

12V Adaptive Boost High Efficiency High PSRR Low Noise Large Volume 2-in-1 TLTR-AGC 5th Generation Smart K Audio Amplifier

FEATURES

- Triple-Level Triple-Rate AGC algorithm to effectively eliminate noise, pure sound quality
- Half wave modulation
- High efficiency large drive ability Adaptive Boost
- The output voltage: 12V
- Overall efficiency up to 85%
- Maximum output Power: 6.0W@8Ω
- Support External VBST Application
- High PSRR: 82dB (217Hz)
- Low noise:
 - 45μV (K Speaker @18dB THD+N=0.015%) 19μV (D Receiver @9dB THD+N=0.013%) 11μV (D Receiver @0dB THD+N=0.015%)
- Selectable speaker-guard power level:
- 0.5W~2W@8ohm, 100mW/step
- Speaker & receiver 2-in-1 mode application
- Battery tracking AGC selectable, for low voltage protection
- Shutdown current: 0.1µA
- Quiescent current: 6.8mA@3.6V
- Super TDD-Noise suppression
- Excellent pop-click suppression
- Excellent full bandwidth EMI suppression
- Support 1.8V logic I²C control
- FCQFN 2.0mm X 3.0mm X 0.55mm-20L package

GENERAL DESCRIPTION

AW87579 is specifically designed to improve the musical output dynamic range, enhance the overall sound quality. It is a new high efficiency, high PSRR, low noise, constant large volume, 5th generation Smart K audio amplifier. AW87579 AWINIC's proprietary Triple-Level integrates Triple-Rate AGC audio algorithm, effectively eliminating music noise and improving sound quality and volume. AW87579 integrates high voltage synchronous adaptive Boost with efficiency up to 88% as the class D power stage supply, significantly improving the dynamic range of music. AW87579 noise floor is as low as to 45µV at speaker mode, with 104dB high signal-to-noise ratio (SNR). The ultra-low distortion 0.015% and unique Triple-Level Triple-Rate AGC technology bring high quality music enjoyment.

It supports speaker and receiver 2-in-1 application. Quiescent current is 6.8mA when VDD is equal to 3.6V. In the receiver mode, its ultra-low noise is 11µV. Class D receiver also has high PSRR performance to completely suppress TDD-noise.

It controls internal registers through the I²C interface. Register parameters include boost output voltage, boost maximum input peak current, PA gain, Triple-Level Triple-Rate AGC parameters, etc. It built-in over current protection, over temperature protection and short circuit protection function, effectively protect the chip.

AW87579 features FCQFN 2.0mm X3.0mm X 0.55mm-20L package.

APPLICATIONS

Smart phone Tablet PC

awinic

TYPICAL APPLICATION CIRCUIT

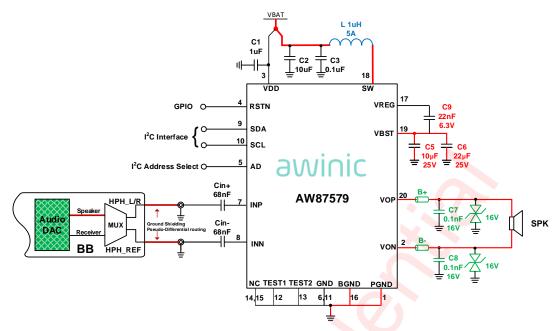


Figure 1 AW87579 Single-ended Input Mode Application Diagram

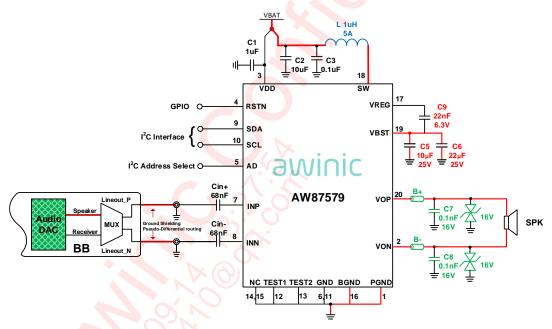


Figure 2 AW87579 Differential Input Mode Application Diagram

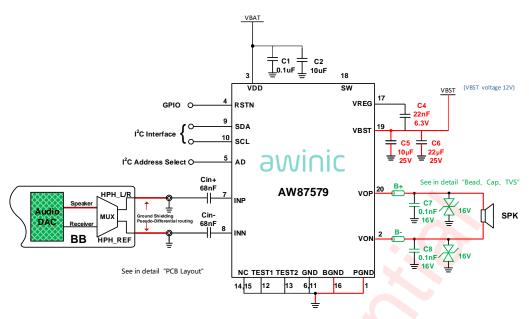


Figure 3 AW87579 External power supply VBST (EX-VBST) Mode Application Diagram

All trademarks are the property of their respective owners.

PIN CONFIGURATION AND TOP MARK

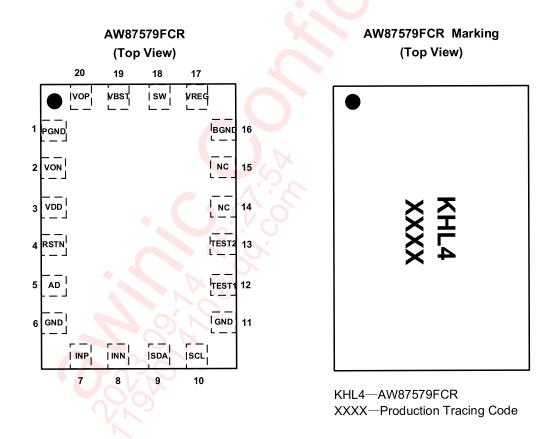


Figure 4 AW87579FCR Pin configuration and Top Mark

PIN DESCRIPTION

Number	Symbol	Description
1	PGND	Class D power ground
2	VON	Negative audio output terminal
3	VDD	Power supply
4	RSTN	Reset pin, active low reset, the internal $2M\Omega$ pull-down resistor in chip
5	AD	I ² C address pin
6	GND	Ground
7	INP	Positive audio input terminal
8	INN	Negative audio input terminal
9	SDA	I ² C-bus data input/output
10	SCL	I ² C-bus clock input
11	GND	Ground
12	TEST1	Test1 pad, connect to GND in application
13	TEST2	Test2 pad, connect to GND in application
14~15	NC	Connect to GND in application
16	BGND	Boost power ground
17	VREG	Charge pump output pin
18	SW	Boost switch pin
19	VBST	Boost output pin.
20	VOP	Positive audio output terminal

FUNCTIONAL DIAGRAM

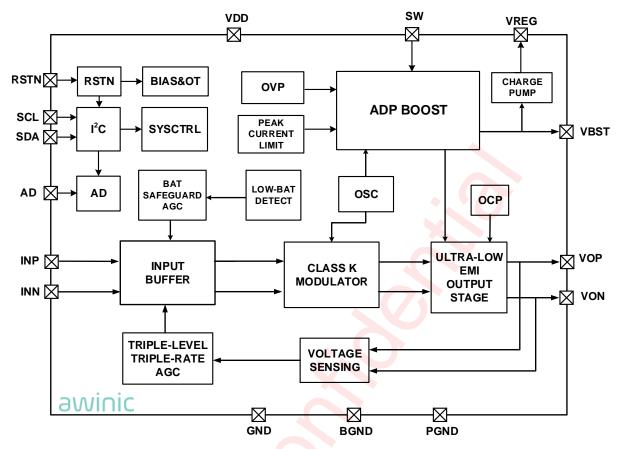


Figure 5 AW87579 Functional Diagram

TYPICAL APPLICATION CIRCUIT

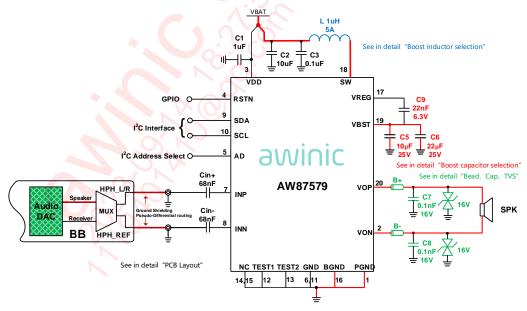


Figure 6 AW87579 Single-ended Input Mode Application Diagram^(Note 1)

Note1: When single-ended input, audio signal line from audio DAC (HPH_L or HPH_R) can arbitrarily connected to either of INN or INP input terminal. The other terminal must be connected to reference ground (HPH_REF) through input capacitor and resistor.

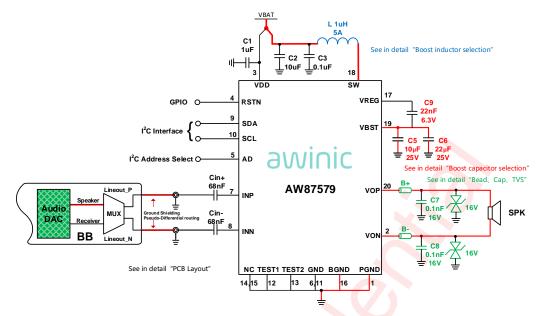


Figure 7 AW87579 Differential Input Mode Application Diagram

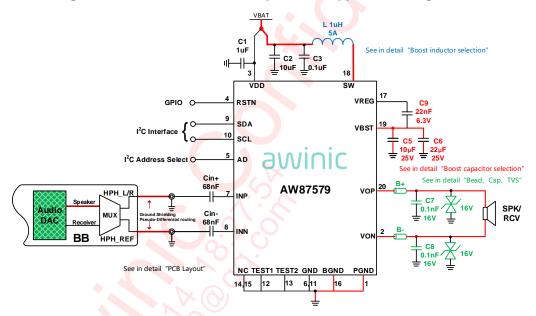


Figure 8 AW87579 Speaker & Receiver 2-in-1 Mode Application Diagram

ORDERING INFORMATION

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW87579FCR	-40°C∼85°C	FCQFN 2.0mmX3.0mm X0.55mm -20L	KHL4	MSL1	ROHS+HF	6000 units/ Tape and Reel

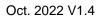
ABSOLUTE MAXIMUM RATING (Note2)

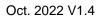
Parameter	Range
Supply Voltage VDD	-0.3V to 6V
INN,INP	-0.3V to VDD+0.3V
Boost output voltage VBST	-0.3V to 14.5V
SW	-0.3V to VBST+2V
VOP,VON	-0.3V to VBST+0.3V
Minimum load resistance R _L	3.2Ω
Package Thermal Resistance θ _{JA}	57.9°C/W
Ambient Temperature Range	-40°C to 85°C
Maximum Junction Temperature T _{JMAX}	165°C
Storage Temperature Range T _{STG}	-65°C to 150°C
Lead Temperature (Soldering 10 Seconds)	260°C
ESD Rating (Note 3)	
HBM (human body model)	±2kV
CDM (charged-device model)	±1.5kV
Latch-up	
Test Condition: JEDEC STANDARD NO.78E	+IT: 450mA
Test Condition: JEDEC STANDARD NO.76E	-IT: -450mA

NOTE2: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE3: The human body model is a 100pF capacitor discharged through a 1.5k Ω resistor into each pin. Test method: ESDA/JEDEC JS-001-2017

