TELECOMMUNICATION SYSTEM SECONDARY PROTECTION

 Ion-Implanted Breakdown Region Precise and Stable Voltage Low Voltage Overshoot under Surge

DEVICE	V _(Z)	V _(BO)		
DEVICE	٧	V		
'2290	200	290		

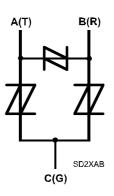
- Planar Passivated Junctions Low Off-State Current < 10 μA
- Rated for International Surge Wave Shapes

WAVE SHAPE	STANDARD	I _{TSP} A
8/20 µs	ANSI C62.41	150
10/160 µs	FCC Part 68	60
10/560 µs	FCC Part 68	45
0.2/310 µs	RLM 88	38
	FTZ R12	50
10/700 μs	VDE 0433	50
	CCITT IX K17/K20	50
10/1000 μs	REA PE-60	50

UL Recognized, E132482

description

The TISP2290 is designed specifically for telephone equipment protection against lightning and transients induced by a.c. power lines. These devices will supress voltage transients between terminals A and C, B and C, and A and B.


Transients are initially clipped by zener action until the voltage rises to the breakover level, which causes the device to crowbar. The high crowbar holding current prevents d.c. latchup as the transient subsides.

Pin 2 is in electrical contact with the mounting base.

MDXXANA

device symbol

These monolithic protection devices are fabricated in ion-implanted planar structures to ensure precise and matched breakover control and are virtually transparent to the system in normal operation.

TISP2290 DUAL SYMMETRICAL TRANSIENT VOLTAGE SUPPRESSORS

NOVEMBER 1986 - REVISED SEPTEMBER 1997

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT
Non-repetitive peak on-state pulse current (see Notes 1, 2 and 3)			
8/20 µs (ANSI C62.41, open-circuit voltage wave shape 1.2/50 µs)		150	
10/160 μs (FCC Part 68, open-circuit voltage wave shape 10/160 μs)		60	
5/200 μs (VDE 0433, open-circuit voltage wave shape 2 kV, 10/700 μs)		50	
0.2/310 μs (RLM 88, open-circuit voltage wave shape 1.5 kV, 0.5/700 μs)	I _{TSP}	38	Α
5/310 μs (CCITT IX K17/K20, open-circuit voltage wave shape 2 kV, 10/700 μs)		50	
5/310 µs (FTZ R12, open-circuit voltage wave shape 2 kV, 10/700 µs)		50	
10/560 μs (FCC Part 68, open-circuit voltage wave shape 10/560 μs)		45	
10/1000 μs (REA PE-60, open-circuit voltage wave shape 10/1000 μs)		50	
Non-repetitive peak on-state current, 50 Hz, 2.5 s (see Notes 1 and 2)	I _{TSM}	10	A rms
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 38 A	di _T /dt	250	A/µs
Junction temperature	TJ	150	°C
Operating free - air temperature range		0 to 70	°C
Storage temperature range	T _{stg}	-40 to +150	°C
Lead temperature 1.5 mm from case for 10 s	T _{lead}	260	°C

- NOTES: 1. Above 70°C, derate linearly to zero at 150°C case temperature
 - 2. This value applies when the initial case temperature is at (or below) 70°C. The surge may be repeated after the device has returned to thermal equilibrium.
 - 3. Most PTT's quote an unloaded voltage waveform. In operation the TISP essentially shorts the generator output. The resulting loaded current waveform is specified.

electrical characteristics for the A and B terminals, $T_J = 25$ °C

	PARAMETER		TEST CONDIT	IONS	MIN	TYP	MAX	UNIT
\/	Reference zener	$I_7 = \pm 1 \text{mA}$			± 200			V
V _Z	voltage	IZ = I IIIIA						V
I _D	Off-state leakage	V _D = ± 50 V					± 10	μA
	current	V _D = ± 50 V					± 10	μΑ
C _{off}	Off-state capacitance	$V_{D} = 0$	f = 1 kHz	(see Note 4)		40	100	pF

