

## 70mΩ, 5V USB High Side Current Limited Load Switch

#### **Description**

BL2556 is a USB output protection chip with adjustable current limit threshold for 5V applications. The device integrates over current protection, short protection, over temperature protection, under voltage lock-out protection functions, etc. It can limit output current when short event happens or heavy capacitive load is applied to the USB output, so as to protect the supply voltage source from collapsing.

### **Typical Application**

- USB hub
- USB periphery
- Notebook and tablet
- Charger and adapter

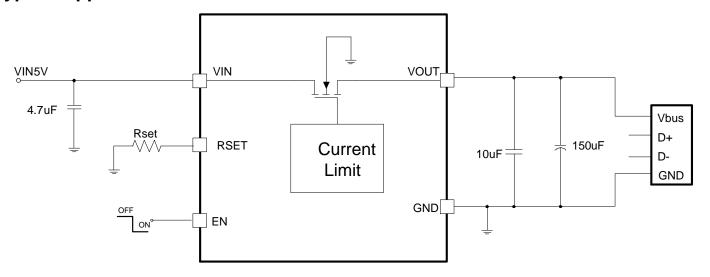
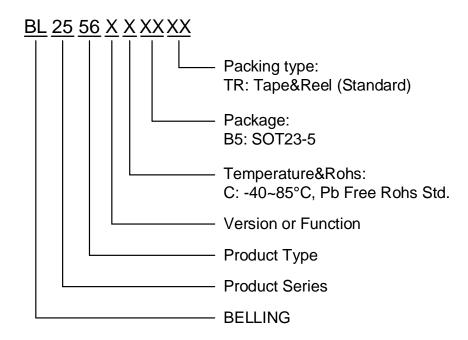
#### **Features**

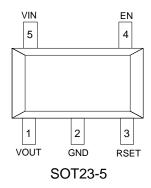
- Low on resistance: 70mΩ
- Current-limit threshold adjustable by external resistor
- Current limit accuracy over full operating conditions: ±15%
- Output short fast response and protection
- No parasitic substrate diode, and reverse current blocking when switch is off.

#### **Package**

• 5-pin SOT23-5

### **Typical Application Circuit**



Figure 1. Typical application

#### **Selection Guide**



| Part Number  | Description                                            |  |  |
|--------------|--------------------------------------------------------|--|--|
| BL2556ACB5TR | Current limit threshold is adjustable, EN high enable; |  |  |
| DL2000ACD01K | Package: SOT23-5                                       |  |  |
| BL2556CCB5TR | Current limit threshold is adjustable, EN low enable;  |  |  |
| BL2000CCB3TR | Package: SOT23-5                                       |  |  |

#### **Pin Configuration**



#### **Mark Explanation**

SJ: Product Code

3<sup>rd</sup>: Means Assembly Year

| Α    | <br>Т    | <br>W    | <br>Z    |
|------|----------|----------|----------|
| 2001 | <br>2020 | <br>2023 | <br>2026 |

4th: Means Assembly Month

|     | <u>,                                      </u> |     |     |     |     |
|-----|------------------------------------------------|-----|-----|-----|-----|
| Α   | В                                              | C   | D   | Е   | F   |
| Jan | Feb                                            | Mar | Apr | May | Jun |
| G   | Н                                              | I   | J   | K   | L   |
| Jul | Aug                                            | Sep | Oct | Nov | Dec |

# **Pin Assignment**

| Pin#<br>(SOT23-5) | Symbol | Pin Description                                                                                                     |  |
|-------------------|--------|---------------------------------------------------------------------------------------------------------------------|--|
| 1                 | VOUT   | Output, connected to USB port VBUS.                                                                                 |  |
| 2                 | GND    | Chip ground.                                                                                                        |  |
| 3                 | RSET   | Current limit threshold setting pin, external resistance to ground to set the current limit threshold. loc=60K/Rset |  |
| 4                 | EN     | Chip enable pin. Logic low effective.                                                                               |  |
| 5                 | VIN    | Power supply pin.                                                                                                   |  |

