

BCT0104

4-Bit Bidirectional Voltage-Level Translator

GENERAL DESCRIPTION

This two-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the VCCA supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the VCCB supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as VCCA is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

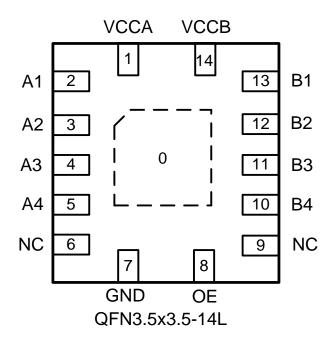
FEATURES

- No Direction-Control Signal Needed
- Data Rates24Mbps (Push-Pull)2Mbps (Open-Drain)
- 1.65V to 5.5V on A Ports and 2.3V to 5.5V on B Ports (VCCA ≤ VCCB)
- VCC Isolation: If Either VCC is at GND, Both Ports are in the High-Impedance State
- No Power-Supply Sequencing Required,
 Either VCCA or VCCB can be Ramped First
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- Available in QFN3.5x3.5-14L package.

APPLICATIONS

I2C BUS
Portable POS Systems
Smart Card Readers
Cell-Phones
GPS

Portable Communication Devices


ORDERING INFORMATION

Order Number	Package Type	Temperature Range	Marking	QTY/Reel
BCT0104EGD-TR	QFN3.5x3.5-14L	-40°C to +85°C	0104 XXXXX	3000

Note 1: "XXXXX" in Marking will be appeared as the batch code.

PIN CONFIGURATION (Top View)

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	V _{CCA}	A-Port Supply Voltage. 1.65V≤V _{CCA} ≤5.5V and V _{CCA} ≤V _{CCB} .
2	A1	Input/Output A. Referenced to V _{CCA} .
3	A2	Input/Output A. Referenced to V _{CCA} .
4	A3	Input/Output A. Referenced to V _{CCA} .
5	A4	Input/Output A. Referenced to V _{CCA} .
6	NC	Not connected.
7	GND	Ground.
8	OE	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to V _{CCA} .
9	NC	Not connected.
10	B4	Input/Output B. Referenced to V _{CCB} .
11	В3	Input/Output B. Referenced to V _{CCB} .
12	B2	Input/Output B. Referenced to V _{CCB} .
13	B1	Input/Output B. Referenced to V _{CCB} .
14	V _{CCB}	B-Port Supply Voltage. 2.3V≤V _{CCB} ≤5.5V.
0		Thermal Pad, Connect to GND or floating.

ABSOLUTE MAXIMUM RATINGS

V _{CCA} , Supply Voltage Range	0.3V to 6V
V _{CCB} , Supply Voltage Range	0.3V to 6V
V _I , A Port, B Port, OE Input Voltage Range (2)	0.3V to 6V
Vo, Voltage Range Applied to Any Output in the High-Impedance or Power-Off State (2)	
A Port	0.3V to 6V
B Port	0.3V to 6V
Vo, Voltage Range Applied to Any Output in the High or Low State (2) (3)	
A Port	0.3V to V _{CCA} + 0.3V
B Port	0.3V to V _{CCB} + 0.3V
I _{IK} , Input Clamp Current (VI < 0)	50mA
I _{OK} , Output Clamp Current (VO < 0)	50mA
Io, Continuous Output Current	±50mA
Continuous Current through VCCA, VCCB, or GND	±100mA
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature Range	65℃ to +150℃
Lead Temperature (Soldering, 10sec)	260℃
ESD	
HBM B Port	8KV
HBM Other Pin	

^{1.} Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute Maximum rating conditions for extended periods may affect device reliability.

2. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

The value of VCCA and VCCB are provided in the recommended operating conditions table.