Test method of the charge device model: ESDA/JEDEC JS-002-2018




ELECTRICAL CHARACTERISTICS

Test condition: $T_A=25$ °C, VDD=4.2V, VBST=12V, $R_L=8\Omega+33\mu H$, f=1kHz (unless otherwise noted)

	Parameter	Test conditions	Min	Тур	Max	Units
VDD	Power supply voltage		2.8		5.5	V
UVLO	Under-voltage protection voltage			2.5		V
OVLO	Under-voltage protection hysteresis voltage			100		mV
V _{IH}	RSTN, SCL, SDA, AD high-level input voltage		1.3		VDD	V
VıL	RSTN, SCL, SDA, AD low-level input voltage		0		0.45	V
I _{SD}	Shutdown current	VDD=3.6V, RSTN=0V		0.1	1	μA
T _{TG}	Thermal AGC start temperature threshold			150		°C
T _{TGR}	Thermal AGC exit temperature threshold			130		°C
Tsp	Over temperature protection threshold			160		°C
T _{SDR}	Over temperature protection recovery threshold			130		°C
Ton	Turn-On time			45		ms
BOOST						
VBST	BOOST Output voltage	VDD=2.8V to 5.5V		12 (Note4)		V
OVP	OVP voltage	VDD=2.8V to 5.5V		VBST+0.5		V
OVI	OVP hysteresis voltage	VDD=2.8V to 5.5V		500		mV
I _{L_PEAK}	Inductor peak current limit	1 .7.0.		4.5 (Note4)		Α
F _{BST}	Boost operating frequency	VDD=2.8V to 5.5V		1.6		MHz
D _{MAX}	The maximum duty cycle	NO)		90		%
T _{ST}	Soft-start time	No load,Cουτ=22μF		2		ms
ηсР	Boost efficiency	VDD=4.2V, I _{load} =200mA		88		%
CLASS K	MODE	>				
Vos	Output offset voltage	No input	-30	0	30	mV
n-	Total efficiency (ADP BOOST+CLASS D)	VDD=4.2V, Po=0.4W, R _L =8Ω+33μH		85		%
ητ	Total efficiency (ADP BOOST+CLASS D)	VDD=4.2V, Po=2.5W, R _L =8Ω+33μH		80		%
lqк	Speaker Quiescent current at ADP BOOST MODE	VDD=3.6V, input ac grounded, R∟=8Ω+33μH		6.8		mA

	Parameter	Test con	ditions	Min	Тур	Max	Units
R _{dson}	Drain-Source on-state resistance	High side MOS + Low side MOS			250		mΩ
Vinp	Recommended input signal amplitude	VDD=2.8V to 5.			1	Vp	
Fosc	Modulation frequency	VDD=2.8V to 5.	600		1000	kHz	
	TI TO AGO	R _L =8Ω+33μH			0.8 (Note4)	0.88	W
Pagc	TLTR AGC power	R _L =8Ω+33μH R _L =6Ω+33μH			1.067 (Note4)	1.17	W
DCDD	Power supply rejection	VDD=4.2V, 217Hz			80		dB
PSRR	ratio	Vpp_sin=200m\	/ 1kHz		76		dB
SNR	Signal to paigo ratio	VDD=4.2V, Po= Av=18dB ,R _L =89			104		dB
SINK	Signal-to-noise ratio	VDD=4.2V, Po= Av=18dB,R _L =8Ω			95		dB
		Av=24dB	20Hz to		55		
E _N	Speaker Output noise	Av=18dB 20kHz, input ac grounded, A-weighting			45		μV
Av	Speaker gain	VDD=2.8V to 5.		24 (Note4)		dB	
Dia:	Speaker Inner input resistance	Av=24dB			9		1.0
Rini	Speaker Inner input resistance	Av=18dB		18		kΩ	
	Speaker input Cut-off frequency	Cin=47nF, Av=2	24dB		376		
	Speaker input Cut-off frequency	Cin=47nF, Av=1	8dB		188		
Fin	Speaker input Cut-off frequency	Cin=68nF, Av=2	24dB		260		Hz
FIII	Speaker input Cut-off frequency	Cin=68nF, Av=1	8dB		130		
	Speaker input Cut-off frequency	Cin=100nF, Av=	=24dB		177		
	Speaker input Cut-off frequency	Cin=100nF, Av=	-18dB		88		
THD+N	Total harmonic distortion	VDD=4.2V, Po=0.8W,			0.015		%
	+ noise	RL=8Ω+33μH, f=1kHz				/0	
D ₀	Speaker Output Dower	THD+N=1%, R _L =8Ω+33μH, VDD=4.2V, VBST=12V, I _{L_PEAK} =4.5A			6.0		W
Po	Speaker Output Power	THD+N=10%, R _L =8Ω+33μH, VDD=4.2V, VBST=12V, I _{L_PEAK} =4.5A			7.3		W

	Parameter	Test cor	nditions	Min	Тур	Max	Units
		THD+N=1%, RL VDD=4.2V, VBS IL_PEAK=4.5A		6.2		W	
		THD+N=10%, VDD=4.2V, VBS I _{L_PEAK} =4.5A		7.5		W	
2-in-1 Rec	eiver MODE						
I_{QD}	D Receiver quiescent current (overall)	VDD=3.6V, inpu R _L =8Ω+33μH	ut ac grounded,		6.8		mA
η _D	CLASS D Receiver efficiency	VDD=4.2V,Po= R _L =8Ω+33μH	0.8W,		90		%
Av	gain	VDD=2.8V to 5.	5V		0 (Note4)		dB
Rini	CLASS D Receiver Inner input resistance	Av=9dB			38		kΩ
	CLASS D Receiver input cut-off frequency	Cin=47nF, Av=9	9dB		89		
Fin	CLASS D Receiver input cut-off frequency	Cin=68nF, Av=9dB			62		Hz
	CLASS D Receiver input cut-off frequency	Cin=100nF, Av=	=9dB		42		
E _N	CLASS D Receiver output	Av=0dB	Av=0dB 20Hz to 20kHz, input		11		μV
	noise	Av=9dB	ac grounded, A-weighting		19		μV
THD+N	Total harmonic distortion + noise	VDD=4.2V, Po=0.1W,RL=8 f=1kHz, CLASS			0.015		%
	CLASS D Receiver	VDD=4.2V,	217Hz		82		dB
PSRR	Power supply rejection ratio	Vp-p_sin=200 mV	1kHz		80		dB
Po	CLASS D Receiver Output Power	THD+N=1%, RL VDD=4.2V, GAI			1.0		W
EX-VBST		(A)				1	I
THD+N	Total harmonic distortion	VDD=4.2V, PVI Po=6W, RL=8Ω	·		0.015		%
THUTN	+ noise	VDD=4.2V, PVI Po=8W,RL=4-	·		0.035		%
	500 kg	VDD=4.2V,PVD RL=8Ω+33μH, f	•		91.8		%
η	Po=5W	VDD=4.2V,PVDD=12V,			89.2		%
	Po=1W	RL=4Ω+33μH, f=1kHz VDD=4.2V,PVDD=12V,			83.2		%
	FU=1VV	RL=8Ω+33μH, f		03.2		/0	

	•	•
1 /	11	10
U	VΙ	10
	_	 -

	Parameter	Parameter Test conditions		Тур	Max	Units
		VDD=4.2V,PVDD=12V,RL=4 Ω+33μH, f=1kHz		80		%
Battery T	racking AGC					
V_{BSGD}	Battery protection threshold voltage			3.4 (Note4)		V
V _{HYS}	Battery protection Hysteresis voltage			100		mV
Triple-Le	vel Triple-Rate AGC					
T _{AT1}	AGC1 Attack Time			0.08 (Note4)		ms/dB
T_{AT2}	AGC2 Attack Time		•	0.64 (Note4)		ms/dB
Татз	AGC3 Attack Time			41 (Note4)		ms/dB
T _{RLT}	Release time			21 (Note4)		ms/dB
Амах	The maximum attenuation gain	VDD=2.8V to 5.5V		-13.5		dB

Note 4: Registers are adjustable; Refer to the list of registers.

MEASUREMENT SETUP

AW87579 features switching digital output, as shown in Figure 9. Need to connect a low pass filter to VOP/VON output respectively to filter out switch modulation frequency, then measure the differential output of filter to obtain analog output signal.

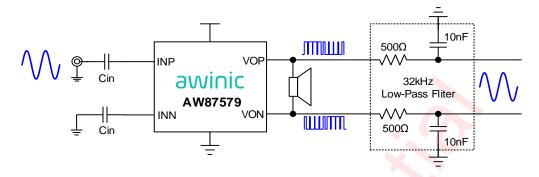


Figure 9 AW87579 Test Setup

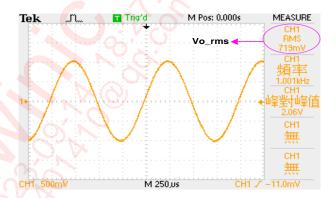
Low pass filter uses resistance and capacitor values listed in Table 1.

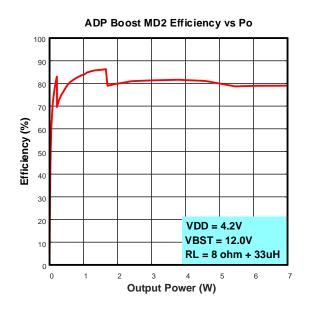
Rfilter	Cfilter	Low-pass cutoff frequency
500Ω	10nF	32kHz
1kΩ	4.7nF	34kHz

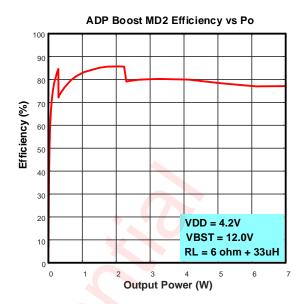
Table 1 AW87579 Recommended Values for Low Pass Filter

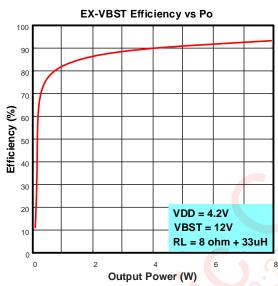
Output Power Calculation

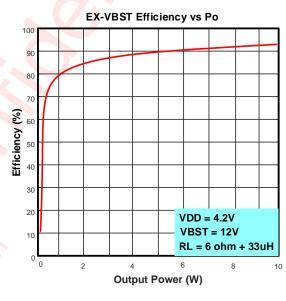
According to the above test methods, the differential analog output signal is obtained at the output of the low pass filter. The valid values Vo_rms of the differential signal, as shown in Figure 10:

