

2.6 Watt Mono Filter-Free Class-D Audio Power Amplifier

Features

 \Box Efficiency With an 8- Ω Speaker:

88% at 400 mW 80% at 100 mW

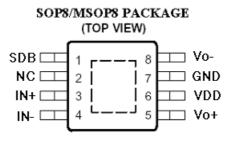
- □ 3.8mA Quiescent Current
- □ 0.4µA Shutdown Current
- Deptimized PWM Output Stage Eliminates LC Output Filter
- □ Internally Generated 250-kHz Switching Frequency Eliminates Capacitor and Resistor
- □ Improved PSRR (-75 dB) and Wide Supply Voltage (2.5 V to 5.5 V) Eliminates Need for a Voltage Regulator
- □ Fully Differential Design Reduces RF Rectification and Eliminates Bypass Capacitor
- □ Improved CMRR Eliminates Two Input Coupling Capacitors
- □ MSOP8, SOP8 package

General Description

The BL6306 is a 2.6W high efficiency filter-free class-D audio power amplifier that requires only three external components.

Features like 88% efficiency, -75dB PSRR, and improved RF-rectification immunity make the BL6306 ideal for cellular handsets. In cellular handsets, the earpiece, speaker phone, and melody ringer can each be driven by the BL6306.

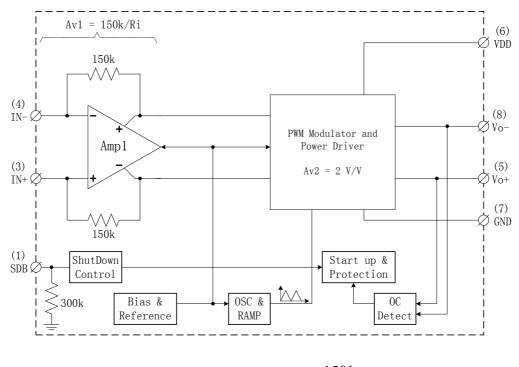
Applications


- □ Mobile phone、PDA、MID
- □ MP3/4、PMP
- Portable electronic devices

Order Information

Part Number	Package	Shipping
BL6306MM	MSOP8	3000 pcs / Tape & Reel
BL6306SO	SOP8	2500 pcs / Tape & Reel

<u>Pin Diagrams</u>



NC - No internal connection

Pin Description

Pin #	Name	Description
1	SDB	Shutdown terminal (low active)
2	NC	NC (No internal connection)
3	IN+	Positive differential input
4	IN-	Negative differential input
5	VO+	Positive BTL output
6	VDD	Power Supply
7	PGND	Power Ground
8	VO-	Negative BTL output

Function Block Diagram

Notes: Total Voltage Gain =
$$Av1 \times Av2 = 2 \times \frac{150k}{R_I}$$

Figure 1. Function Block Diagram

Application Circuit

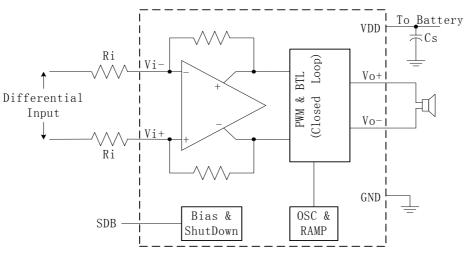


Figure 2. BL6306 Application Schematic With Differential Input

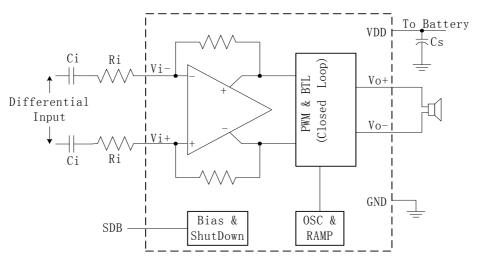


Figure 3. BL6306 Application Schematic With Differential Input and Input Capacitors

