

GENERAL DESCRIPTION

The BCT4321N is a double-pole double-throw (DPDT) analog switch with multiplexes USB2.0 and negative signal audio analog signals. One Channel has wide bandwidth and low bit-to-bit skew allow it to pass high-speed differential signals with good signal integrity. Another channel has ultra-Low on resistance (2.5Ω) . Each switch is bidirectional and offers little or no attenuation of the signals at the outputs. Industry-leading advantages include a propagation delay of less than 250ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference.

The BCT4321N is available in Green QFN1.4X1.8-10 packages. It operates over an ambient temperature range of -40°C to +85°C.

FEATURES

- V_{CC} Operating Range: 2.7V to 5.0V
- -3dB Bandwidth: 720MHz(USB Mode)
- Off Isolation: 66dB @1MHz
- Crosstalk Rejection: 86dB @1MHz
- Low ON Resistance:
 2.5-ohm at VCC = 3.6 V (Audio Mode)
 8.5-ohm at VCC = 3.6 V (USB Mode)
- Analog Signal Range: V_{cc}-6.5V to V_{cc}-2 (Audio Mode) 0V to VCC (USB Mode)
- Audio Channel Shunt Resistors for Pop & Click Noise Reduction
- Power-off Protection on Common D+/R, D-/L Ports

APPLICATIONS

Cell Phones Hi-Fi Audio Switching USB 2.0 High Speed Data Switching USB 3.x Type C Switching

ORDERING INFORMATION

Order Number	Package Type	Temperature Range	Marking	QTY/Reel
BCT4321NETB-TR	QFN1.4X1.8-10	-40°C to +85°C	AQX	3000

REV2.2 www.broadchip.com

Copyright © BROADCHIP TECHNOLOGY CO., LTD

PIN CONFIGURATION

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	D-	USB data bus DATA-
2	R	Audio right
3	L	Audio left
4	GND	Power Ground
5	S1	Logic Control Input 1
6	D-/L	USB and audio common connector ports.
7	D+/R	USB and audio common connector ports.
8	S2	Logic Control Input 2
9	VCC	Power Supply
10	D+	USB data bus DATA+

Truth Table

S1	S2	Audio Mode	USB Mode	Remarks
0	0	ON	OFF	Audio On
0	1	OFF	ON	USB Communication
1	0	OFF	OFF	Low Power Mode
1	1	ON	OFF	Audio On

LOGIC DIAGRAM

TYPICAL APPLICATION CIRCUIT

Copyright © BROADCHIP TECHNOLOGY CO., LTD

ABSOLUTE MAXIMUM RATINGS

VCC, S1, S2 to GND	0.65V to +5.25V
All Other Pins to GND	V_{CC} -6.5V to (V_{CC} + 0.3V)
Continuous Current (D+/-,R/L, D+/R,D-/L)	±400mA
Peak Current (D+/-,R/L, D+/R,D-/L)(pulsed at 1ms, 10% duty cycle)	±500mA
Continuous Power Dissipation (TA = +70°C)	
10-Pin TQFN (derate 15.6mW/°C above +70°C)	1.25W
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Junction Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. Broadchip recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Broadchip reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact Broadchip sales office to get the latest datasheet.

ELECTRICAL CHARACTERISTICS

(VCC = 2.7V to 5.0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 3.6V, TA = +25°C.) (Note 1)

PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY							
Supply Voltage Range	V _{CC}		2.7		5.0	V	
Supply Current	I _{CC}	V_{CC} =3.6V, S1,S2=0 or V_{CC} , D+/-,R/L,D-/L,D+/R = floating		0.02	1	uA	
USB SWITCH							
Analog Signal Range		USB mode, D+, D-, D+/R, D-/L	0		V _{cc}	V	
On-Resistance	R _{ON}	$I_{SW} = 8mA, V_{D+}, V_{D-} = 0$ to V_{CC}		8.5		Ω	
On-Resistance Match	$\triangle R_{ON}$	$I_{SW} = 8mA, V_{D+}, V_{D-} = 0 \text{ to } V_{CC}$ (Note2)		0.5		Ω	
On-Resistance Flatness	RFLAT	$I_{SW} = 8mA, V_{D+}, V_{D-} = 0 \text{ to } V_{CC}$ (Note 3)		2.5		Ω	
D+,D- Off-Leakage Current	I _{OFF}	Audio mode $V_{D+/R}$, $V_{D-/L}$ = floating			100	nA	
D+,D-, On-Leakage Current	I _{ON}	USB mode, $V_{D+/R}$, $V_{D-/L}$ = floating			100	nA	
AUDIO SWITCH							
Analog Signal Range		Audio mode ,R, L, D+/R, D-/L	V _{CC} -6.5		V _{CC} -2	V	
On-Resistance	R _{ON}	I_{SW} =60mA, V_R , V_L = -1V to 1V		2.5		Ω	
On-Resistance Match	$\triangle R_{ON}$	I_{SW} =60mA, V_R , V_L = -1V to 1V (Note 2)		0.2		Ω	
On-Resistance Flatness	RFLAT	I_{SW} =60mA, V_R , V_L = -1V to 1V (Note 3)		0.4		Ω	
Shunt Resistance	R _{SH}	USB mode, I_L , I_R = 5mA		4		KΩ	
DIGITAL INPUTS							
Input-Logic High	V _{IH}	$V_{CC} = 2.7 - 5.0 V$	1.7			V	
Input-Logic Low	V _{IL}	V _{CC} =2.7 – 5.0V			0.5	V	
Input Leakage Current High	I _{IH}	$V_{CC} = V_{IN} = 3.6$		2.5	10	uA	
Input Leakage Current Low	IIL	$V_{CC} = 3.6V, V_{IN} = 0V$	-1		1	uA	