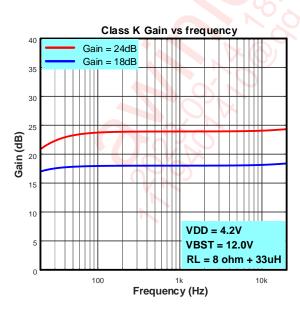


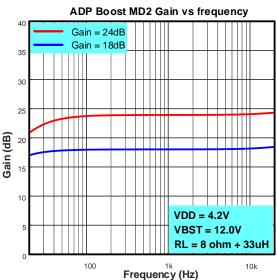

Figure 10 Output RMS Value

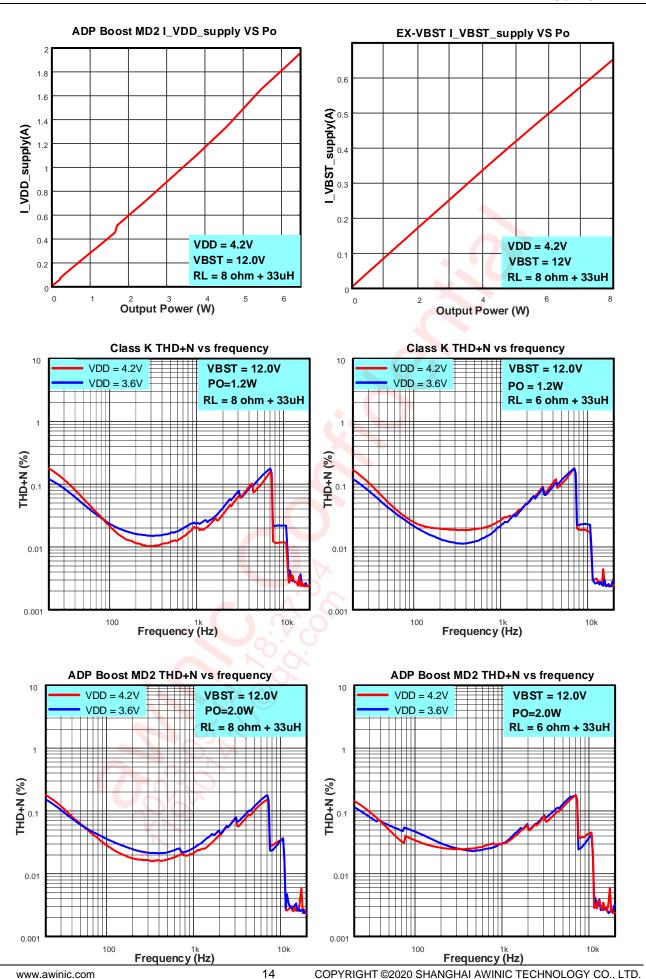

The power calculation of Speaker is as follows:

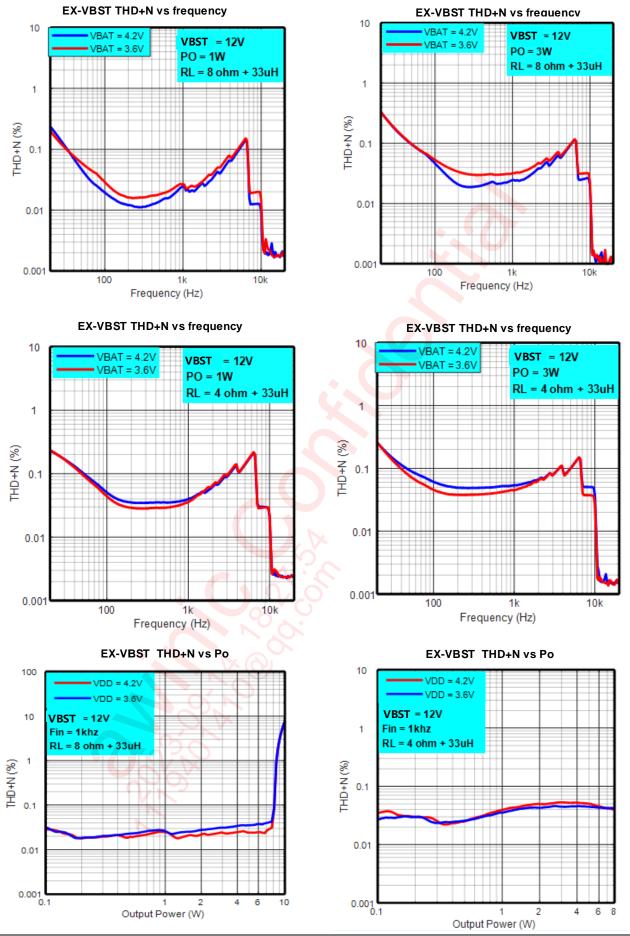

$$P_L = \frac{(V_{O_rms})^2}{R_I}$$
 R_L: load impedance of the speaker

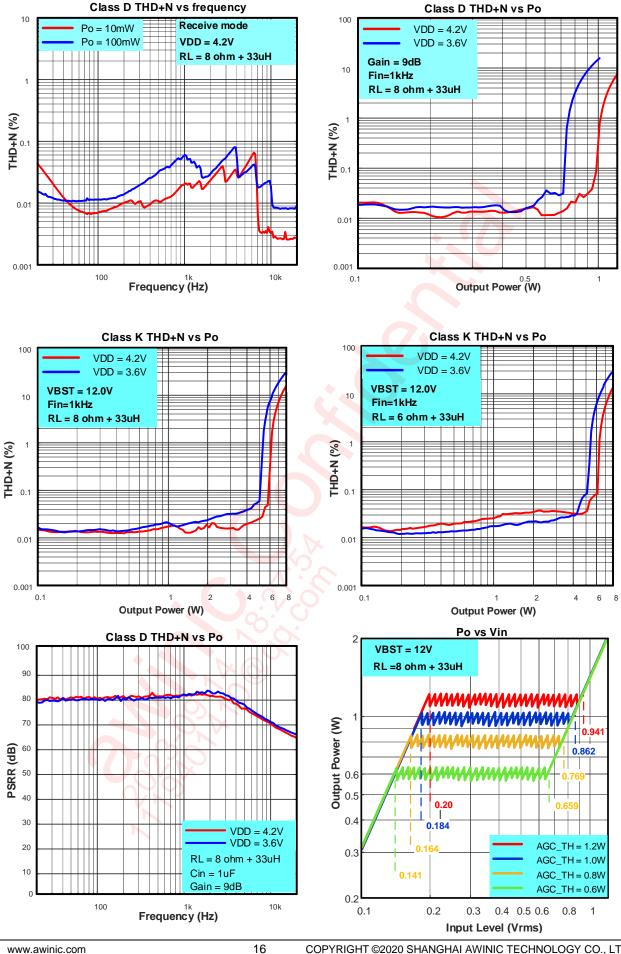

TYPICAL CHARACTERISTICS

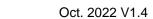

awinic

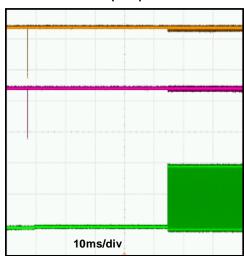


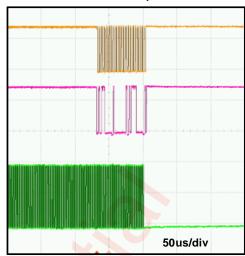


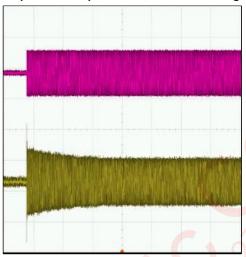


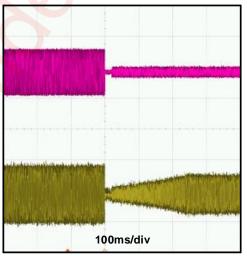

awinic




15




Start-up sequence


Shutdown sequence

Triple-Level Triple Rate AGC Attack Timing

Triple-Level Triple Rate AGC Release Timing

WORKING PRINCIPLE

AW87579 is specifically designed to improve the musical output dynamic range, enhance the overall sound quality. It is a new high efficiency, high PSRR, low noise, constant large volume, 5th generation Smart K audio amplifier. AW87579 integrates AWINIC's proprietary Triple-Level Triple-Rate AGC audio algorithm, effectively eliminating music noise and improving sound quality and volume. AW87579 integrates high voltage synchronous Boost with efficiency up to 88% as the class D power stage supply, significantly improving the dynamic range of music. AW87579 noise floor is as low as to 45µV at speaker mode, with 104dB high signal-to-noise ratio (SNR). The ultra-low distortion 0.015% and unique Triple-Level Triple-Rate AGC technology bring high quality music enjoyment.

AW87579 supports speaker and receiver 2-in-1 application. In the receiver mode, its ultra-low noise is $11\mu V@0dB$. Class D receiver also has high PSRR performance to completely suppress TDD-noise.

AW87579 controls internal registers through the I²C interface. Register parameters include boost output voltage, boost maximum input peak current, PA gain, Triple-Level Triple-Rate AGC parameters, etc.

AW87579 built-in over current protection, over temperature protection and short circuit protection function, effectively protect the chip. AW87579 features small FCQFN 2.0mmX3.0mmX0.55mm-20L package.

CONSTANT OUTPUT POWER

In the mobile phone audio applications, the AGC function to promote music volume and quality is very attractive, but as the lithium battery voltage drops, general power amplifier output power will reduce gradually. So, it is hard to provide high quality music within the battery voltage range. AW87579 uses unique Triple-Level Triple-Rate technology, within lithium battery voltage range (3.3V~4.35V), to guarantee that output power is constant, and the output power will not drop along with the decrease of lithium battery voltage. In the process of using the phone, even if the battery voltage drops, AW87579 can still provide high quality large volume music enjoyment. The output power of AW87579 can be configured from 0.5W to 2W via I²C, matching general speakers. Unique Triple-Level Triple-Rate AGC technology can bring high-quality music enjoyment.

TRIPLE-LEVEL TRIPLE-RATE AGC TECHNOLOGY

AWINIC proprietary Triple-Level Triple-Rate AGC technology is designed for the protection of the high voltage power amplifier, which is divided into AGC1, AGC2 and AGC3 power levels, to obtain a large volume while maintaining excellent sound quality.

In practical applications, speaker can continuously work long hours at rated power, and also can work short-term at high power. For example, in the standard reliability of the loudspeaker experiment, the power of peak power reached around four times of the rated power. For achieving larger volume and better sound quality, speakers need to work at high power for short periods of time, in order to improve the performance of the speaker. AW87579 Triple-Level Triple-Rate AGC technology can fit the speaker better and perform better overall performance. AGC1 prevents output signal clipping by detecting output voltage in a very short time after clipping, which can effectively restrain the noise clipping; AGC2 can improve the dynamic range of the music in a relatively short period of time; AGC3 can make the speaker work under rated power, which can effectively improve the volume and protect the speaker. Triple-Level Triple-Rate AGC can obtain more excellent overall performance.