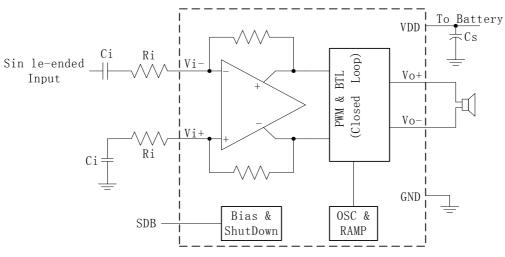


Figure 4. BL6306 Application Schematic With Single-Ended Input

Electrical Characteristics

The following specifications apply for the circuit shown in Figure 5.

 $T_A = 25$, unless otherwise specified.

Semplal	Demonster	Conditions		Spec		
Symbol	Parameter Conditions	Min.	Тур.	Max.	Units	
I _{SD}	Shutdown Current	V _{IN} =0V, V _{SDB} =0V, No Load		0.4	2	uA
		$V_{DD} = 2.5 V$, $V_{IN} = 0 V$, No Load		2.2	3.2	
I_Q	Quiescent Current	$V_{DD} = 3.6V$, $V_{IN} = 0V$, No Load		2.6		mA
		$V_{DD} = 5.5 V$, $V_{IN} = 0 V$, No Load		3.8	8	
$ V_{OS} $	Output Offset Voltage	$V_{IN} = 0V, A_V = 2V/V,$ $V_{DD} = 2.5V \text{ to } 5.5V$		2	25	mV
PSRR	Power Supply Rejection Ratio	$V_{DD} = 2.5 V$ to 5.5 V		-75		dB
CMRR	Common Mode Rejection Ratio	$V_{DD} = 2.5V \text{ to } 5.5V,$ $V_{IC} = V_{DD}/2 \text{ to } 0.5V,$ $V_{IC} = V_{DD}/2 \text{ to } V_{DD} - 0.8V$		-68		dB
F _{sw}	Modulation frequency	$V_{DD} = 2.5 V$ to 5.5 V	200	250	300	kHz
$A_{\rm V}$	Voltage gain	$V_{DD} = 2.5V$ to 5.5V	$\frac{270k}{R_{I}}$	$\frac{300k}{R_{I}}$	$\frac{330k}{R_{I}}$	V/V
R _{SDB}	Resistance from SDB to GND			300		kΩ
ZI	Input impedance		135	150	165	kΩ
T _{WU}	Wake-up time from shutdown	$V_{DD} = 3.6V$		32		mS
		$V_{DD} = 2.5 V$		700		
r _{DS(on)}	Drain-Source resistance (on-state)	$V_{DD} = 3.6V$		500		mΩ
		$V_{DD} = 5.5 V$		400		

Operating Characteristics

 $\Box \quad V_{DD}$ = 5V, R_{I} = 150k $\Omega,$ T_{A} = 25 $\,$, unless otherwise specified.

Symbol	Parameter	Conditions		Spec		Units
Symbol	r ar anneter	Conditions	Min.	Тур.	Max.	Units
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		2.60		
D	Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		2.10		w
Po	Output Fower	THD+N=10%, f=1KHz, $R_L = 8\Omega$		1.60		vv
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		1.30		
THD+N	Total Harmonic			0.21		%
	Distortion + Noise	Po=1.0Wrms, f=1kHz, $R_L = 8\Omega$		0.21		%0
SNR	Signal-to-Noise ratio	V_{DD} =5V, Po=1.0Wrms, $R_L = 8\Omega$		91		dB

\Box V_{DD} = 3.6V, $R_{\rm I}$ = 150k $\Omega,$ $T_{\rm A}$ = 25 $\,$, unless otherwise specified.