# **Block Diagram**

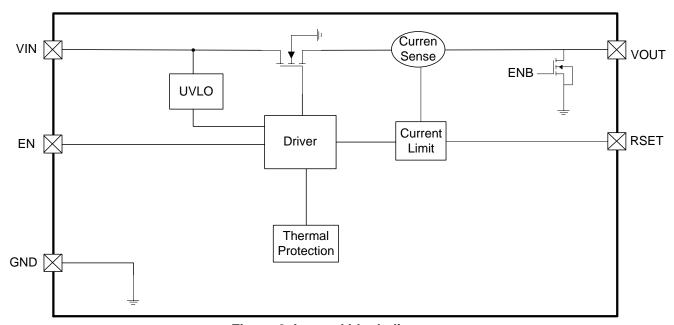



Figure 2. Internal block diagram

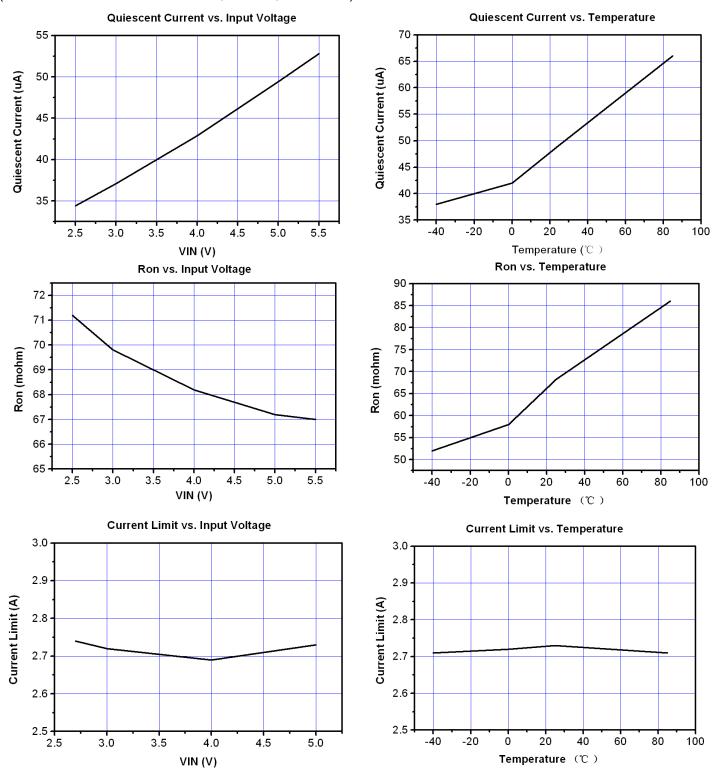
# **Absolute Maximum Ratings**

| Parameter                                   | Symbol           | Ratings     | Unit  |
|---------------------------------------------|------------------|-------------|-------|
| Power supply                                | VIN              | 6           | V     |
| Output voltage                              | VOUT             | -0.3 to VIN | V     |
| Dissipation power SOT23-5                   | P <sub>D</sub>   | 600         | mW    |
| Thermal resistance(Junction to air) SOT23-5 | $\theta_{JA}$    | 210         | °C /W |
| Junction temperature                        | TJ               | -40 to +150 | °C    |
| Storage temperature                         | T <sub>STG</sub> | -55 to +150 | °C    |
| Soldering temperature<br>(5 seconds)        | $T_{LEAD}$       | 260         | °C    |

Caution: Exceeding these ratings may damage the device.