NOTE 4: These capacitance measurements employ a three terminal capacitance bridge incorporating a guard circuit. The third terminal is connected to the guard terminal of the bridge.

electrical characteristics for the A and C or the B and C terminals, $T_J = 25$ °C

	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Vz	Reference zener	$I_7 = \pm 1 \text{mA}$			± 200			V
٧Z	voltage	IZ = ± IIIIA			1 200			v
∝V _Z	Temperature coefficient					0.1		%/°C
٧Z	of reference voltage					0.1		76/ C
V _(BO)	Breakover voltage	(see Notes 5 and 6)					± 290	V
I _(BO)	Breakover current	(see Note 5)			± 0.15		± 0.6	Α
V _{TM}	Peak on-state voltage	I _T = ± 5 A	(see Notes 5 and 6)			± 1.9	± 3	V
I _H	Holding current	(see Note 5)			± 150			mA
dv/dt	Critical rate of rise of	(see Note 7)					± 5	kV/μs
uv/ut	off-state voltage	(See Note 1)					3	κν/μο
I _D	Off-state leakage	V _D = ± 50 V					± 10	μА
םי	current	ν _D – ± 30 ν					_ 10	μΛ
C _{off}	Off-state capacitance	$V_D = 0$	f = 1 kHz	(see Note 4)		110	200	pF

NOTES: 5. These parameters must be measured using pulse techniques, $t_w = 100 \mu s$, duty cycle $\leq 2\%$.

- 6. These parameters are measured with voltage sensing contacts seperate from the current carrying contacts located within 3.2 mm (0.125 inch) from the device body.
- 7. Linear rate of rise, maximum voltage limited to 80 % V_Z (minimum)...

PARAMETER MEASUREMENT INFORMATION

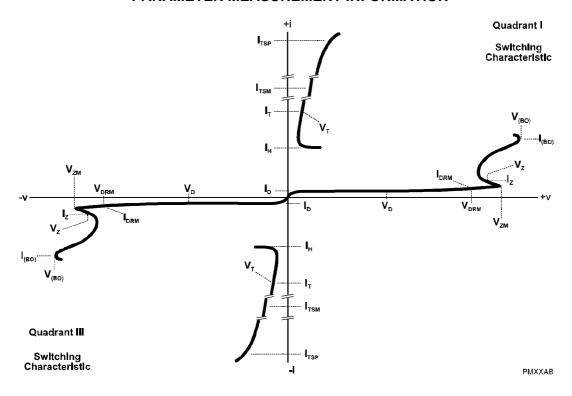
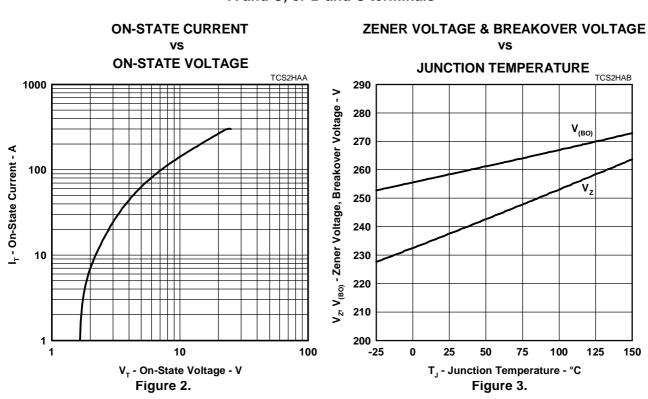


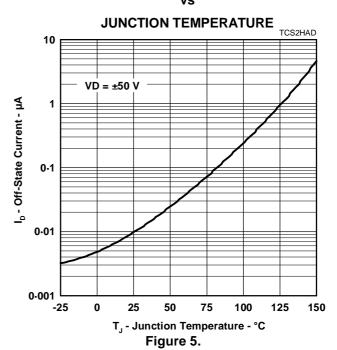
Figure 1. VOLTAGE-CURRENT CHARACTERISTIC FOR ANY PAIR OF TERMINALS


The high level characteristics for terminals A and B are not guaranteed.