ELECTRICAL CHARACTERISTICS

(V_{CCA} = 1.65V to 5.5V, V_{CCB} = 2.3V to 5.5V, typical values are at T_A = +25°C, unless otherwise noted)

PARAMETER		co	MIN	TYP	MAX	UNITS	
RECOMMENDED OPERATI	NG CONDITIO	NS ^{(1) (2)}			l .		
(3)	V _{CCA}			1.65		5.5	.,
Supply Voltage (3)	V _{CCB}			2.3		5.5	V
	A D 1/O-	V _{CCA} = 1.65V to 1	.95V, V _{CCB} = 2.3V to 5.5V	V _{CCI} - 0.1		V _{CCI}	
High-Level Input Voltage	A Port I/Os	$V_{CCA} = 2.3V \text{ to } 5.5$	5V, V _{CCB} = 2.3V to 5.5V	V _{CCI} - 0.3		V _{CCI}	V
(V _{IH})	B Port I/Os			V _{CCI} - 0.3		V _{CCI}	V
	OE Input			V _{CCA} ×0.8		5.5	
	A Port I/Os			0		0.1	
Low-Level Input Voltage	B Port I/Os			0		0.1	V
(V _{IL})	OE Input			0		V _{CCA} ×0.2	
		A Port I/Os Push-	Pull Driving			10	
Input Transition Rise or Fal	l Rate (Δt/ΔV)	B Port I/Os Push-	Pull Driving			10	ns/V
		Control Input			10		
ELECTRICAL CHARACTER	RISTICS						
A Port High Level Output V	oltage (V _{OHA})	I _{OH} = -20μA, V _{IB} ≥V _{CCB} - 0.4V			V _{CCA} ×0.8		
A Port Low Level Output V	oltage (V _{OLA})	$I_{OL} = 1 \text{mA}, V_{IB} \le 0$		0.2		V	
B Port High Level Output V	oltage (V _{OHB})	I _{OH} = -20μA, V _{IA} ≥V _{CCA} - 0.4V			V _{CCB} ×0.8		\
B Port Low Level Output V	oltage (V _{OLB})	I _{OL} = 1mA, V _{IA} ≤ 0.15V			0.2		
Input Leakage Current (II)	OE				0.5		
Power Off Leakage	A Port	$V_{CCA} = 0V, V_{CCB} =$	= 0V to 5.5V		0.1		
Current (I _{OFF})	B Port	$V_{CCA} = 0V \text{ to } 5.5V$	V , $V_{CCB} = 0V$		0.1		μA
3-State Output Leakage (I _{OZ})	A or B Port	OE = 0V			0.1		
			$V_{CCA} = 1.65V$ to V_{CCB} , V_{CCB}		0.1		
Quiescent Supply Curr	rent (I _{CCA})	$V_I = V_O = OPEN,$			_		
117	(557.)	I _O = 0	$V_{CCA} = 5.5V$, $V_{CCB} = 0V$		0.1		μΑ
			$V_{CCA} = 0V$, $V_{CCB} = 5.5V$		0.1		
			$V_{CCA} = 1.65V$ to V_{CCB} , V_{CCB}		7		
Quiacont Supply Curr	cont (I)	$V_I = V_O = OPEN,$	= 2.3V to 5.5V				
Quiescent Supply Current (I _{CCB})		I _O = 0	V _{CCA} =5.5V, V _{CCB} = 0V		0.1		μA
			V _{CCA} = 0V, V _{CCB} = 5.5V		0.1		
Quiescent Supply Current	(I _{CCA} + I _{CCB})	$V_1 = V_0 = OPEN,$ $I_0 = 0$	$V_{CCA} = 1.65V$ to V_{CCB} , V_{CCB} = 2.3V to 5.5V		7.1		μΑ

ELECTRICAL CHARACTERISTICS

(V_{CCA} = 1.65V to 5.5V, V_{CCB} = 2.3V to 5.5V, typical values are at T_A = +25 $^{\circ}$ C, unless otherwise noted)