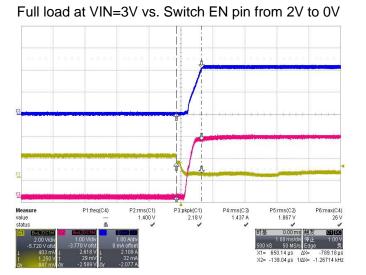
# **Recommended Operating Conditions**

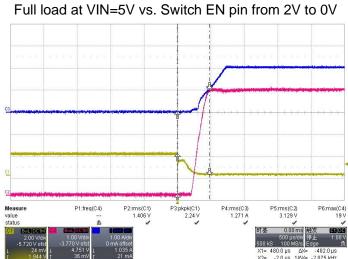
| Parameter                     | Symbol | Min. | Тур. | Max. | Unit |
|-------------------------------|--------|------|------|------|------|
| Power supply                  | VIN    | 2.7  | 5.0  | 5.5  | V    |
| Operating ambient temperature | Та     | -40  | 25   | 85   | °C   |


### **Electrical Characteristics**

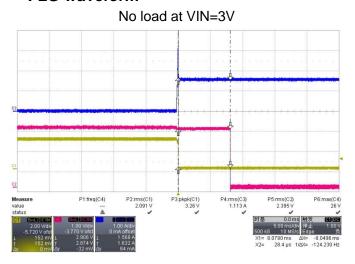
Unless otherwise noticed, Ta=25°C, VIN=5V, Rset=30K.

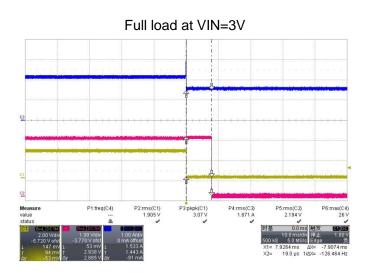
| Parameter                              | Conditions                                                        | Min. | Тур. | Max. | Unit |
|----------------------------------------|-------------------------------------------------------------------|------|------|------|------|
| Supply voltage range                   |                                                                   | 2.7  |      | 5.5  | V    |
| Quiescent current                      | EN=0                                                              | 30   | 50   | 80   | uA   |
| Shutdown current                       | EN=5V                                                             | 0    | 0.01 | 1.0  | uA   |
| On resistance                          | lout=500mA                                                        |      | 70   |      | mΩ   |
| Current limit threshold                | Current ramping (<0.1A/ms)  VIN: 2.7~5V  Ta: -40°C~85°C  Rset=30K | 1.7  | 2.0  | 2.3  | A    |
| Short current                          | Rset=30K,<br>VOUT short to GND                                    |      | 1.2  |      | А    |
| UVLO                                   | VIN increasing                                                    | 1.8  | 2.2  | 2.6  | V    |
| UVLO hysteresis                        | VIN decreasing                                                    |      | 0.2  |      | V    |
| EN high level                          |                                                                   | 1.6  |      |      | V    |
| EN low level                           |                                                                   |      |      | 0.4  | V    |
| Over temperature protection threshold  |                                                                   |      | 155  |      | °C   |
| Over temperature protection hysteresis |                                                                   |      | 20   |      | °C   |
| Tr                                     |                                                                   | 11   | 15.8 | 20.6 | ms   |
| Turn On                                | Full load at VIN=3V<br>CL=1µF, RL=100                             | 298  | 427  | 556  | us   |
| Turn Off                               |                                                                   | 281  | 403  | 524  | us   |
| Tr                                     |                                                                   | 4.9  | 7    | 9.2  | ms   |
| Turn On                                | Full load at VIN=5V<br>CL=1µF, RL=100                             | 298  | 427  | 556  | us   |
| Turn Off                               |                                                                   | 281  | 403  | 524  | us   |

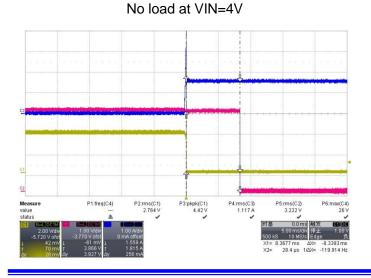

### **Typical Operating Characteristics**

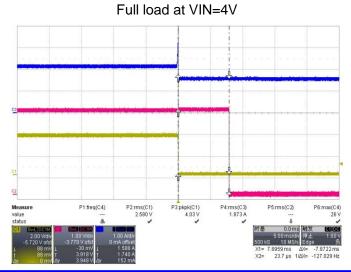

(Unless otherwise noticed: Ta=25°C, VIN=5V, Rset=22K.)