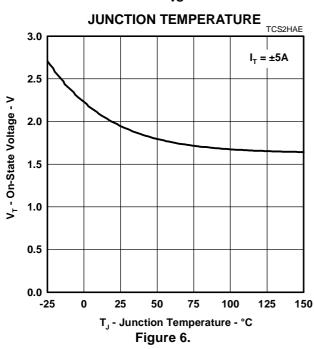
thermal characteristics

PARAMETER			MAX	UNIT
R _{0JA} Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS A and C, or B and C terminals

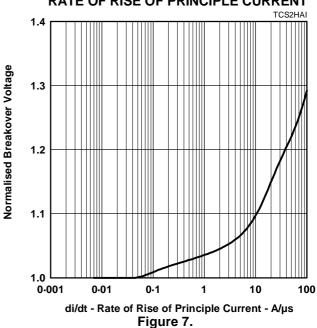


TYPICAL CHARACTERISTICS A and C, or B and C terminals


HOLDING CURRENT & BREAKOVER CURRENT

JUNCTION TEMPERATURE 1 I_H , I_(BO) - Holding Current, Breakover Current - A I_(BO) 0-1 0.01 -25 0 25 50 75 100 125 150 T_. - Junction Temperature - °C Figure 4.

OFF-STATE CURRENT



ON-STATE VOLTAGE vs

NORMALISED BREAKOVER VOLTAGE

RATE OF RISE OF PRINCIPLE CURRENT

TYPICAL CHARACTERISTICS A and C, or B and C terminals

OFF-STATE CAPACITANCE VS **TERMINAL VOLTAGE (POSITIVE)** 1000 Off-State Capacitance - pF Third terminal bias = -50 V 100 Third terminal bias = 0 V 10 Third terminal bias = +50 V 0.1 100 10 Terminal Voltage (Positive) - V Figure 8.

TERMINAL VOLTAGE (NEGATIVE) TCS2HAL Third terminal bias = -50 V Third terminal bias = +50 V Third terminal bias = +50 V Third terminal bias = +50 V Terminal Voltage (Negative) - V

Figure 9.

SURGE CURRENT

PECAY TIME

1000

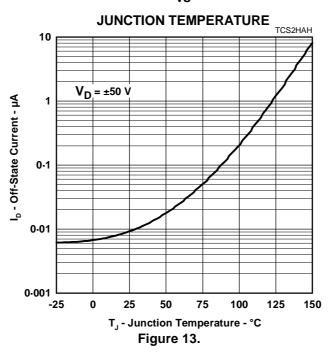
1000

1000

1000

Decay Time - µs
Figure 10.

TYPICAL CHARACTERISTICS A and B terminals


ZENER VOLTAGE & BREAKOVER VOLTAGE vs

JUNCTION TEMPERATURE 290 V_z, V_(BO) - Zener Voltage, Breakover Voltage - V 280 V_(BO) 270 260 250 240 230 220 210 200 -25 0 25 50 75 100 125 150 T_. - Junction Temperature - °C Figure 11.

