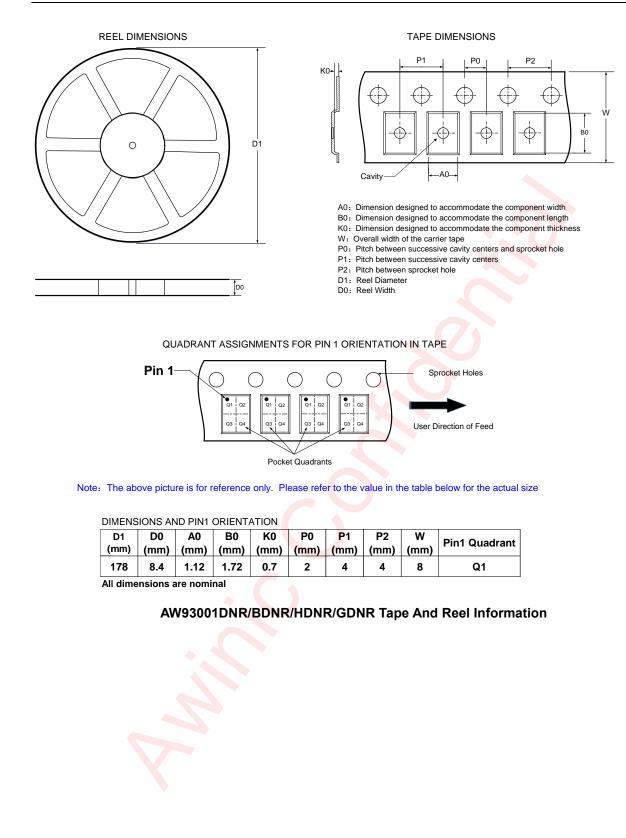

awini

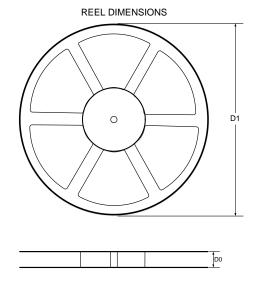
To obtain the optimal performance, PCB layout should be considered carefully. Here are some guidelines:


- 1. The connections between the capacitors (C_1, C_2) and the IC as short as possible, to reduce noise and EMI.
- 2. The distance from the touch pad to the pin CX as short as possible, and the signal trace as thin as possible.
- 3. The IC and sensor traces surrounded by ground, both top and bottom layers filled with ground plane.
- 4. The sensor and traces away from mic, earphone line, because capacitive sensor will disturb audio line.
- 5. The sensor and traces away from interferences, such as communication lines.
- 6. The material of panel covering the PCB cannot contain metal or electric element, and the surface coating is the same.

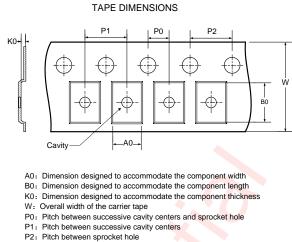
www.awinic.com

Tape And Reel Information

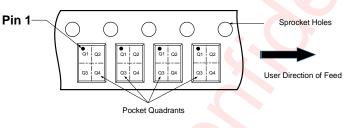

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

DIMENSIONS AND PIN1 ORIENTATION									
D1	D0	A0	B0	K0	P0	P1	P2	w	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
178	8.4	3.3	3.2	1.4	2	4	4	8	Q3
All dimensions are nominal									

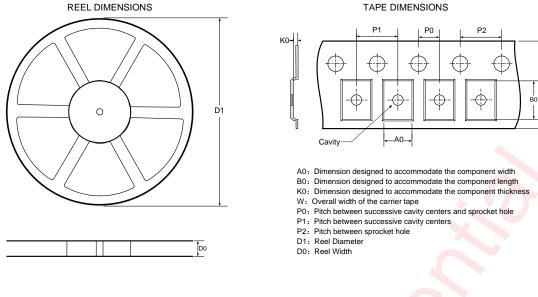

AW93001STR/BSTR/CSTR/DSTR Tape And Reel Information

awir

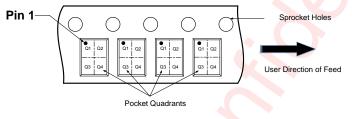

awir

D0: Reel Width

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size


DIMENSIONS AND PIN1 ORIENTATION

DIMENC										
D1	D0	A0	B0	K0	P0	P1	P2	w	Pin1 Quadrant	
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		
178	8.4	2.3	2.3	1	2	4	4	8	Q1	
All dime										


