www.cellwise-semi.com CW1072-DS V1.0

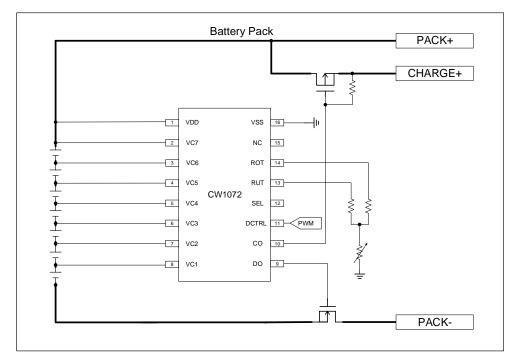
CW1072

6~7 节电池保护 IC

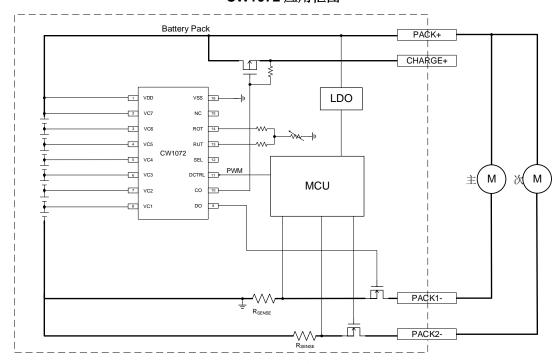
功能特性

- 过充电检测功能
 - 阈值范围 3.750V、4.175V~4.450V, 25mV 步进, ±25mV 精度
- 过放电检测功能
 - 阈值范围 2.100V~3.000V, 100mV 步进, ±30mV 精度
- 温度检测功能
 - 充电高低温保护,温度外部可设
 - 放电高温保护,放电低温保护可选
- 通过 SEL 端子实现 6 节、7 节电池切换
- 断线检测功能 PWM 控制驱动
- 低工作电流
 - 工作状态 15μA (25°C)
 - 休眠状态 5μA (25°C)
- 封装形式: SSOP16

应用领域

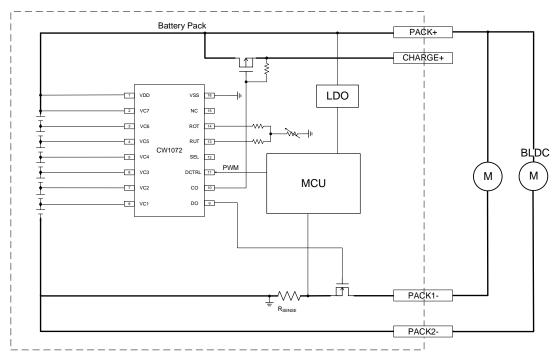

- 电动工具
- 电动自行车
- 吸尘器
- 锂离子及锂聚合物电池包

基本描述

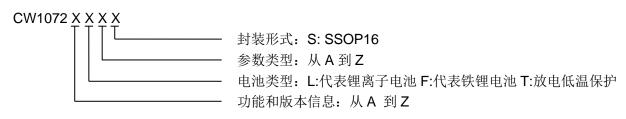

CW1072系列产品是一款内置高精度检测电路和延迟电路的锂电池保护芯片,适用于6~7串锂离子电池或锂聚合物电池包。为锂电池包提供过充电检测、过放电检测、断线检测以及充放电高低温等保护功能。

CW1072内置MOSFET驱动功能,支持外部 PWM信号通过DCTRL端子来控制DO端子输出, 实现电机调速以及软启动功能。

典型应用框图

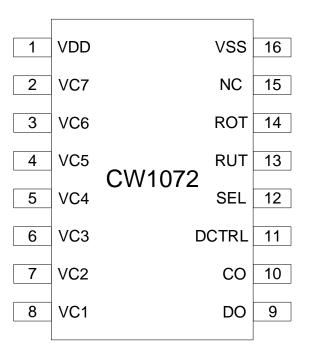


CW1072 应用框图


CW1072 吸尘器有刷电机控制应用框图

典型应用框图

CW1072 吸尘器无刷电机控制应用框图


产品选择指南

产品目录

产品型号	过充阈值	过充延时	过充解除	过放阈值	过放延时	过放解除	放电低温
) 加坐与	[V _{oc}]	[T _{oc}]	[V _{OCR}]	[V _{OD}]	[T _{OD}]	[V _{ODR}]	保护
CW1072ALAS	4.250V	1s	4.150V	2.700V	1s	3.000V	否
CW1072ALBS	4.200V	1s	4.100V	2.700V	1s	3.000V	否
CW1072AFCS	3.750V	1s	3.600V	2.100V	1s	2.400V	否
CW1072ALDS	4.250V	1s	4.150V	2.500V	1s	3.000V	否