Triple-Level Triple-Rate AGC detects the peak output voltage of the power amplifier, when the output peak voltage is higher than the compression threshold voltage, the amplifier gain decreases in 0.5dB step. When the output peak voltage is lower than the release threshold voltage, the amplifier gain is recovery to the initial gain in 0.5dB step. The detailed process can be described as follows:

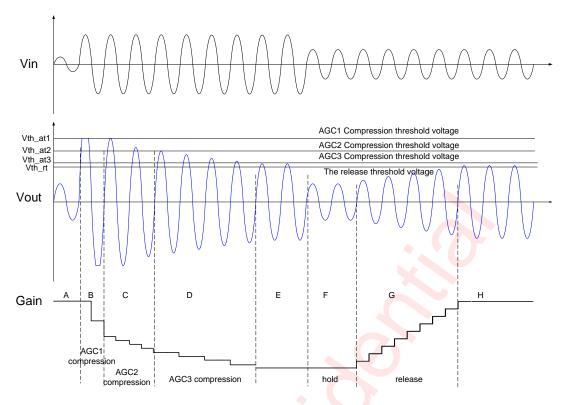


Figure 11 Triple-Level Triple-Rate AGC Operation Principle

A: Small input signal, the output voltage is lower than threshold voltage Vth of AGC, AGC don't work.

B: Input voltage becomes large. It leads to the output voltage clipping, AGC1 starts fast compression, the attack time is set through the I²C register 0x0Bh [2:1], when the output voltage is higher than Vth_at1, and gain register began to decrease. Gain decreases when the output signal passes through the zero. It eliminates the clipping noise as soon as possible.

C: When the output voltage is not clipping and higher than threshold voltage Vth_at2, AGC2 starts work, the attack time is set through the I²C register 0x0Ah [4:2], gain register begins to decrease at a certain rate. Gain register began to decrease. Gain decreases when the output signal passes through the zero. The output voltage gradually decreases to below the AGC2 attack threshold voltage Vth_at2, which can protect the speaker and enhance the sound.

D: When the output voltage is lower than the AGC2 attack threshold voltage Vth_at2 and higher than the AGC3 attack threshold voltage Vth_at3, AGC3 starts work, the attack time is set through the I²C register 0x08h [4:2], and gain register began to decrease at a certain rate. Gain decreases when the output signal passes through the zero, so the output voltage gradually decreases to below of the AGC3 attack threshold voltage Vth at3, matching the speaker to achieve greater volume and better sound quality.

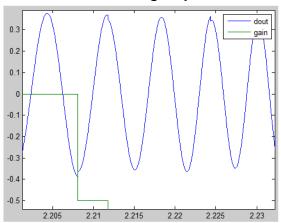
E: Triple-Level Triple-Rate AGC attack time ends, Amplifier output power is close to the speaker rated power. **F:** Input voltage decreases, the output voltage becomes lower than the release threshold voltage Vth_rt, at this point, gain remains the same in the maintain time (10ms~20ms).

G: Gain increases when the time of output voltage lower than the release threshold voltage Vth_rt is longer than the holding time. The release time can be set through I²C register 0x08h [7:5].

H: Stop release when the output signal is larger than the release threshold or the gain is equal to the initial value. The output voltage remains constant.

Triple-Level Triple-Rate AGC can switch independently according to different application requirements.

ZERO-CROSSING ADJUSTMENT TECHNOLOGY


Traditional AGC doesn't contain zero adjustment technology; AGC gain changes generally at the peak, the gain variation at the peak would generate a certain transient distortion, such distortions are audibly

imperceptible. Such as individual songs have a slight click.

zero-crossing adjustment

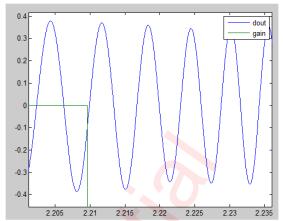


Figure 12 Zero-adjust Comparison

As shown above, when there is no zero-adjustment technology, it can be seen the obvious step change at the peak of large signal, the steps sound slightly perceived in special audio. Gain changes at zero. The steps disappear by using zero-crossing detection technology. Using zero detection technology can make the music pure and natural.

LOW-VOLTAGE PROTECTION AGC TECHNOLOGY

Mobile phone battery voltage will decrease in use, but the current will increase. When the battery voltage is low, high current maybe cause the battery protection or mobile phone automatically shut down. AWINIC proprietary low voltage protection AGC technology can solve the problems, to prevent high current when the battery voltage is too low.

AW87579 is built-in low voltage protection AGC technology to real-time detection the battery voltage. Gain decreases rapidly when the battery voltage is below the safety threshold, so as to decrease the output voltage and the power supply current, which effectively prevents high current.

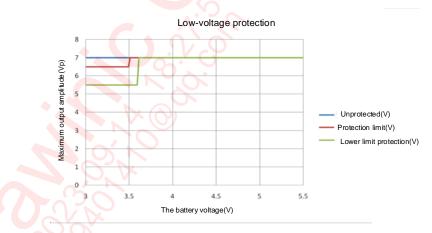


Figure 13 Low voltage protection

The protection safety threshold voltage is set to $3.3V\sim3.6V$ through the I²C register 0x02h [4:3]. The maximum protection output voltage is set to $5Vp \sim 6.5Vp$ through I²C register 0x02h [1:0]. Only when the register 0x02h [2] is set to 1, low voltage protection AGC technology is enabled.

SYNCHRONOUS ADAPTIVE BOOST TECHNOLOGY

AW87579 integrated peak current mode synchronous adaptive PWM Boost as Class D power stage supply,

Oct. 2022 V1.4

significantly increase the output voltage dynamic range. Reduces the size of external components and saves PCB space by using 1.6MHz switching frequency. The boost converter is adaptive and activates automatically depending on the output audio signal amplitude. As the audio output is higher than the first prescribed value SET_BOOST_VTH1, which can set can be set through the I²C register 0x0Fh [2:0], the Boost enters into MODE1, where the boost regulator is activated to boost and regulate VBST at an intermediate value. As the audio output grows higher than the second prescribed value SET_BOOST_VTH2, which can set can be set through the I²C register 0x0Fh [5:3], The Boost enters into MODE2, the Boost enters into MODE2, where VBST is further boosted and regulated at its final value set by BST_VOUT, which can set can be set through the I²C register 0x03h [4:0], Boost current limit can be set through register 0x05h [3:0].

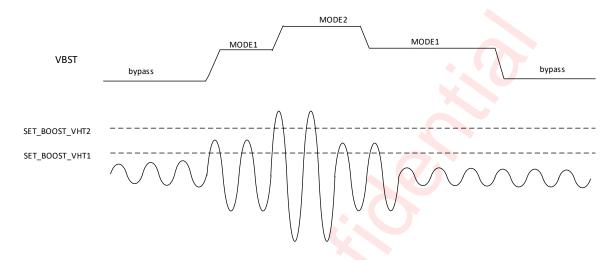


Figure 14 Adaptive Boost Operation Principle

SPEAKER & RECEIVER 2-in-1

AW87579 built-in speaker and receiver 2-in-1 application mode, through the register settings, class D-type 2-in-1 receiver mode gain can be adjusted through the I²C register 0x05, adjustable range of 0~10.5dB, the application is very flexible. The 2-in-1 receiver mode uses the signal path of the speaker, with ultra-low distortion and strong drive capability, and eliminates the need for additional peripheral components, saving system cost and PCB layout space.

In the typical application case of Figure 8, the input capacitance Cin = 68nF, the gain is 24dB in the speaker application mode, the input high-pass cutoff frequency is 260Hz; In 9dB gain class D-type 2-in-1 receiver application mode, the output noise is $19\mu V$, the input high-pass cut-off frequency is 62Hz, which is very suitable for high-definition voice applications. AW87579 can achieve speaker and receiver's 2-in-1 application without changing any hardware in the case.

RNS (RF TDD NOISE SUPPRESSION)

TDD NOISE CAUSES

GSM cell phones use TDMA (Time Division Multiple Access) slot sharing technology. The time is divided into periodic frames in TDMA, and each frame is subdivided into a plurality of time slots. In order to transmit signals to the base station, the signals sent from the base stations to the plurality of mobile terminals are arranged in a predetermined time slot in the transmission. In this case, each TDMA frame contains 8 time slots, the entire frame is about 4.615ms long, and each slot time is 0.577ms.

With GSM handset, the RF power amplifier will transmit once every 4.615ms (217Hz), and the signal will produce intermittent Burst current and strong electromagnetic radiation. Intermittent Burst current will form a power fluctuation of 217 Hz; High frequency (900MHz and 1800MHz) RF signals form a 217Hz RF envelope signal. 217Hz power fluctuations will be conducted through the conduction to the audio signal path, 217Hz RF

envelope signal will be coupled through the radiation into the audio signal path, if the protection is not good, it will produce an audible TDD Noise, which includes the 217Hz noise And a harmonic noise signal of 217 Hz.

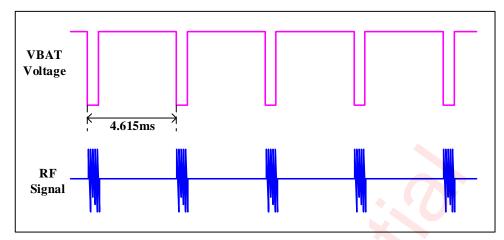


Figure 15 Schematic Diagram of Power Supply Voltage and RF Signal during GSM RF Operation

RNS fully inhibit the conduction and radiation interference by the AWINIC unique circuit architecture. Effectively improve the ability to suppress TDD Noise.

CONDUCTION NOISE SUPPRESSION

When the RF power amplifier is operating, it will draw the current from the battery by 217Hz frequency, Power supply will be introduced to 217Hz power ripple since the battery has a certain internal resistance, it will be coupled to the speaker through the audio power amplifier. The ability to suppress power fluctuations depends on the PSRR of the audio power amplifier.

$$PSRR = 20log(\frac{vdd_{ac}}{vout_{ac}})$$

Due to the input and output of the fully differential amplifier is perfectly symmetrical, theoretically, the effect of the power supply fluctuation on the two outputs is exactly the same, and the differential output is completely unaffected by the power supply fluctuation. In practice, due to process bias and other factors, the amplifier will have a certain mismatch, PSRR is generally better than 60dB, it shows the output relative to the power fluctuations can be reduced by 1000 times, such as 500mVp power fluctuations, the differential output of 0.5 mV, which basically can meet the application requirements.

But in practical applications, the power amplifier may encounter conduction of TDD Noise problem even if its PSRR is 60dB or 80dB, why is this? Because we also need to consider the impact of peripheral power mismatches of audio power amplifiers.

For conventional audio power amplifiers, when the input resistor Rin and the input capacitor Cin mismatch, will greatly affect the audio power amplifier PSRR indicators, in the case of 24 times the gain, PSRR will be weakened to 46dB or so if the input resistance and Capacitor with 1% mismatch. PSRR will be weakened to 28dB or so if the input resistance and input capacitance mismatch with 10% mismatch, when the power fluctuations, it is easy to produce audible TDD Noise.

In order to enhance the audio power amplifier PSRR in the input resistance and input capacitance mismatch case, AW87579 features a unique conduction noise suppression circuit, making the power amplifier to maintain a high PSRR value even in the input resistance, the input capacitance deviation of 10% or more, this greatly inhibits the generation of conducted noise.

RADIATION NOISE SUPPRESSION

Input traces, output traces, horn loops, and even power and ground loops are likely to be subject to RF radiation interference in the audio signal module, longer input traces and output traces similar to the antenna, especially vulnerable RF radiation effects.