PARAMETER	CON	IDITIONS	MIN	TYP	MAX	UNITS
	$V_I = V_{CCI}$, $I_O = 0$,	$V_{CCA} = 1.65V \text{ to } V_{CCB},$ $V_{CCB} = 2.3V \text{ to } 5.5V$		0.1		
Quiescent Supply Current (I _{CCZA})	OE = GND	V _{CCA} =5.5V, V _{CCB} = 0V		0.1		μA
		V _{CCA} = 0V, V _{CCB} = 5.5V		0.1		
	$V_{I} = V_{CCI}, I_{O} = 0,$	$V_{CCA} = 1.65V \text{ to } V_{CCB},$ $V_{CCB} = 2.3V \text{ to } 5.5V$		0.1		μА
Quiescent Supply Current (I _{CCZB})	OE = GND	V _{CCA} =5.5V, V _{CCB} = 0V		0.1		
		$V_{CCA} = 0V$, $V_{CCB} = 5.5V$		0.1		
OE Input Capacitance (C _I)	V _{CCA} = 3.3V, V _{CCB} = 3.3V			3.6		pF
Input/Output Capacitance A Port (C _{IO})	2.27 2.27			5.4		pF
Input/Output Capacitance B Port (C _{IO})	$V_{CCA} = 3.3V, V_{CCB} = 3.3$, v		6.3		þΓ

NOTES:

- 1. V_{CCI} is the V_{CC} associated with the input port.
- 2. V_{CCO} is the V_{CC} associated with the output port.
- 3. $V_{\text{CCA}} \, \text{must}$ be less than or equal to $V_{\text{CCB}},$ and $V_{\text{CCA}} \, \text{must}$ not exceed 5.5V.

TIMING REQUIREMENTS

(typical values are at T_A = +25 $^{\circ}\mathrm{C}$, unless otherwise noted)

			$V_{CCB} = 2.5V$	$V_{CCB} = 3.3V$	$V_{CCB} = 5V$	
			TYP	TYP	TYP	UNITS
(T _A = +25 [°] C, V _{CCA} = 1.8	8V, unless otherwise not	ted.)				
Data Data	Push-Pull Driving		21	22	24	Mhna
Data Rate	Open-Drain Driving		2	2	2	Mbps
Dulas Duration (t.)	Push-Pull Driving	Data Inputa	47	45	41	
Pulse Duration (t _W)	Open-Drain Driving	Data Inputs	500	500	500	ns
(T _A = +25°C, V _{CCA} = 2.5	5V, unless otherwise not	ted.)				
Data Data	Push-Pull Driving		20	22	24	Mbps
Data Rate	Open-Drain Driving		2	2	2	
	Push-Pull Driving		50	45	41	ns
Pulse Duration (t _W)	Open-Drain Driving	Data Inputs	500	500	500	
(T _A = +25℃, V _{CCA} = 3.3	V, unless otherwise note	d.)				
5 . 5 .	Push-Pull Driving	Push-Pull Driving		23	24	1
Data Rate	Open-Drain Driving			2	2	Mbps
	Push-Pull Driving			43	41	
Pulse Duration (t _W)	Open-Drain Driving	Data Inputs		500	500	ns
(T _A = +25℃, V _{CCA} = 5V	, unless otherwise noted.)				
	Push-Pull Driving				24	T
Data Rate	Open-Drain Driving				2	Mbps
	Push-Pull Driving				41	
Pulse Duration (t _W)	Open-Drain Driving	Data Inputs			500	ns

SWITCHING CHARACTERISTICS

(V_{CCA} = 1.8V, typical values are at T_A = +25 $^{\circ}$ C, unless otherwise noted)