HOLDING CURRENT & BREAKOVER CURRENT

OFF-STATE CURRENT vs

TYPICAL CHARACTERISTICS A and B terminals

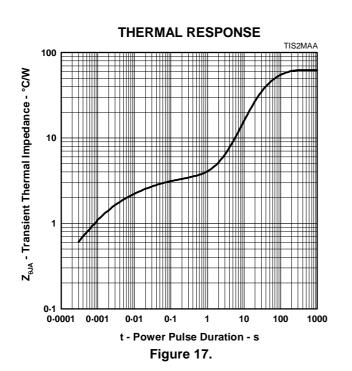
RATE OF RISE OF PRINCIPLE CURRENT 2.5 2.3 2.0 1.0 0-001 0-01 1 10 100

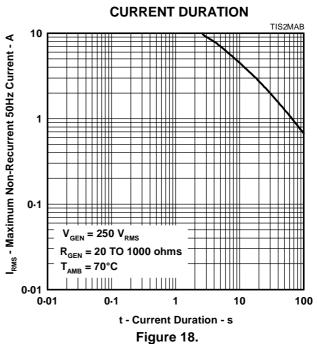
di/dt - Rate of Rise of Principle Current - A/µs

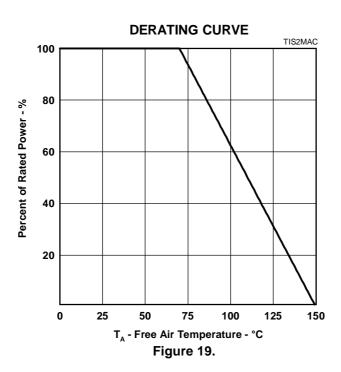
Figure 14.

TERMINAL VOLTAGE (POSITIVE) 1000 Tocsepham Tocsepham Third terminal bias = -50 V Third terminal bias = 0 V Third terminal bias = +50 V Third terminal bias = +50 V Terminal Voltage (Positive) - V

Figure 15.


OFF-STATE CAPACITANCE

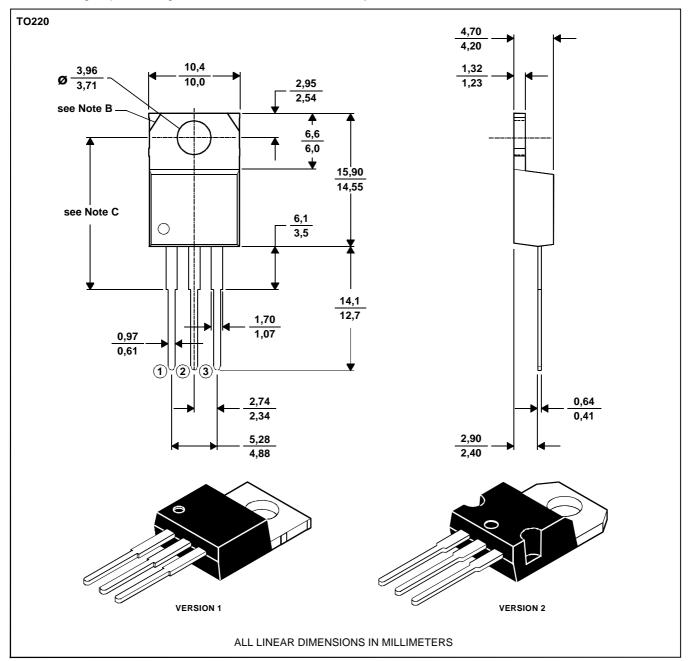

OFF-STATE CAPACITANCE vs


THERMAL INFORMATION

MAXIMUM NON-RECURRENT 50Hz CURRENT

FREE AIR TEMPERATURE

Power


NOVEMBER 1986 - REVISED SEPTEMBER 1997

MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version. Version 1, 18.0 mm. Version 2, 17.6 mm. MDXXBE

NOVEMBER 1986 - REVISED SEPTEMBER 1997

IMPORTANT NOTICE

Power Innovations Limited (PI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to verify, before placing orders, that the information being relied on is current.

PI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with PI's standard warranty. Testing and other quality control techniques are utilized to the extent PI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except as mandated by government requirements.

PI accepts no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor is any license, either express or implied, granted under any patent right, copyright, design right, or other intellectual property right of PI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

PI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS.

Copyright © 1997, Power Innovations Limited

单击下面可查看定价,库存,交付和生命周期等信息

>>Bourns(伯恩斯)