Symbol Parameter	Conditions	Spec	Spec		Units	
	rarameter	Conditions	Min. Typ. N	Max.		
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		1.35		
D	P _O Output Power	THD+N=1%, f=1KHz, $R_L = 4\Omega$		1.08		w
P ₀		THD+N=10%, f=1KHz, $R_L = 8\Omega$		0.85		vv
	THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.69			

http://www.belling.com.cn

BL6306

THD+N	Total Harmonic Distortion + Noise	Po=0.5Wrms, f=1kHz, $R_L = 8\Omega$		0.21	%
K _{SVR}	Supply ripple rejection ratio	$V_{DD} = 3.6V$, input ac-grounded f=217Hz, V(Ripple)=200mV _{PP}	with $C_I = 2uF$	-65	dB
V		$V_{DD} = 3.6V$, input ac-grounded	No weighting	100	лV
V _n	Output voltage noise	with $C_I = 2uF$, f=20~20kHz	A weighting	75	uV _{RMS}
CMRR	Common Mode	$V_{DD} = 3.6V, V_{IC} = 1 V_{PP}, f = 217I$	Ца.	-70	dB
CWIKK	Rejection Ratio	$v_{DD} = 3.0 v, v_{IC} = 1 v_{PP}, 1 = 21/1$	TIZ .	-70	ub

$\Box \quad V_{\text{DD}} = 2.5 V, R_{I} = 150 k \Omega, T_{A} = 25 \quad ,$ unless otherwise specified.

Symbol	Donomotor	Conditions	Spec			II.
Symbol	Parameter	Conditions	Min. Typ. Max.	Max.	Units	
		THD+N=10%, f=1KHz, $R_L = 4\Omega$		0.60		
	THD+N=1%, f=1KHz, $R_L = 4\Omega$		0.51		W	
P ₀	P _O Output Power	THD+N=10%, f=1KHz, $R_L = 8\Omega$		0.40		W
		THD+N=1%, f=1KHz, $R_L = 8\Omega$		0.33		
THD+N	Total Harmonic	$D_{2} = 0.2W_{mma} = f_{-1} H_{2} D_{-1} = 80$		0.21		%
	Distortion + Noise	Po=0.2Wrms, f=1kHz, $R_L = 8\Omega$		0.21		70

Test Circuit

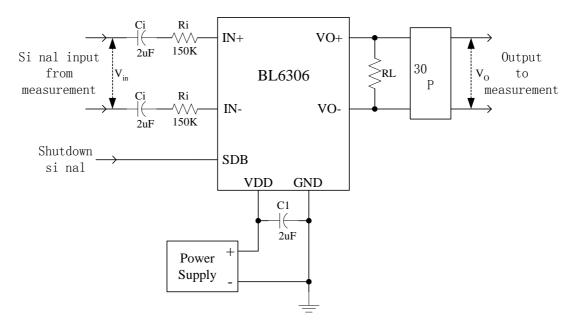


Figure 5. BL6306 test set up circuit

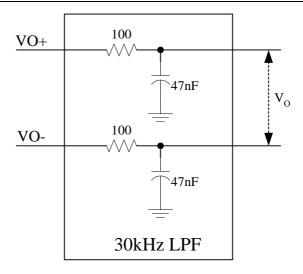


Figure 6. 30-kHz LPF for BL6306 test

- Notes: 1>. C_S should be placed as close as possible to VDD/GND pad of the device
 - 2>. Ci should be shorted for any Common-Mode input voltage measurement
 - 3>. A 33uH inductor should be used in series with R_L for efficiency measurement
 - 4>. The 30 kHz LPF (shown in figure 5) is required even if the analyzer has an internal LPF

Component Recommended

Due to the weak noise immunity of the single-ended input application, the differential input application should be used whenever possible. The typical component values are listed in the table:

R _I	CI	C_S
150 k	3.3 nF	2 uF

(1) C_I should have a tolerance of $\pm 10\%$ or better to reduce impedance mismatch.

(2) Use 1% tolerance resistors or better to keep the performance optimized, and place the R_I close to the device to limit noise injection on the high-impedance nodes.