DADAMETED	FROM	то	TEST	V 0.5V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	., 5,,		
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS	
			Push-Pull Driving	2.4	3.0	4.3		
t _{PHL}			Open-Drain Driving	26.0	26.3	26.7	1	
	A	В	Push-Pull Driving	4.0	3.6	3.5	ns	
t _{PLH}			Open-Drain Driving	175	145	110		
			Push-Pull Driving	2.0	1.9	2.1		
t _{PHL}	D	٨	Open-Drain Driving	26.0	26.1	26.2	1	
	В	А	Push-Pull Driving	1.7	1.5	1.4	ns	
t _{PLH}			Open-Drain Driving	133	69	51		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		17	15	14		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		614	616	626	ns	
	A D = = 4 F	Nine Time	Push-Pull Driving	6.6	5.8	5.4	ns	
t_{rA}	A POR F	Rise Time	Open-Drain Driving	89	31	10		
	D Dowt I	Rise Time	Push-Pull Driving	5.6	4.6	3.9		
t_{rB}	B POIL F	rise rime	Open-Drain Driving	128	98	58	ns	
	A D = = 4 F	Tall Time a	Push-Pull Driving	2.9	2.7	2.6		
t_fA	A POIL F	Fall Time	Open-Drain Driving	1.9	1.7	1.6	ns	
	D Dowt I	Tall Times	Push-Pull Driving	4.6	5.9	8.0		
t_{fB}	B POIL F	Fall Time	Open-Drain Driving	2.2	2.3	2.9	ns	
t _{sk(0)}	Channel-to-	Channel Skew		0.5	0.5	0.5	ns	
Data Bata			Push-Pull Driving	21	22	24	Mbss	
Data Rate			Open-Drain Driving	2	2	2	Mbps	

SWITCHING CHARACTERISTICS

(V_{CCA} = 2.5V, typical values are at T_A = +25 $^{\circ}$ C, unless otherwise noted)

DADAMETED	FROM	то	TEST	V 0.5V	V 2.2V	., .	LINUTO	
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS	
			Push-Pull Driving	2.7	3.3	4.8		
t _{PHL}		Б	Open-Drain Driving	26.2	26.4	26.7]	
	A	В	Push-Pull Driving	2.6	2.4	2.3	ns	
t _{PLH}			Open-Drain Driving	169	144	110		
			Push-Pull Driving	2.4	2.3	2.4		
t _{PHL}		٨	Open-Drain Driving	26.3	26.4	26.5	1	
	В	А	Push-Pull Driving	2.0	1.9	1.8	ns	
t _{PLH}			Open-Drain Driving	165	118	55		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		14	13	12		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		630	635	640	ns	
	A D. 45		Push-Pull Driving	3.2	2.8	2.6	ns	
t_rA	A Port F	Rise Time	Open-Drain Driving	120	70	10		
	D David I	Nine Time	Push-Pull Driving	4.5	3.4	2.6		
t_{rB}	B Port F	Rise Time	Open-Drain Driving	122	96	62	ns	
	A D	II	Push-Pull Driving	4.9	5.0	4.8		
t_fA	A Port	Fall Time	Open-Drain Driving	2.0	1.9	1.7	ns	
	D.D. (1)	II	Push-Pull Driving	4.8	6.1	8.3		
t_fB	B Port	Fall Time	Open-Drain Driving	1.9	2.1	2.7	ns	
t _{sk(0)}	Channel-to-	Channel Skew		0.5	0.5	0.5	ns	
Data Dati			Push-Pull Driving	20	22	24	NAI	
Data Rate			Open-Drain Driving	2	2	2	Mbps	

SWITCHING CHARACTERISTICS

($V_{CCA} = 3.3V$, typical values are at $T_A = +25$ °C, unless otherwise noted)