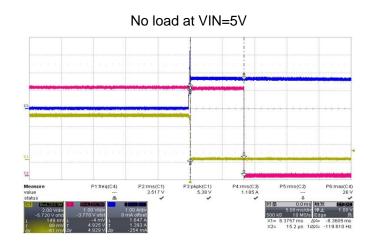


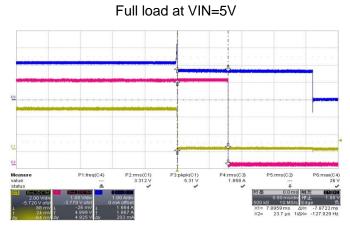

### Power supply working waveform diagram (EN: yellow VOUT: red IL: blue)


• Chip on condition when the EN pin is controlled (Normal temperature test)

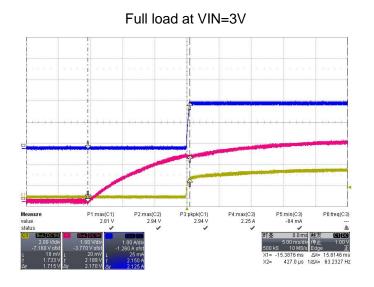


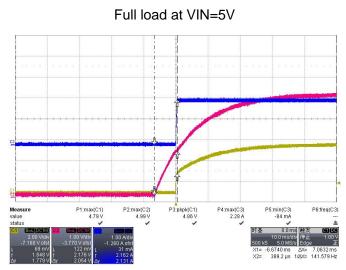



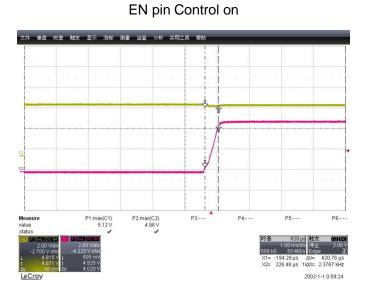


FLG waveform

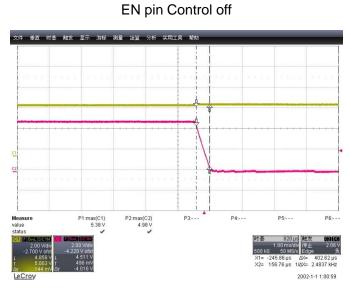




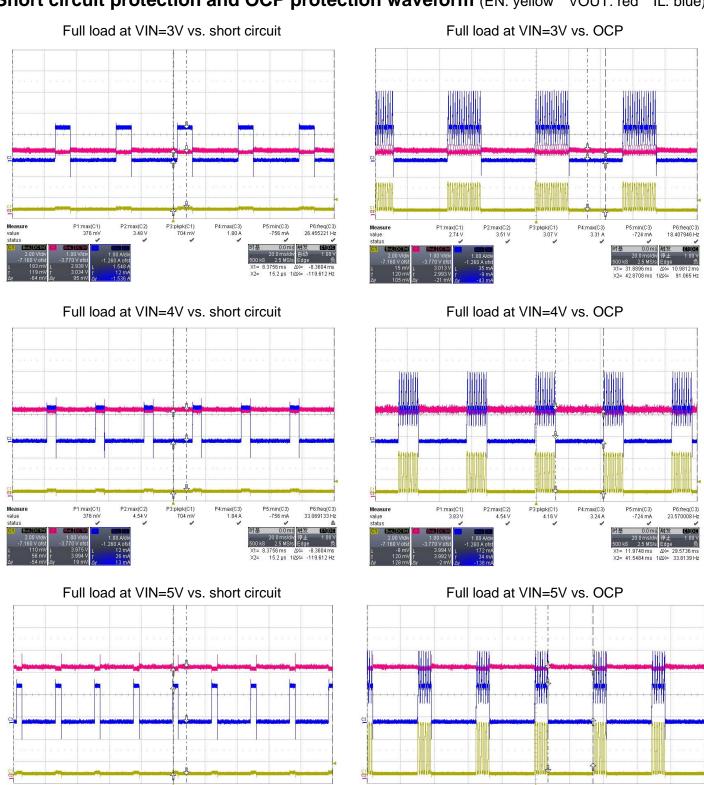



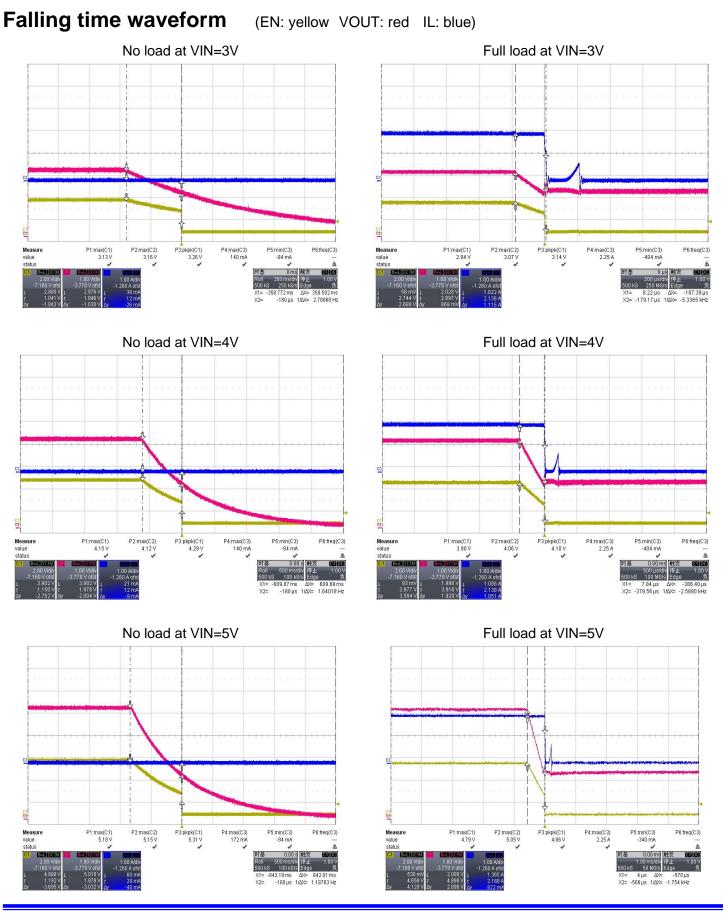




Start waveform (EN: yellow VOUT: red IL: blue)








### Short circuit protection and OCP protection waveform (EN: yellow VOUT: red IL: blue)



P2:max(C2) 5.59 V P4:max(C3) 3.24 A



### **Operation Theory**

#### Startup / Shutdown / On resistance

When the EN pin is connected to the enable level, and VIN voltage is higher than UVLO threshold. When device is enabled, the power NMOS between VIN and VOUT is turned on, and exhibits low resistance. The typical on resistance is  $70 \text{ m}\Omega$ .

When the EN pin is connected to the shutdown level, or VIN voltage decreases to lower than UVLO hysteresis voltage, the device is shut down, and the power NMOS is turned off, which exhibits high resistance. When device is shutdown, the output discharge function accelerates VOUT voltage decreasing.

The current limit circuit takes effect during startup, which will limit the inrush current caused by attaching to a large capacitive load.