The reasonable PCB layout can reduce the influence of RF radiation in the design, such as shorten the line length of input and output as much as possible; audio devices should be shielded and far away from the RF antenna, maintain the integrity of the device to audio signal pathway; to increase the small bypass capacitor RF signals in the sensitive nodes. However, in practical applications, PCB layout is difficult to fully consider the influence of RF radiation on the audio signal path, and some RF energy will still be coupled to the audio signal path to form audible TDD Noise. Therefore, AW87579 features a unique RF radiation suppression circuit, a shielding layer inside the chip, effectively prevent high frequency energy into RF chip, to ensure that the drive single of the amplifier provided to the speaker will not be affected by the antenna RF radiation, thus avoiding the antenna RF Radiation caused by TDD Noise.

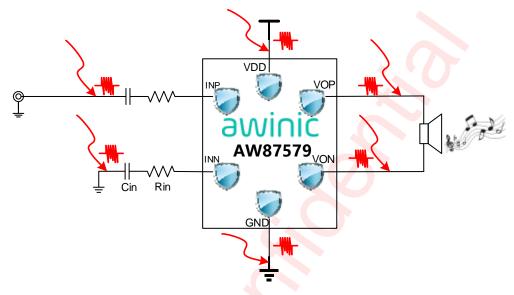


Figure 16 RF Radiation Coupling Graph

CLASS D AMPLIFIER WITHOUT FILTER

When the traditional Class D amplifier is in idle state of no input signal, the output will have the inverse square wave, it will directly above the load of the speaker, will form a large current power switch on the speaker, therefore we need to increase the LC filter to restore the analog audio signal at the amplifier output. The LC filter increase the cost and PCB layout area, while increase the power consumption, reduce the performance of THD+N.

The AW87579 features a Class D amplifier without a filter, eliminating the need for an output LC filter. In the idle state of no input signal, the two outputs (VOP, VON) of the amplifier are in-phase square waves and not generate idle switching currents on the speaker load. When the input signal is added to the input terminal, the duty ratio of the output is changed. The duty cycle of the VOP becomes larger and the duty cycle of the VON becomes smaller, and the difference value of the output forms the differential amplified signal on the speaker.

EEE

The AW87579 features a unique Enhanced Emission Elimination (EEE) technology, that controls fast transition on the output, greatly reduces EMI over the full bandwidth, fully meet FCC Class B specification requirements.

POP-CLICK SUPPRESSION

The AW87579 features unique timing control circuit, that comprehensively suppresses pop-click noise, eliminates audible transients on shutdown, wakeup, and power-up/down.

THERMAL AGC/OVER TEMPERATURE PROTECTION

The AW87579 features the thermal AGC patented technology, can according to the chip temperature, automatically adjust the gain of the system, reduce the power consumption of the chip, to prevent damage in case of excessive temperature.

The AW87579 has an automatic temperature detection mechanism, when the chip temperature exceeds the preset threshold of thermal AGC temperature (150°C), the chip will start the automatic gain control circuit to decrease the gain of the system, thereby reducing the energy consumption of the chip, thus slow or stop chip temperature continues to rise. When the chip temperature is restored to normal operating range (below 130°C), the automatic gain control circuit will restore the system gain to the original state. When the chip operates in a fault condition, the chip temperature is too high, up to a preset temperature protection temperature threshold (160°C), the system starts overheating protection, the chip will be turned off, restarts to resume normal work when the chip temperature returns to normal operating range (less than 130°C).

AUTOMATIC RECOVERY OF OVERCURRENT PROTECTION

AW87579 with automatic recovery of the output overcurrent protection function, when the overcurrent occurs, AW87579 internal protection circuit will chip off to ensure that the chip is not damaged, when the short-circuit fault is eliminated, the chip will automatically resume working without restarting.

DEVICE ADDRESS

The I²C device address (7-bit) is decided by the connection of the AD pin. The connection of AD pin configures the two LSB bits of the following 7-bit binary address A6-A0 of 10110A1A0. The permitted I²C addresses are 0x58(7bit) through 0x5B (7-bit). The address information is as following table.

AD pin	A1	Α0	I ² C address (7-bit)
Connects to GND	0	0	0x58
Connects to SCL	0	1	0x59
Connects to SDA	1	0	0x5A
Connects to VDD	1	1	0x5B

Table 2 AW87579 Address selection

I²C TIMING FEATURE

		Parameter	MIN	TYP	MAX	UNIT
No.	Sym	Name	IVIIIN	1115	IVIAA	ONIT
1	f _{SCL}	SCL Clock frequency			400	kHz
2	tLOW	SCL Low level Duration	1.3			μs
3	tніgн	SCL High level Duration	0.6			μs
4	t _{RISE}	SCL, SDA rise time			0.3	μs
5	tFALL	SCL, SDA fall time			0.3	μs
6	t _{SU:STA}	Setup time SCL to START state	0.6			μs
7	t _{HD:STA}	(Repeat-start) Start condition hold time	0.6			μs
8	tsu:sto	Stop condition setup time	0.6			μs
9	t _{BUF}	the Bus idle time START state to STOP state	1.3			μs
10	t su:dat	SDA setup time	0.1			μs
11	thd:dat	SDA hold time	10			ns

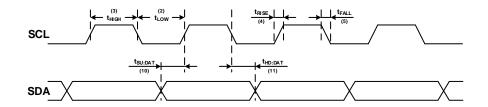


Figure 17 SCL and SDA timing relationships in the data transmission process

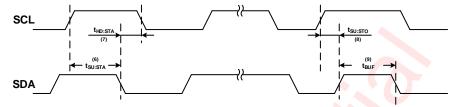


Figure 18 the Timing Relationship between START and STOP State

GENERAL I²C OPERATION

The I²C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a system. The device is addressed by a unique 7-bit address; the same device can send and receive data. In addition, Communications equipment has distinguish master from slave device: In the communication process, only the master device can initiate a transfer and terminate data and generate a corresponding clock signal. The devices using the address access during transmission can be seen as a slave device.

SDA and SCL connect to the power supply through the current source or pull-up resistor. SDA and SCL default is a high level. All data to start transmission and end of transmission requires the main device to issue START state and STOP status:

START state: The SCL maintain a high level, SDA from high to low level

STOP state: The SCL maintain a high level, SDA pulled low to high level

Start and Stop states can be only generated by the master device. In addition, if the device does not produce STOP state after the data transmission is completed, instead re-generate a START state (Repeated START, Sr), and it is believed that this bus is still in the process of data transmission. Functionally, Sr state and START state is the same. As shown in Figure 19.



Figure 19 START and STOP State Generation Process

In the data transmission process, when the clock line SCL maintains a high level, the data line SDA must remain the same. Only when the SCL maintain a low level, the data line SDA can be changed, as shown in Figure 20. Each transmission of information on the SDA is 9 bits as a unit. The first eight bits are the data to be transmitted, and the first one is the most significant bit (Most Significant Bit, MSB), the ninth bit is an confirmation bit (Acknowledge, ACK or A), as shown in Figure 21. When the SDA transmits a low level in ninth clock pulse, it means the acknowledgment bit is 1, namely the current transmission of 8 bits data are confirmed, otherwise it means that the data transmission has not been confirmed. Any amount of data can be transferred between START and STOP state.

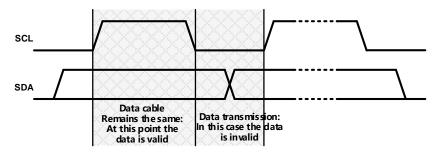


Figure 20 Data Transfer Rules on the I²C Bus

The whole process of actual data transmission is shown in Figure 21. When generating a START condition, the master device sends an 8-bit data, including a 7-bit slave addresses (Slave Address), and followed by a "read / write" flag (R/\overline{W}). The flag is used to specify the direction of transmission of subsequent data. The master device will produce the STOP state to end the process after the data transmission is completed. However, if the master device intends to continue data transmission, you can directly send a Repeated START state, without the need to use the STOP state to end transmission.

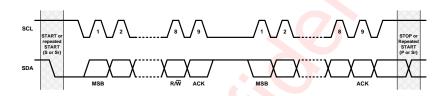


Figure 21 Data Transmission on the I²C Bus

I²C READ/WRITE PROCESSES

The following describes two kinds of ways of the I²C bus data transmission:

WRITE PROCESS

Writing process refers to the master device write data into the slave device. In this process, the transfer direction of the data is always unchanged from the master device to the slave device. All acknowledge bits are transferred by the slave device, in particular, AW87579 as the slave device, the transmission process in accordance with the following steps, as shown in Figure 22:

Master device generates START state. The START state is produced by pulling the data line SDA to a low level when the clock SCL signal is a high level.

Master device transmits the 7-bits device address of the slave device, followed by the "read / write" flag (flag $R/\overline{W} = 0$):

The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct;

The master device transmits the 8-bit AW87579 register address to which the first data byte will written;

The slave device asserts an acknowledgment (ACK) bit to confirm the register address is correct;

Master sends 8 bits of data to register which needs to be written;

The slave device asserts an acknowledgment bit (ACK) to confirm whether the data is sent successfully; If the master device needs to continue transmitting data, it does not need further to send the register address for AW87579, within AW87579 each send confirmation bit(ACK) regret automatic accumulation register address then only need to repeat the sixth step and seven step:

The master device generates the STOP state to end the data transmission.

Figure 22 Writing Process (Data Transmission Direction Remains the Same)

READ PROCESS

Reading process refers to the slave device reading data back to the master device. In this process, the direction of data transmission will change. Before and after the change, the master device sends START state and slave address twice, and sends the opposite "read/write" flag. In particular, AW87579 as the slave device, the transmission process carried out by following steps listed in Figure 23:

Master device asserts a start condition;

Master device transmits the 7 bits address of AW87579, and followed by a "read / write" flag (R/W = 0);

The slave device asserts an acknowledgment bit (ACK) to confirm whether the device address is correct;

The master device sends the 8bit address that the AW87579 register needs to read the data;

The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not:

The master device restarts the data transfer process by continuously generating STOP state and START state or a separate Repeated START.

Master sends 7-bits address of the slave device and followed by a read / write flag (flag $R/\overline{W} = 1$) again.

The slave device asserts an acknowledgment (ACK) bit to confirm whether the register address is correct or not.

The slave device transmits 8 bits of data to register which needs to be read;

The master device sends an acknowledgment bit (ACK) to confirm whether the data is sent successfully.

AW87579 automatically increment register address once after the slave sent each acknowledge bit (ACK).

The master device generates the STOP state to end the data transmission.