	FROM	то	TEGT COMPLETIONS	.,	.,		
PARAMETER	(INPUT) (OUTPUT)		TEST CONDITIONS	V _{CCB} = 3.3V	$V_{CCB} = 5V$	UNITS	
			Push-Pull Driving	3.5	4.9		
t _{PHL}	۸	D	Open-Drain Driving	26.3	26.7		
	А	В	Push-Pull Driving	2.2	2.0	ns	
t _{PLH}			Open-Drain Driving	133	104		
			Push-Pull Driving	3.0	3.2		
t _{PHL}	В	^	Open-Drain Driving	26.6	26.8]	
	В	А	Push-Pull Driving	1.8	1.7	ns	
t _{PLH}			Open-Drain Driving	132	83		
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		12	11		
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		630	635	ns	
			Push-Pull Driving	2.2	2.0		
t_{rA}	A POR F	Rise Time	Open-Drain Driving	87	36	ns	
	D Dowt I	Rise Time	Push-Pull Driving	2.9	2.3		
t_{rB}	D POIL F	rise rime	Open-Drain Driving	87	56	ns	
	A Port Fall Time		Push-Pull Driving	6.2	5.8		
t_fA	A POIL	raii Time	Open-Drain Driving	2.3	2.0	ns	
	D. Dowt	Call Times	Push-Pull Driving	6.5	8.2		
t_{fB}	в Роп	Fall Time	Open-Drain Driving	2.0	2.5	ns	
t _{sk(0)}	Channel-to-	Channel Skew		0.5	0.5	ns	
Data Bata			Push-Pull Driving	23	24	Mhns	
Data Rate			Open-Drain Driving	2	2	Mbps	

SWITCHING CHARACTERISTICS

($V_{CCA} = 5.0V$, typical values are at $T_A = +25$ °C, unless otherwise noted)

DADAMETED	FROM	то	TEST	V 5V	LINUTO
PARAMETER	(INPUT)	(OUTPUT)	CONDITIONS	V _{CCB} = 5V	UNITS
t _{PHL}			Push-Pull Driving	5.4	
ŧРНL	А	В	Open-Drain Driving	26.7	ns
t_{PLH}	Λ	В	Push-Pull Driving	1.9	115
ΨLH			Open-Drain Driving	120	
t _{PHL}			Push-Pull Driving	5.6	
ФНL	В	А	Open-Drain Driving	27.3	- ns
t_PLH	В	Λ.	Push-Pull Driving	1.7	115
ФLH			Open-Drain Driving	126	
t _{EN} (t _{PZH} & t _{PZL})	OE	A or B		10	
t _{DIS} (t _{PHZ} & t _{PLZ})	OE	A or B		636	ns
t_{rA}	A Port Rise Time		Push-Pull Driving	1.8	ns
ι _Γ Α			Open-Drain Driving	79	115
t_{rB}	B Port R	isa Tima	Push-Pull Driving	2.2	- ns
rв	D FOIL IX	ise fille	Open-Drain Driving	73	115
t_fA	Λ Port F	all Timo	Push-Pull Driving	8.7	- ns
цА	A Port Fall Time		Open-Drain Driving	2.7	115
t	B Port F	all Timo	Push-Pull Driving	8.6	ne
t _{fB}	D FUIL F	aii 11111 0	Open-Drain Driving	2.4	ns
t _{sk(0)}	Channel-to-C	hannel Skew		0.5	ns
Data Rate			Push-Pull Driving	24	Mbps
Dala Nale			Open-Drain Driving	2	INIDA2

APPLICATION INFORMATION

The BCT0104 can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point topology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The BCT0104 can also be used in applications where a push-pull driver is connected to the data I/Os

Block Diagram

The BCT0104 architecture (see Figure 1) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

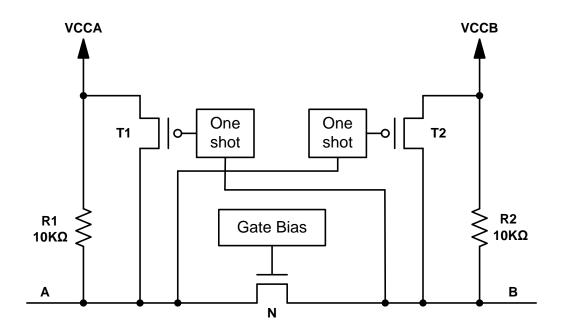


Figure 1 Block Diagram of BCT0104 I/O Cell

The BCT0104 employs two key circuits to enable this voltage translation: An N-channel pass-gate transistor topology that ties the A port to the B port. Output one-shot (O.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B ports.