All dimensions are nominal

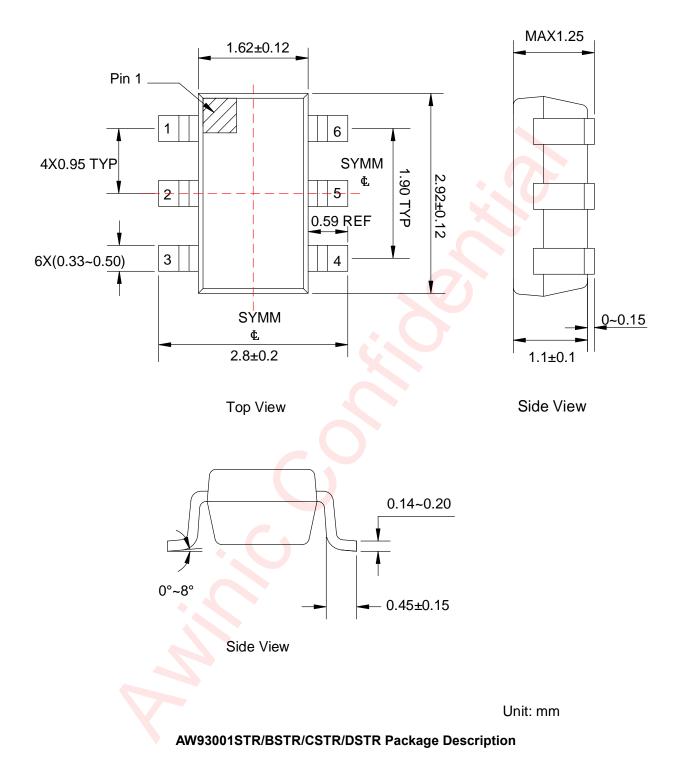
AW93001MDNR/LDNR Tape And Reel Information

Ŵ

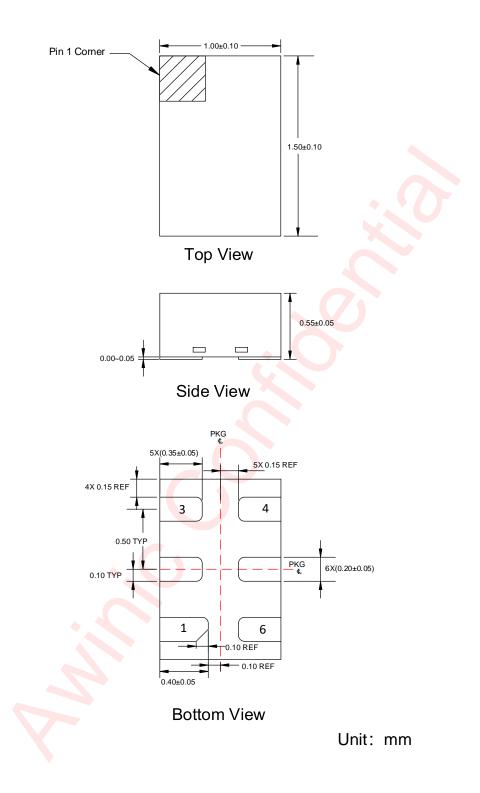
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

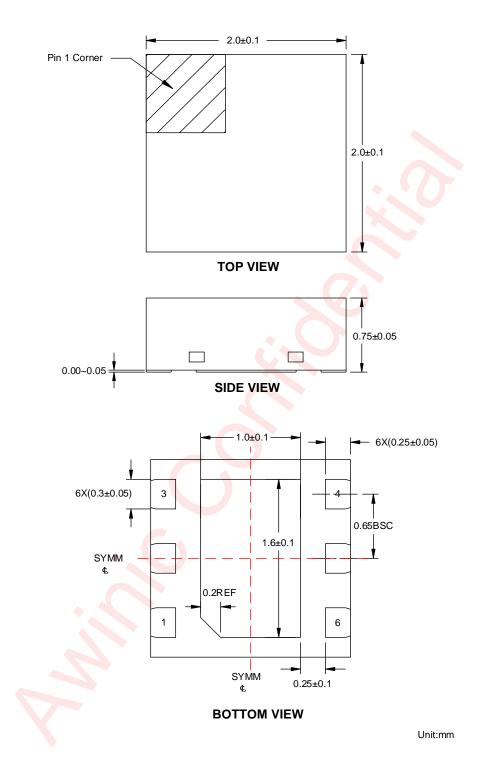
Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