Figure 23 Reading Process (Data Transmission Direction Remains the Same)

REGISTER LIST

ADDR	NAME	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x00	ID			IDCODE					0x5A	
0x01	SYSCTRL	-	EN_SW	-	EN_BOOST	EN_PA	RCV_MODE	-	EN_HVBAT	0x38
0x02	BATSAFE	-	BAT_SFGD_D	EGLITCH	BAT_SF	GD_VTH	EN_BAT_SFGD	BAT_S	SFGD_LEVEL	0x09
0x03	BSTOVR		-				BST_VOUT			0x0C
0x05	BSTCPR2			-			BST_IPEAK			0x08
0x06	PAGR		-			PA_GAIN				0x10
0x07	PAGC3OPR		-		PD_AGC3	AGC3_OUTPUT_POWER				0x43
0x08	PAGC3PR		AGC3_REL_TIM	ME		AGC3_ATT_TIME -			-	0x4E
0x09	PAGC2OPR			-			AGC2_OUTPUT_F	OWER		0x03
0x0A	PAGC2PR		-			AGC2_ATT_TI	ME		_	0x08
0x0B	PAGC1PR			-			AGC1_ATT_TI	ME	PD_AGC1	0x4A
0X0C	ADP MODE			-		AGC1_ATT_ TIMEA	ADPBC	OST_MO	DE	0x03
0X0D	ADPBST TIME1		ADP_E	BST_TIME2		ADP_BST_TIME1				0xDD
0X0F	ADPBST VTH	ADP_	LOW_STEP		SET_BOOST_V	TH2	SET_B	TV_TROC	H1	0x23

Any register address which is more than 0x0A and all reserved bits are reserved for debugging and testing purposes. Changing their values may affect the normal function of the power amplifier; Reading them will get any possible values. AW87579's I²C address is 10110A2A1, as shown in Table 3, in order to avoid conflict with other I²C devices address, you can connect AD pin to GND, SCL, SDA, VDD to set the value of A2 and A1, respectively. The following lists specific information about all visible registers, including default values and programmable ranges.

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
1	0	1	1	0	A2	A1	R/W

Table3 AW87579 Address Byte

CHIP ID REGISTER (ADDRESS: 0x00 DEFAULT:0x5A)

Bit	Symbol	R/W	Description	Default
7:0	IDCODE	RO	Chip ID will be returned after reading.	0x5A

SYSTEM CONTROL (SYSCTRL) REGISTER (ADDRESS: 0x01 DEFAULT:0x38)

Bit	Symbol	R/W	Description	Default
7	Reserved	RW	Not used	0
			Chip software Enable	
6	EN_SW	RW	0: Disable	0
			1: Enable	
5	Reserved	RW	Reserved	1
			Boost Enable.	
4	EN_BOOST	RW	0: Disable	1
	900		1: Enable	
			PA Enable.	
3	EN_PA	RW	0: Disable	1
			1: Enable	
			Receiver mode	
2	RCV_MODE	RW	0: Disable	0
			1: Enable	
1	Reserved	RW	Reserved	0

29

Oct. 2022 V1.4

			Enable high voltage battery		
0	EN_HVBAT	RW	0: Disable	0	
			1: Enable		

BATTERY SAFEGUARD (BATSAFE) REGISTER (ADDRESS: 0x02 DEFAULT:0x09)

Bit	Symbol	R/W	Description	Default	
7	Reserved	RW	Not used	0	
			Battery safe guard deglitch time.		
			00:1ms		
6:5	BAT_SFGD_DEGLITCH	RW	01: 500us	00	
			10: 200us		
			11: Disable		
			Battery voltage when enter into battery safe_guard		
			mode.		
4:3	BAT_SFGD_VTH	RW	00: 3.3V	01	
1.0			01: 3.4V		
			10: 3.5V		
			11: 3.6V		
			Software control battery safeguard		
2	EN_BAT_SFGD	RW	0: Disable	0	
			1: Enable		
			Maxim output level when enter into battery safe_guard		
			mode		
1:0	BAT SFGD LEVEL	RW	00: 5V	01	
'.0	B/(1_0 0B_EE VEE	KVV	01: 5.5V 10: 6V		
			11: 6.5V		

BOOST OUTPUT VOLTAGE (BSTVOUT) REGISTER (ADDRESS: 0x03 DEFAULT:0x0C)

Bit	Symbol	R/W	Description	Default	
7:5	Reserved	RW	Not used	000	
			BOOST output voltage set		
			00000: 6.5V		
			00001: 6.75V		
			00010: 7.0V		
			00011: 7.25V		
			00100: 7.5V		
	4		00101: 7.75V		
			00110: 8.0V		
4:0	BST_VOUT	RW	00111: 8.25V	01100	
4.0	B01_V001	1777	01000: 8.5V	01100	
			01001: 8.75V		
			01010: 9.0V		
		(O) N	01011: 9.25V		
		N.	01100: 9.5V		
			01101: 9.75V		
			01110: 10.0V		
	* O 2 V		01111: 10.25V		
	000		10000: 10.5V		
	·VK		10001: 10.75V		
			10010: 11V		
			10011: 11.25V		
			10100: 11.5V		
			10101: 11.75V		
			10110: 12V		

BOOSTBOOST CONTROL REGISTER (ADDRESS: 0x05 DEFAULT:0x08)

Bit	Symbol	R/W	Description	Default
7:6	Reserved	RW	Not used	00
5:4	Reserved	RW	Reserved	00
3:0	BST_IPEAK	RW	BOOST peak current limit 0010: 2A 0011: 2.25A 0100: 2.5A 0101: 2.75A 0110: 3A 0111:3.25A 1000: 3.5A 1001: 3.75A 1010: 4A 1011: 4.25A 1100: 4.5A	1000

CLASS D GAIN CONTROL REGISTER (ADDRESS: 0x06 DEFAULT:0x10)

Bit	Symbol	R/W	Description	Default
7:5	Reserved	RW	Not used	000
4:0	PA_GAIN	RW	PA Input Signal Gain when RCV_MODE=1, PA_GAIN must be set to 00000~00111 when RCV_MODE=0, PA_GAIN must be set to 01000~10010 00000:0dB 00001: 1.5dB 00010: 3dB 00011: 4.5dB 00100: 6dB 00110: 9dB 00110: 9dB 00111: 10.5dB 01000: 12dB 01001: 13.5dB 01010: 15dB 01101: 16.5dB 01101: 19.5dB 01101: 19.5dB 01101: 21dB 01101: 21dB 01111: 22.5dB	10000

CLASS D AGC3 OUTPUT POWER (AGC3_Po) EGISTER (ADDRESS: 0x07 DEFAULT:0x43)

Bit	Symbol	R/W	Description		Default	
7:5	Reserved	RW	Reserved		010	
			Disable AGC3			
4	PD_AGC3	RW	0: Enable		0	
			1: Disable			
			Speaker Protection output Power Level			
3:0	AGC3 OUTPUT POWER	RW	0000: 0.5W@8 ohm	0000: 0.67W@6 ohm	0011	
3.0	AGC3_OOTFOT_FOWER		0001: 0.6W@8 ohm	0001: 0.8W @6 ohm	- 0011	
			0010: 0.7W @8 ohm	0010: 0.93W@6 ohm		

· · · · · · · · · · · · · · · · · · ·	,	,	
	0011: 0.8W@8 ohm	0011: 1.07W@6 ohm	
	0100: 0.9W@8 ohm	0100: 1.20W@6 ohm	
	0101: 1.0W@8 ohm	0101: 1.33W @6 ohm	
	0110: 1.1W@8 ohm	0110: 1.47W@6 ohm	
	0111: 1.2W@8 ohm	0111: 1.6W @6 ohm	
	1000: 1.3W@8 ohm	1000: 1.73W@6 ohm	
	1001: 1.4W@8 ohm	1001: 1.87W@6 ohm	
	1010: 1.5W@8 ohm	1010: 2.0W @6 ohm	
	1011: 1.6W@8 ohm	1011: 2.13W @6 ohm	
	1100: 1.7W@8 ohm	1100: 2.27W @6 ohm	
	1101: 1.8W@8 ohm	1101: 2.4W@6 ohm	
	1110: 1.9W@8 ohm	1110: 2. <mark>53W @6</mark> ohm	
	1111: 2.0W@8 ohm	1111: 2.67W@6 ohm	

CLASS D AGC3 PARAMETER (AGC3) REGISTER (ADDRESS: 0x08 DEFAULT:0x4E)

Bit	Symbol	R/W	Description	Default
			Total 13.5dB release time.	
			000: 5.12ms/dB	
			001: 10.24ms/dB	
			010: 20.48ms/dB	
7:5	AGC3_REL_TIME	RW	011: 40.96ms/dB	010
			100: 81.92ms/dB	
			101: 163.84ms/dB	
			110: 327.68ms/dB	
			111: 655.36ms/dB	
			Total 13.5dbB attack time.	
			000: 1.28ms/dB	
			001: 2.56ms/dB	
			01 <mark>0</mark> : 10.24ms/dB	
4:2	AGC3_ATT_TIME	RW	011: 40.96ms/dB	011
			100: 82ms/dB	
			101: 164ms/dB	
			110: 328ms/dB	
			111: 656ms/dB	
1:0	Reserved	RW	Not used	10

CLASS D AGC2 OUTPUT POWER (AGC2_Po) REGISTER (ADDRESS: 0x09 DEFAULT:0x03)

Bit	Symbol	R/W	Desc	cription	Default
7:4	Reserved	RW	Not used		0000
			AGC2 output Power Lev	vel.	
		O	0000: 1.0W@8 ohm	0000: 1.33W@6 ohm	
			0001: 1.2W @8 ohm	0001: 1.60W@6 ohm	
		\X	0010: 1.4W@8 ohm	0010: 1.87W@6 ohm	0011
			0011: 1.6W@8 ohm	0011: 2.13W@6 ohm	
			0100: 1.8W@8 ohm	0100: 2.4W@6 ohm	
3:0	AGC2_OUTPUT_POWER	RW	0101: 2.0W@8 ohm	0101: 2.67W@6 ohm	
			0110: 2.2W@8 ohm	0110: 2.93W@6 ohm	
			0111: 2.4W @8 ohm	0111: 3.2W @6 ohm	
			1000: 2.6W@8 ohm	1000: 3.47W@6 ohm	
			1001: 2.8W@8 ohm	1001: 3.73W@6 ohm	
			1010: 3.0W@8 ohm	1010: 4.0W @6 ohm	
			1011: AGC2 OFF	1011: AGC2 OFF	

CLASS D AGC2 PARAMETER (AGC2) REGISTER (ADDRESS: 0x0A DEFAULT:0x08)

Bit	Symbol	R/W	Description	Default
7:5	Reserved	RW	Not used	000
			AGC2 total attack time.	
			000: 0.16ms/dB	
			001: 0.32ms/dB	
			010: 0.64ms/dB	
4:2	AGC2_ATT_TIME	RW	011: 2.56ms/dB	010
			100: 10.24ms/dB	
			101: 40.96ms/dB	
			110: 82ms/dB	
			111: 164ms/dB	
1:0	Reserved	RW	Not used	00

CLASS D AGC1 PARAMETER (AGC1) REGISTER (ADDRESS: 0x0B DEFAULT:0x4A)

Bit	Symbol	R/W	Description	Default
7:3	Reserved	RW	Not used	01001
			Fastest Level AGC attack time control	
			00: 0.04ms/dB	
2:1	AGC1_ATT_TIME	RW	01: 0.08ms/dB	01
			10: 0.16ms/dB	
			11: 0.32ms/dB	
			Disable fastest level AGC	
0	PD_AGC1	RW	0: Enable	0
			1: Disable	

ADP MODE PARAMETER REGISTER (ADDRESS: 0x0C DEFAULT:0x03)