Input Resistors (R_I) & Capacitors (C_I)

The input resistors (R_I) set the total voltage gain of the amplifier according to Eq1

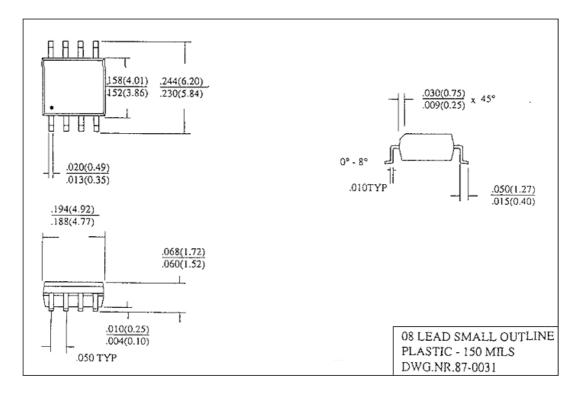
$$Gain = \frac{2 \times 150 k\Omega}{R_I} \quad \left(\frac{V}{V}\right) \qquad \qquad Eq1$$

The input resistor matching directly affects the CMRR, PSRR, and the second harmonic distortion cancellation.

If a differential signal source is used, and the signal is biased from $0.5V \sim V_{DD}$ -0.8V (shown in Figure2), the input capacitor (C_I) is not required.

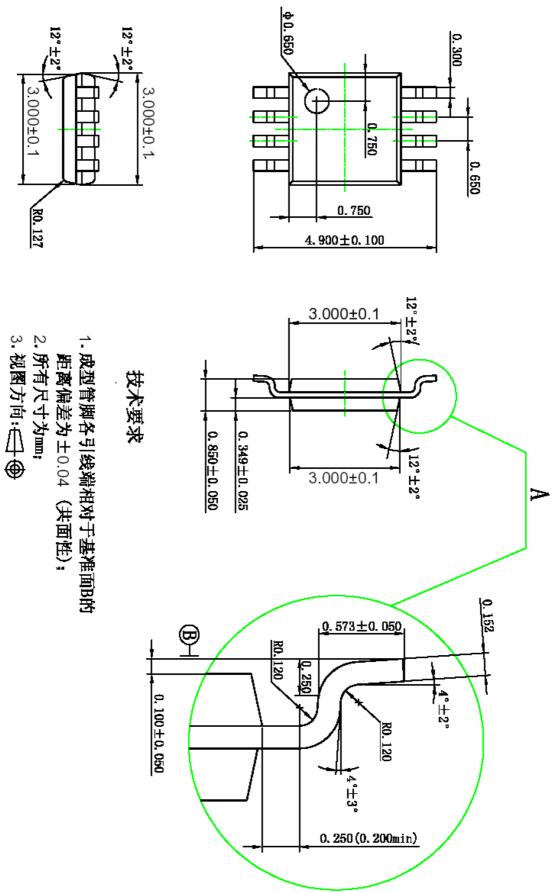
If the input signal is not biased within the recommended common-mode input range in differential input application (shown in Figure3), or in a single-ended input application (shown in Figure4), the input coupling capacitors are required.

If the input coupling capacitors are used, the R_I and C_I form a high-pass filter (HPF). The corner frequency (f_C) of the HPF can be calculated by *Eq2*


$$f_C = \frac{1}{2\pi \cdot R_I \cdot C_I} \quad (Hz) \qquad \qquad Eq2$$

Decoupling Capacitor (C_S)

A good low equivalent-series-resistance (ESR) ceramic capacitor (C_S), used as power supply decoupling capacitor (C_S), is required for high power supply rejection (PSRR), high efficiency and low total harmonic distortion (THD). C_S is 2µF, placed as close as possible to the device VDD pin.


Package Dimensions

SOP8

MSOP8

单击下面可查看定价,库存,交付和生命周期等信息

>>BELLING(上海贝岭)