DIMENSIONS AND PIN1 ORIENTATION									
D1 (mm)	D0 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
178	8.4	1.15	1.15	0.5	2	4	4	8	Q1

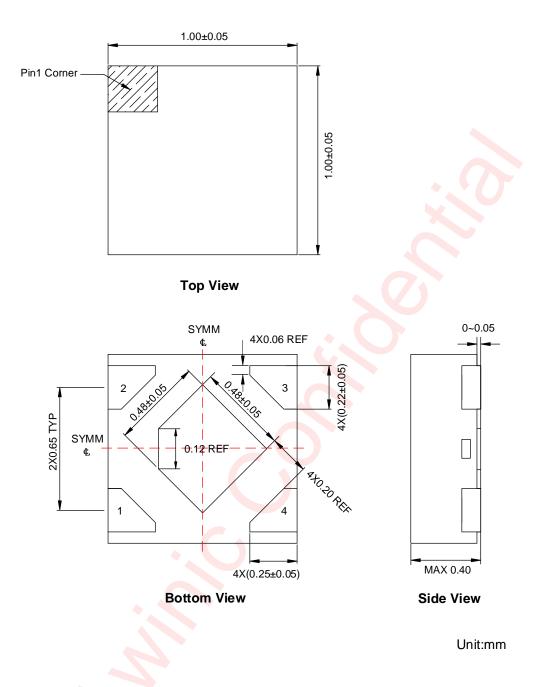

All dimensions are nominal

awin


AW93001CDNR/DDNR/EDNR/FDNR Tape And Reel Information

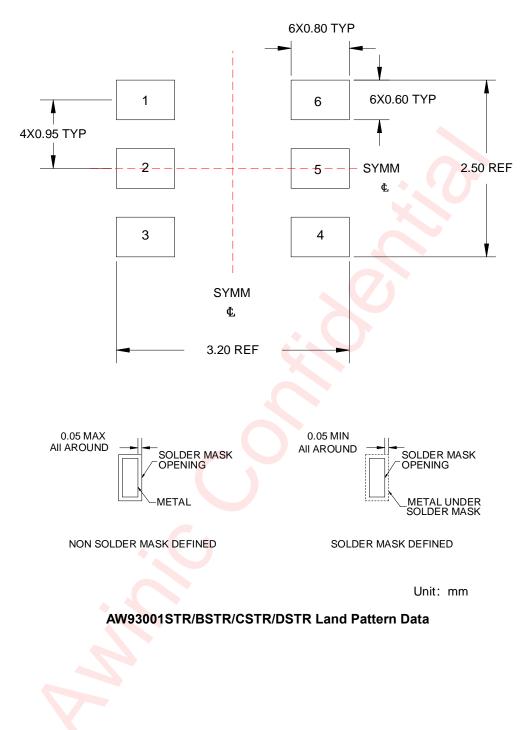

Package Description

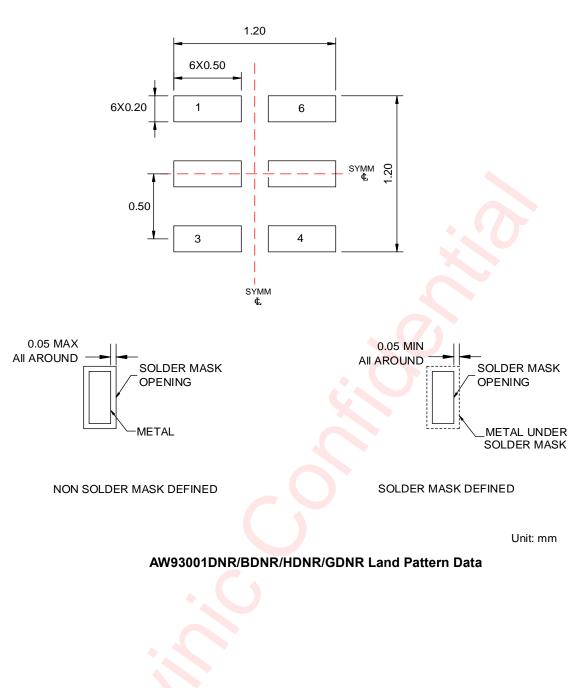
awinic



AW93001DNR/BDNR/HDNR/GDNR Package Description

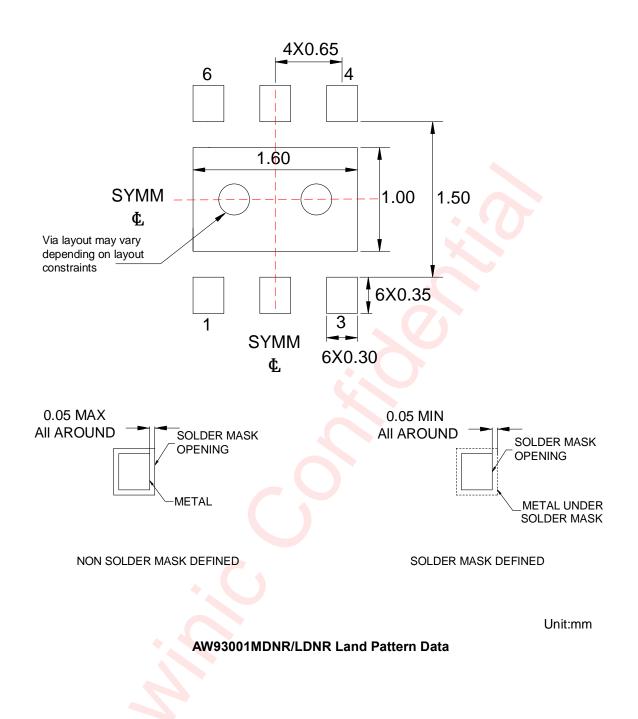
AW93001MDNR/LDNR Package Description


awinic

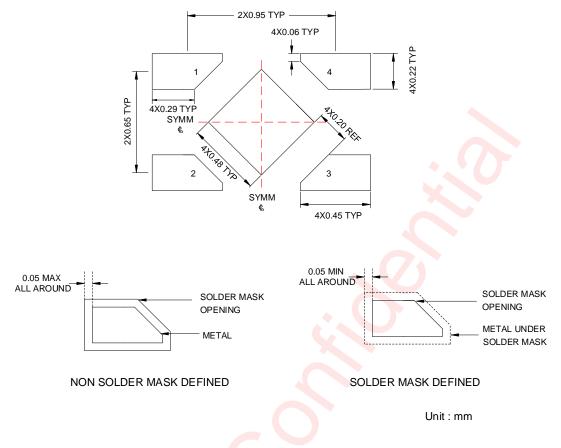


AW93001CDNR/DDNR/EDNR/FDNR Package Description

Land Pattern Data



艾为电子技术股份有限公司


shanghai awinic technology co., ltd.

awini

awinic

awinic

AW93001CDNR/DDNR/EDNR/FDNR Land Pattern Data

Revision History

Version	Date	Change Record			
V1.0	Feb.2021	Officially released			
V1.1	Feb.2021	Merge the AW93001STR/BSTR/DNR/BDNR's datasheet; Add a resistor between Cs and Touch pad in Typical Application Circuit			
V1.2	May.2021	Update Ordering Information			
V1.3	Jul.2021	Add the chip,AW93001HDNR's information			
V1.4	Jul.2021	Correct the AW93001HDNR's tracing code, update the package DFN1510-6's POD information			
V1.5	Jul.2021	Add the chip,AW93001GDNR's information, update the Device Comparison table			