Input Driver Requirements

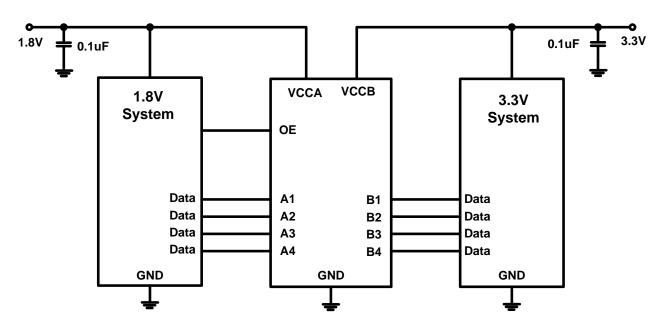
The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the BCT0104. Similarly, the t_{PHL} and data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and data rates in the datasheet assume that the output impedance of the external driver is less than 50Ω .

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. The sequencing of each power supply will not damage the device during the power up operation, so either power supply can be ramped up first.

Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic I_{CC}, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the BCT0104 output sees, so it is recommended that this lumped-load capacitance be considered to avoid O.S. retriggering, bus contention, output signal oscillations, or other adverse system-level affects.


Enable and Disable

The BCT0104 has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. OE has an internal pull-down current source, as long as V_{CCA} is powered. The disable time (t_{DIS}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-up or Pull-down Resistors on I/O Lines

Each A port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCA} , and each B port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB} . If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10k\Omega$ resistors). Adding lower value pull-up resistors will effect V_{OL} levels, however. The internal pull-ups of the BCT0104 are disabled when the OE pin is low.

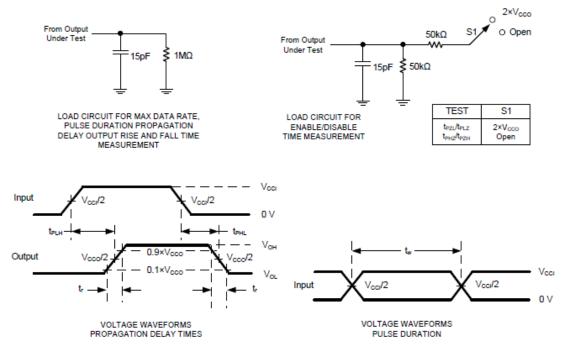

Typical Application Circuit

Figure 2 Typical Application Circuit

Test Circuits

- A. C_L includes probe and jig capacitance.
- A. O_C includes probe and by generators having the following characteristics: PRR≤10MHz, Z₀=50Ω,dv/dt≥1V/ns. C. The outputs are measured one at a time, with one transition per measurement.

 D. t_{put} and t_{put} are the same as t_{put}.

 E. V_{CCI} is the V_{CC} associated with the input port.

 F. V_{CCO} is the V_{CC} associated with the output port.

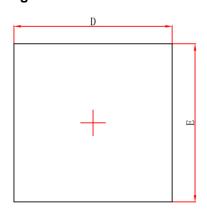
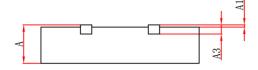

 G. All parameters and waveforms are not applicable to all devices.

Figure 3 Load Circuits and Voltage Waveforms

PACKAGE OUTLINE DIMENSIONS


QFN3.5x3.5-14L Outline Drawing

el D1 D1 D1 D1

Top View

Bottom View

Side View

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035	
A1	0.000	0.050	0.000	0.002	
A3	0.2031	REF.	0.008	REF.	
D	3.424	3.576	0.135	0.141	
E	3.424	3.576	0.135	0.141	
D1	1.950	2.150	0.077	0.085	
E1	1.950	2.150	0.077	0.085	
k	0.200	MIN.	0.008MIN.		
b	0.200	0.300	0.008	0.012	
е	0.500TYP.		0.020TYP.		
e1	1.500TYP.		0.059TYP.		
L	0.324	0.476	0.013	0.019	

单击下面可查看定价,库存,交付和生命周期等信息

>>Broadchip(广芯电子)