ELECTRICAL CHARACTERISTICS

(VCC = 2.7V to 5.0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at VCC = 3.6V, TA = +25°C.) (Note 1)

PARAMETER	SYM	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC CHARACTERISTICS						
		V_R or V_L or V_{D+} or $V_{D-} = 1.5V$,				
Turn-On Time	T _{ON}	RL = 50Ω, CL = 35pF,		20	50	nS
		(Figure 2)				
		V_R or V_L or V_{D+} or $V_{D-} = 1.5V$,		15	50	nS
Turn-Off Time	T_{OFF}	RL = 50Ω, CL = 35pF,				
		(Figure 2)				
Break-Before-Make Time	т	V_R , V_{D+} , V_L , $V_{D-} = 1.5V$ RL	2	15		nS
Dieak-Deloie-Make Time	BBM	= 50Ω, CL = 35pF, (Figure 1)	2			
On Channel Bandwidth 3dB	BW	USB mode, RL = 50Ω ,		720		MHz
		(Figure 4)				
	Q _{IRR}	D+/R, D-/L = 0.5 V_{PP} , RL =		-66		dB
Off-Isolation		50Ω , f = 1MHz, CL = 5pF,				
		Figure 5 (Note 4)				
Crosstalk	Y	D+/R, D-/L = 0.5 V_{PP} , RL =		-86		dB
CIUSSIAIN	∧ TALK	50Ω , f = 1MHz, CL = 5pF,				
Total Harmonic Distortion Plus		Audio mode, f = 20Hz to				
Noise (Audio)	THD+N	20kHz; $V_{\text{R}} \text{ or } V_{\text{L}}$ =0.5 V_{PP} , RL		0.02		%
Noise (Audio)		= 32Ω,				
	C _{OFF}	Audio mode, f = 1MHz,		Б		ъĘ
D+,D- OII-Capacitance		(Figure 3)	5			Y
	C	USB mode, f = 1MHz, $V_{D+/R}$		7		ъĘ
	CON	or $V_{D-/L}$ =floating, (Figure 3)				μг

NOTES:

Note 1: Devices are 100% tested at TA = +25°C. Limits across the full temperature range are guaranteed by design and correlation. Note 2: Δ RON = RON(MAX) - RON(MIN).

Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance, as measured over the specified analog signal ranges.

Note 4: Between any two switches.

t_{вмм}

90% of V_{OH}

Test Diagram

Figure 2. toN/OFF

Figure 4. Bandwidth -3dB

PACKAGE OUTLINE DIMENSIONS

QFN1.4x1.8-10

COMMON DIMENSIONS(mm)					
PKG	UT:ULTRA THIN				
REF	MIN	NOM	MAX		
Α	0.50	0.55	0.60		
A1	0.00		0.05		
A3	0.15 REF				
D	1.35	1.40	1.45		
Е	1.75	1.80	1.85		
b	0.15	0.20	0.25		
L	0.30	0.40	0.50		
L1	0.40	0.50	0.60		
е	0.40 BSC				

REV2.2 www.broadchip.com

Copyright © BROADCHIP TECHNOLOGY CO., LTD

PCB Layout Pattern: QFN1.4x1.8-10

RECOMMENDED PCB LAYOUT PATTERN (Unit: mm)

单击下面可查看定价,库存,交付和生命周期等信息

>>Broadchip(广芯电子)