V1.6	Nov.2021	Add the chip,AW93001MDNR/LDNR's information, update the Device Comparison table; Correct the R3 resistor value in Recommended Components List.			
V1.7	Dec.2021	Update Ordering Information			
V1.8	Mar.2022	Update Device Comparison, correct the AW93001STR/BSTR/DNR/BDNR's MOT value, update Functional Block Diagram.			
V1.9	May.2022	Add the chip, AW93001CSTR's information, update the Device Comparison table			
V2.0	Sep.2022	Update the Absolute Maximum Ratings, correct the maximum voltage range; Update the AW93001STR/BSTR/CSTR Tape And Reel Information			
V2.1	Oct.2022	Add the chip,AW93001DSTR's information, update the Device information			
V2.2	Jul.2023	Add the minimum response time in the table of Electrical Characteristics (P7).			
V2.3	Sep.2023	Add the part of Capacitor Cs Selection (P10~P11).			
V2.4	Jan.2024	Update the description of features (P1). Delete the part of Capacitor Cs Selection (P10).			
V2.5	Jul. 2024	Update the power consumption(P1 and P7)			
V2.6	Jul. 2024	Add the chip: AW93001CDNR/DDNR/EDNR/FDNR			
V2.7	Feb. 2025	Add the power on timing(P12)			

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

单击下面可查看定价,库存,交付和生命周期等信息

>>AWINIC(艾为)