Bit	Symbol	R/W	Description	Default
7:4	Reserved	RW	Not used	0000
3	AGC1_ATT_TIMEA	RW	Fastest Level AGC attack time control, Refer to 0x0B register	0
2:0	D ADPBOOST_MODE RW		BOOST MODE 000: Pass Through 001: Force BOOST 010: ADP BOOST MD1 011: ADP BOOST MD2 100~111: Reserved and Unused	011

ADP BOOST PARAMETER REGISTER (ADDRESS: 0x0D DEFAULT:0xDD)

Bit	Symbol	R/W	Description	Default
		7/ /	Duration time Po less than Po2	
			0000~0100: Reserved and Unused	
			0101: 20ms	
			0110: 30ms	
	* () = () = ()		0111: 40ms	
			1000: 65ms	
7:4	ADP_BST_TIME2	RW	1001: 80ms	1101
			1010: 100ms	
			1011: 120ms	
	Ť		1100: 140ms	
			1101: 160ms	
			1110: 320ms	
			1111: 480ms	
3:0	ADP_BST_TIME1	RW	Duration time Po less than Po1	1101

0000~0100: Reserved and Unused	
0101: 20ms	
0110: 30ms	
0111: 40ms	
1000: 65ms	
1001: 80ms	
1010: 100ms	
1011: 120ms	
1100: 140ms	
1101: 160ms	
1110: 320ms	
1111: 480ms	

ADP BOOST PARAMETER REGISTER REGISTER (ADDRESS: 0x0F DEFAULT:0x23)

Bit	Symbol	R/W	Description	Default
			ADP BOOST mode2 first step set BOOST_OUT<4:0>	
			00: 1st BST_OUT=6.5V	
7:6	ADP_LOW_STEP	RW	01: 1st BST_OUT=6.75V	00
			10: 1st BST_OUT=7.0V	
			11: 1st BST_OUT=7.25V	
			Boost threshold Po2	
			000: 1.2W	
			001: 1.4W	
5:3	SET BOOST VTH2	RW	010: 1.6W	100
5.5	3E1_BOO31_V1H2	KVV	011: 1.8W	
			100: 2.0W	
			101: 2.2W	
			110~111: Reserved and Unused	
			Boost threshold Po1	
			000: 0.1W	
2:0	SET BOOST VTH1	DW	001: 0.2W	011
2:0	SEI_BOOSI_VIHI	RW	010: 0.3W	011
			011: 0.4W	
			101~111: Reserved and Unused]

APPLICATION INFORMATION

EXTERNAL COMPONENTS

BOOST INDUCTOR SELECTION

Selecting inductor needs to consider Inductance, size, magnetic shielding, saturation current and temperature current.

a) Inductance

Inductance value is limited by the boost converter's internal loop compensation. In order to ensure phase margin sufficient under all operating conditions, recommended 1µH inductor.

b) Size

For a certain value of inductor, the smaller the size, the greater the parasitic series resistance of the inductor DCR, the higher the loss, corresponds to the lower efficiency.

c) Magnetic shielding

Magnetic shielding can effectively prevent the inductance of the electromagnetic radiation interference. It is much better to choose inductance with magnetic shielding in the application of EMI sensitive environment.

d) Saturation current and temperature rise of current

Inductor saturation current and temperature rise current value are important basis for selecting the inductor. As the inductor current increases, on the one hand, since the magnetic core begins to saturate, inductance value will decline; on the other hand, the inductor's parasitic resistance inductance and magnetic core loss can lead to temperature rise. In general, the current value is defined as the saturation current I_{SAT} when the inductance value drops to 70%; the current value is defined as temperature rise current IRMS when inductance temperature rise 40°C.

For particular applications, need to calculate the maximum IL_PEAK and IL_RMS, which is a basis of selecting the inductor. When VDD = 4.2V, VBST=12V, $R_L = 8\Omega$, amplifier $R_{DSON} = 250 \text{m}\Omega$, when THD = 1% (the maximum power without distortion), the output voltage decrease to about 10.1V, so the output power is calculated as follows:

$$P_{OUT} \ = \frac{\left(V_{OUT} \times \frac{R_L}{R_L + R_{DSON}}\right)^2}{2 \times R_L} = \frac{\left(10.1 \times \frac{8}{8 + 0.25}\right)^2}{2 \times 8} = 6.0W$$

In such a large output power, the overall efficiency of the power amplifier is typically 79%, in order to calculate the maximum average current IMAX_AVG_VDD and maximum peak current IMAX_PEAK_VDD drawn from VDD:

$$I_{MAX_AVG_VDD} = \frac{P_{OUT}}{V_{DD} \times \eta} = \frac{6.0}{4.2 \times 0.79} A = 1.81A$$

$$I_{MAX_PEAK_V\ DD} = 2 \times I_{MAX_AVG_VD\ D} = 3.62A$$

If inductor DCR is $50m\Omega$, the inductor power loss at this time is:

$$P_{DCR,LOSS} = 1.5 \cdot I_{MAX_AVG_VDD}^2 \cdot DCR = 1.5 \times 1.81^2 \times 0.05W = 246mW$$

Wherein the coefficient 1.5 is the square of the ratio of the sine wave current RMS value and average value (there is no consideration of the impact of the inductor ripple, the actual DCR loss will be even greater). If the loss which is resulting from DCR is less than 1% at maximum efficiency ($P_{OUT} = 2.5W$, $\eta = 80\%$), then:

$$I_{\text{AVG_VDD}} \, = \, \frac{P_{\text{OUT}}}{V_{\text{DD}} \times \eta} \, = \, \frac{2.5}{4.2 \times 0.8} \, = \, 0.74 \text{A}$$

$$\text{DCR} \, = \, \frac{P_{\text{DCR,LOSS}}}{1.5 \, \cdot \, I_{\text{AVG VDD}}^2} \, \leq \, 0.01 \times \frac{P_{\text{OUT}}}{1.5 \, \cdot \, I_{\text{AVG VDD}}^2 \, \cdot \, \eta} \, = \, \frac{0.01 \times 2.5}{1.5 \times 0.74^2 \times 0.8} \, \Omega \, = \, 38 \text{m} \Omega$$

According to the working principle of the Boost, we can calculate the size of the inductor current ripple Δ_{IL} :

$$\Delta I_L \; = \; \frac{V_{\text{DD}} \times \left(V_{\text{OUT}} \; - \; V_{\text{DD}}\right)}{V_{\text{OUT}} \times f \times L} \; = \; \frac{4.2 \times \left(10.1 - \; 4.2\right)}{10.1 \times 1.6 \times 10^6 \times 1 \times 10^{-6}} \; A \; = \; 1.53 A$$

Thus, the maximum peak inductor current I_{L PEAK} and maximum effective inductor current I_{L RMS} is:

$$\begin{split} I_{\text{L_PEAK}} \; &= \; I_{\text{MAX_PEAK_VDD}} \; + \; \frac{\Delta I_{\text{L}}}{2} \; = \; 3.62 \text{A} \; + \; \frac{1.53}{2} \; \text{A} \; = \; 4.4 \text{A} \\ \\ I_{\text{L_RMS}} \; &= \; \sqrt{I_{\text{MAX_PEAK_VDD}}^2 \; + \; \frac{\Delta I_{\text{L}}^2}{12}} \; = \; \sqrt{3.62^2 \; + \; \frac{1.53^2}{12}} \text{A} \; = \; 3.65 \text{A} \end{split}$$

From the above calculation results:

- 1) For typical DCR about 38mΩ inductance, the efficiency loss caused by around1.5%;
- 2) In practice, the maximum output power of the amplifier is likely to reach 6.0W in an instant, so the selected inductor saturation current Isat requires more than the maximum inductor peak current IL_PEAK;
- 3) In some cases, if the IL PEAK calculated according to the above method is greater than the set of input inductor current limit value ILIMIT, shows the power amplifier is restricted by inductance input current limit, the actual maximum output power is less than the calculated value, the measured value shall prevail, and ISAT need greater than the set current limiting value ILIMIT, and cannot be less than 3.66A;
- 4) For example, under different conditions, the typical method of selecting I_{SAT} in the following table:

VDD(V)	VBST(V)	R _L (Ω)	I _{LIMIT} (A)	Efficiency(η) (%)	P _o (W)	I _{L_PEAK} (A)	Inductor saturation current ISAT minimum value (A)
4.2	12	8	4.5	79	6.0	4.4	4.5
4.2	12	6	4.5	× (77	6.2	4.62	4.7

- 5) As the result of the action of AGC, amplifier will not work long hours at maximum power without distortion, the actual average inductor current is far less than the maximum inductor current effective IL RMS, so when selecting the inductor, the inductor temperature rise current is not usually a limiting factor;
- 6) Inductor Selection example: the inductor package size is 252012, inductance value is 1µH, DCR Typical value is 38mΩ, the typical saturation current I_{SAT} is 5.0A, the typical temperature rise current I_{RMS} is 3.7A, suitable for VDD=3.6V, VBST=12V, speaker impedance R_L=8Ω, inductor input current limit I_{LIMIT}= 4.5A. If you choose I_{SAT} or I_{RMS} of the inductance is too small, it is possible to cause the chip don't work properly, or the temperature of the inductance is too high.

Inductance value	size	DCR (Ω)	I _{SAT} (A)	I _{RMS} (A)
1uH	2.5×2.0×1.2mm	0.038	5.0	3.7

Downloaded From Oneyac.com

CAPACITOR SELECTION

BOOST CAPACITOR SELECTION

The output capacitor of chargepump is usually within the range $0.1\mu\text{F}\sim47\mu\text{F}$, It needs to use Class II type (EIA) multilayer ceramic capacitors (MLCC). Its internal dielectric is ferroelectric material (typically BaTiO3), a high the dielectric constant in order to achieve smaller size, but at the same Class II type (EIA) multilayer ceramic capacitors has poor temperature stability and voltage stability as compared to the Class I type (EIA) capacitance. Capacitor is selected based on the requirements of temperature stability and voltage stability, considering the capacitance material, capacitor voltage, and capacitor size and capacitance values.

a) temperature stability

Class II capacitance have different temperature stability in different materials, usually choose X5R type in order to ensure enough temperature stability, and X7R type capacitance has better properties, the price is relatively more expensive. X5R capacitance change within ±15% in temperature range of 55°C to 85°C, X7R capacitance change within ±15% in temperature range of -55°C~125°C. The output capacitance of the AW87579's chargepump recommends X5R ceramic capacitors.

b) Voltage Stability

Class II type capacitor has poor voltage stability ——Capacitance values falling fast along with the DC bias voltage applied across the capacitor increasing. The rate of decline is related to capacitance material, capacitors rated voltage, capacitance volume. Take for TDK C series X5R for example, its pressure voltage value is 16V or 25V, the package size is 0805, 1206 or 0603, the capacitance value is 10µF. The capacitor's voltage stability of different types of capacitor is as shown below:

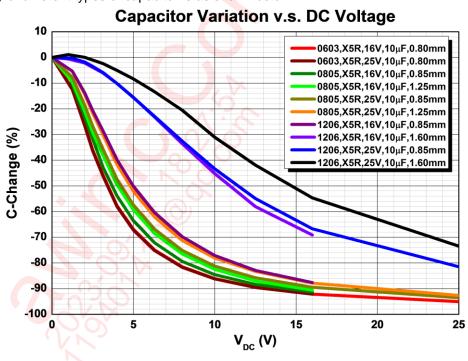


Figure 24 Different Types of Capacitive Voltage Stability

It can be found that the rate of capacitance capacity value descent becomes slow along with "large capacitor size, capacitance pressure voltage rise". The larger the package size, the better voltage stability. The higher the height, the better voltage stability with the same length and width of the capacitance. Voltage stability of

smaller package size (0603) capacitor change affected by the pressure value is very small.