#### Current limiting

When output current is larger than current limit threshold, the internal power NMOS resistance increases, which makes VOUT to decrease, and the output current is limited. The internal current limit circuit will set the output current value according to VOUT voltage. If VOUT keep decreasing, the output current will decrease as well, and reaches to short current if VOUT is shorted to GND. The current-limit threshold can be set through the RSET pin external resistor to ground. The relationship between the current-limit threshold loc and the Rset resistor value is:

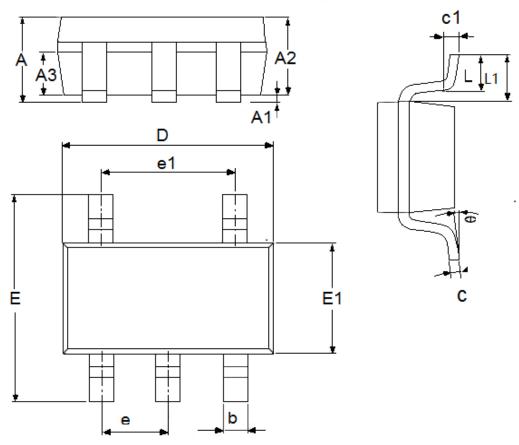
#### Over temperature protection

In current limiting status, the internal power dissipation of the device increases due to VOUT decreasing, which makes junction temperature increase. When the junction temperature exceeds over temperature threshold, the device is shut down, which will cool down the device. When junction temperature decreases to lower than OT hysteresis threshold, the device is auto restarted.

Under voltage lock out protection

When power on, the device is turned on when VIN voltage ramps to higher than UVLO threshold. When power off, the device is shut down when VIN voltage decreases to lower than UVLO hysteresis threshold.

### **Application Information**


- Cin and Cout capacitor should be placed as near as device pin.
- VIN and VOUT routings should be as wide as possible on PCB.
- The Rset resistor should be placed as close as possible to the RSET pin to reduce parasitic resistance and capacitance.
- Makes copper area as large as possible.

### **Package Quantity**

| Package Type | Minimum Packing QTY | Units       | Small Box | Large Box |
|--------------|---------------------|-------------|-----------|-----------|
| SOT23-5      | 3000                | Tape & Reel | 30K       | 120K      |

# **Package Information**

# Packaging Type: SOT23-5



| DIM   | Millin | neters   | Inc         | hes    |  |
|-------|--------|----------|-------------|--------|--|
| DIM - | Min    | Max      | Min         | Max    |  |
| А     | 1.05   | 1.45     | 0.0413      | 0.0571 |  |
| A1    | 0      | 0.15     | 0.0000      | 0.0059 |  |
| A2    | 0.9    | 1.3      | 0.0354      | 0.0512 |  |
| А3    | 0.6    | 0.7      | 0.0236      | 0.0276 |  |
| b     | 0.25   | 0.5      | 0.0098      | 0.0197 |  |
| С     | 0.1    | 0.23     | 0.0039      | 0.0091 |  |
| D     | 2.82   | 3.05     | 0.1110      | 0.1201 |  |
| e1    | 1.9(   | 1.9(TYP) |             | B(TYP) |  |
| Е     | 2.6    | 3.05     | 0.1024      | 0.1201 |  |
| E1    | 1.5    | 1.75     | 0.0512      | 0.0689 |  |
| е     | 0.95   | (TYP)    | 0.0374      | I(TYP) |  |
| L     | 0.25   | 0.6      | 0.0098      | 0.0236 |  |
| L1    | 0.59   | (TYP)    | 0.0232(TYP) |        |  |
| θ     | 0      | 8°       | 0.0000      | 8°     |  |
| c1    | 0.2(   | TYP)     | 0.0079(TYP) |        |  |

# 单击下面可查看定价,库存,交付和生命周期等信息

>>BELLING(上海贝岭)