In AW87579 typical applications, it is necessary to ensure the output value of the VBST capacitor ≥3.6µF when VBST=12V.

Take the following capacitances as the Boost of the output capacitor for example:

value	material	size (mm³)	rated voltage (V)	quantity	value@12V
10uF	X5R	1.60×0.80×0.80 (0603)	16	4	4.0uF
10uF	X5R	2.00×1.25×1.25 (0805)	25	3	4.8uF

As for the different manufacturers' capacitors, it's important to determine the type and quantity of the capacitors through the capacitor voltage stability data provided by the manufacturer.

INPUT CAPACITOR- Cin (INPUT HIGH-PASS CUTOFF FREQUENCY)

The input capacitors and input resistors form a high-pass filter to filter out the DC component of the input signal. The -3dB frequency points of the high pass filter is shown below:

$$f_{H}(-3dB) = \frac{1}{2\pi \times R_{intotal} \times C_{in}} (Hz)$$

The selection of a smaller Cin capacitor in the application helps to filter out 217Hz noise, which comes from the input coupling, and the smaller capacitor is advantageous to reduce the pop-click noise when the power amplifier turn on. Better matching of the input capacitors improves performance of the circuit and also helps to suppress pop-click noise. A capacitor value deviation of 10% or better capacitance is recommended. Take typical application as an example, the input high-pass cutoff frequency is calculated as below:

$$f_{\text{H}}$$
 (-3dB) = $\frac{1}{2 \pi \times R_{\text{intota}} \times C_{\text{in}}} = \frac{1}{2 \pi \times 9 \text{k} \Omega \times 68 \text{nF}}$ (Hz) = 260Hz

Class D-type speaker & receiver 2-in-1 application (Gain=9dB), the input high pass frequency is as follows:

$$f_{\text{H}}$$
 (-3dB) = $\frac{1}{2 \pi \times R_{\text{intota}} \times C_{\text{in}}} = \frac{1}{2 \pi \times 38 \text{k} \Omega \times 68 \text{nF}}$ (Hz) = 62Hz

SUPPLY DECOUPLING CAPACITOR (Cs)

A good decoupling capacitor can improve the efficiency and the best performance of the power amplifier. At the same time, in order to get good high frequency transient performance, the ESR value of the capacitor should be as small as possible. In AW87579 applications, low ESR (equivalent-series-resistance) X7R or X5R ceramic capacitors are recommended. Generally, 10µF ceramic capacitors are used to bypass the VDD to the ground, and the decoupling capacitor should be placed as close to the VDD chip as possible in the layout. If you want to filter out low-frequency noise better, you need to add a 10µF or greater decoupling capacitor depending on your application. Meanwhile, a 33pF~0.1µF ceramic capacitor is placed on the pin of the power supply to filter the high frequency interference on the power supply. The capacitor should be placed as close as possible to the pin3 and inductor.

OUTPUT BEADS, CAPACITORS, TVS

Using EEE technology, in the class K mode, the AW87579 can also meet the FCC CLASS B specification requirements. It is recommended to Use ferrite chip beads and capacitors if device near the EMI sensitive circuits, there are long leads from amplifier to speaker, placed as close as possible to the output pin.

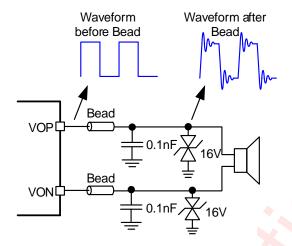


Figure 25 Ferrite Chip Bead and Capacitor

Amplifier output is a square wave signal. The voltage across the capacitor will be much larger than the VBST voltage after increasing the bead capacitor. It suggested the use of rated voltage above 16V capacitor. At the same time a square wave signal at the output capacitor switching current form, the static power consumption increases, so the output capacitance should not be too much which is recommended 0.1nF ceramic capacitor rated voltage of 16V. If you want to get better EMI suppression performance, can use 1nF, rated voltage 16V capacitor, but quiescent current will increase.

Power amplifier output PWM signals of high voltage to VBST voltage, voltage to 12 V, will produce some ringing after bead capacitor, resulting in higher peak voltage. Recommended choose the operating voltage of 16V TVS.

PCB AND DEVICE LAYOUT CONSIDERATION

EXTERNAL COMPONENTS PLACEMENT

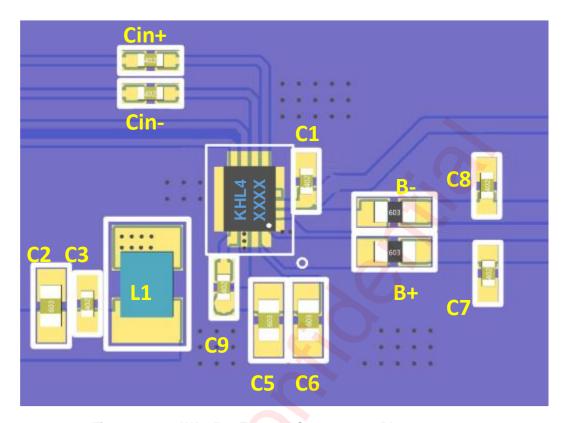
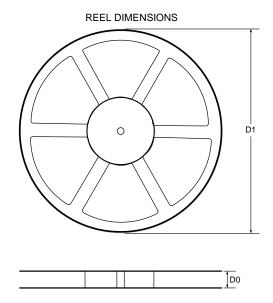
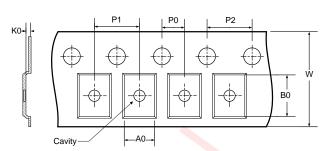


Figure 26 AW87579 External Components Placement

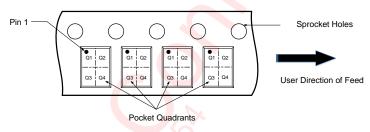

LAYOUT CONSIDERATIONS

This device is a power a power amplifier chip. To obtain the optimal performance, PCB layout should be considered carefully.


In order to obtain excellent performance of AW87579, PCB layout must be carefully considered. The design consideration should follow the following principles:

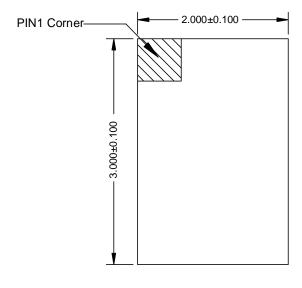
- 1. In AW87579 peripheral device layout, you first need to guarantee the chargepump output capacitance close to VBST pin.
- 2. All the filter capacitors of the audio PA (including CVDD, CVBST and CVREG) should be placed close to the pins of the chip.
- 3. Please place the VREG capacitor close to the VBST capacitor. The parasitic inductance of the CVREG capacitor should be less than 3nH. Minimize inductance as much as possible.
- 4. Traces of SW pin should support currents up to device over-current limit (peak current 3.5A). VDD and SW traces are separated.
- 5. Try to provide a separate short and thick power line to AW87579, the copper width is recommended to be larger than 0.75mm. The decoupling capacitors should be placed as close as possible to boost power supply pin.
- 6. The input capacitors should be close to AW87579 INN and INP input pin, the input line should be parallel to suppress noise coupling.
- 7. The beads and capacitor should be placed near to AW87579 VON and VOP pin. The output line from AW87579 to speaker should be as short and thick as possible. The width is recommended to be larger than 0.5mm.

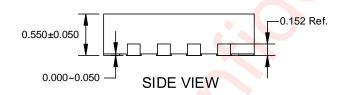
TAPE & REEL DESCRIPTION

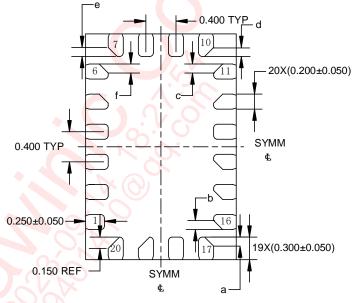


TAPE DIMENSIONS

- A0: Dimension designed to accommodate the component width B0: Dimension designed to accommodate the component length K0: Dimension designed to accommodate the component thickness W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

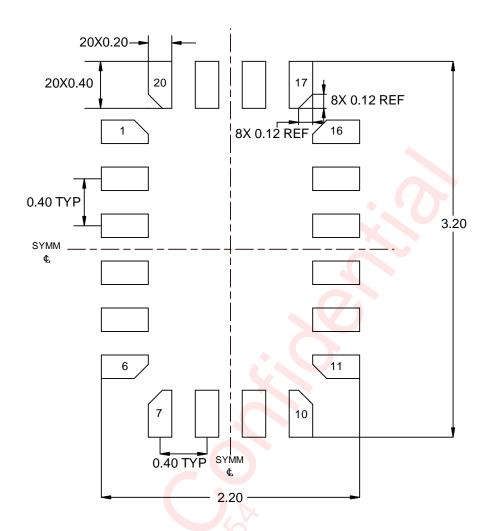

All Dimensions are nominal

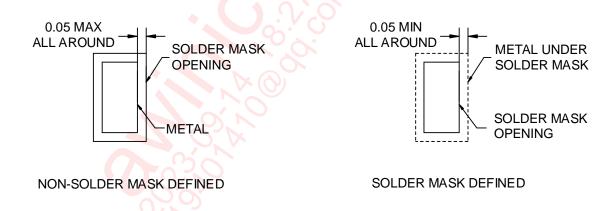

D1 (mm)	D0 (mm)	A0 (mm)	B0 (mm)		P0 (mm)		P2 (mm)	W (mm)	Pin1 Quadrant
330	12.4	2.3	3.3	0.75	2	4	4	12	Q1

PACKAGE DESCRIPTION

TOP VIEW

Note: a=b=c=d=e=f=0.120mm


BOTTOM VIEW


42

Unit: mm

LAND PATTERN

Unit: mm

43

VERSION INFORMATION

Version	Date	Description
V1.0	2020-10-10	AW87579FCR datasheet V1.0
V1.1	2020-11-20	AW87579FCR datasheet V1.1 Modify Typical characteristics "ADP BOOST MD2 I_VDD_supply vs Po"
V1.2	2021-2-10	AW87579FCR datasheet V1.2 Modify Boost output voltage VBST
V1.3	2021-3-10	AW87579FCR datasheet V1.3 Add Electrical Characteristic of EX-VBST Modify The Marking of AW87579
V1.4	2022-10-24	Update REGISTER LIST

DISCLAIMER

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.

单击下面可查看定价,库存,交付和生命周期等信息

>>AWINIC(艾为)