引脚排列图

引脚定义

编号	名称	功能描述
1	VDD	芯片电源,连接电池组最高电位,若7节电池,则为电池7正极端子
2	VC7	电池7正极连接端子
3	VC6	电池 6 正极连接端子
4	VC5	电池 5 正极连接端子
5	VC4	电池 4 正极连接端子
6	VC3	电池 3 正极连接端子
7	VC2	电池 2 正极连接端子
8	VC1	电池 1 正极连接端子
9	DO	放电保护输出端子,推挽输出,驱动 NMOS
10	CO	充电保护输出端子,开漏输出,驱动 PMOS
11	DCTRL	DO 的 PWM 控制端子,PWM 信号输入
12	SEL	6、7节电池选择端子
13	RUT	低温检测端子
14	ROT	过温检测端子
15	NC	NC
16	VSS	芯片接地端子,连接电池 1 负极

绝对最大额定值

		范	** **	
		最小值	最大值	単位
端子输入电压	VDD, CO, SEL, DCTRL	VSS-0.3	VSS+40	V
端子输入电压	ROT, RUT	VSS-0.3	6	V
端子输入电压	VCx, DO	VSS-0.3	VDD+0.3	V
工作温度	T1	-30	85	°C
存储温度	T2	-40	125	°C

注意:绝对最大额定值是指无论在任何条件下都不能超过的额定值,如果超过此额定值,有可能造成产品损伤。

ESD 等级

			参数值	单位
V _(ESD) 等级	公 和 — — — — — — — — — — — — — — — — — — —	HBM 模式	± 4000	V
	静电放电	CDM 模式	±1000	V

额定工作电压

描述	项目	最小值	典型值	最大值	单位
VDD 输入电压	V_{DD}	4		31.5	V
VCx输入电压	VCx	0		4.5	V
端子输入电压	V _{ROT} , V _{RUT}	0		5	V

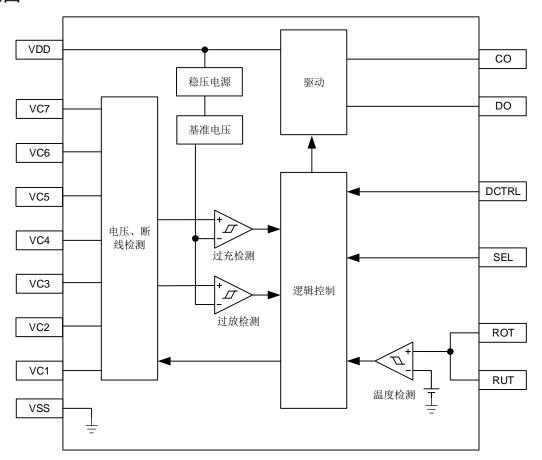
电气特性

除特殊说明外 T=25℃

描述	项目	测试条件	最小值	典型值	最大值	单位
电源						
工类工作由法		VC1=VC2=VC3=VC4=VC5=VC6		45	00	
正常工作电流	IOPR	=VC7 = 3.7V		15	20	μΑ
休眠电流	I _{SLEEP}	VC1=VC2=VC3=VC4=VC5=VC6			5	μΑ
Prod Edit	ISLEEP	=VC7= 2.0V			J	μΑ
通道输入电流	ICELL	VC1=VC2=VC3=VC4=VC5=VC6			0.5	μΑ
超起相/(电 机	ICELL	=VC7 =3.7V			0.0	μΛ
电压、温度检测和保	护阈值					
		VC1=VC2=VC3=VC4=VC5=VC6	V _{oc} -		V _{oc} +	
过充检测电压	Voc*1	= 3.7V	0.025	Voc		V
		VC7=3.7V→4.5V	0.025		0.025	
		VC1=VC2=VC3=VC4=VC5=VC6	V _{OCR} -		V _{OCR} +	
过充解除电压	V_{OCR}	= 3.7V		V_{OCR}	0.030	V
		VC7=4.5V→3.7V	0.030		0.030	
		VC1=VC2=VC3=VC4=VC5=VC6				V
过放检测电压	V_{OD}	= 3.7V	V _{OD} -	V_{OD}	V _{OD} +	
		VC7=3.7V→2.0V	0.030		0.030	
		VC1=VC2=VC3=VC4=VC5=VC6			V _{ODR} +	V
过放解除电压	Vodr	= 3.7V	Vodr -	Vodr		
		VC7=2.0→3.7V	0. 030		0. 030	
充电过温检测温度	T _{COT} *2	V _{DD} =24.9V,NTC=103AT B=3435	Тсот-3	Тсот	Тсот+3	°C
充电过温保护解除迟	Т			-		°C
滞温度	Тсотк			5		
放电过温检测温度	T _{DOT} *2	V _{DD} =24.9V,NTC=103AT B=3435	Трот-3	T _{DOT}	Трот+3	°C
放电过温保护解除迟	T_{DOTR}			5		°C
滞温度	IDOIR					
充电低温检测温度	Тсит	V _{DD} =24.9V,NTC=103AT B=3435	Тсит-3	T _{CUT}	T _{CUT} +3	°C
充电低温保护解除迟	T _{CUTR}			5		°C
滞温度	TCOIR					
放电低温检测温度	T _{DUT}	V _{DD} =24.9V,NTC=103AT B=3435	Трит-3	T_DUT	T _{DUT} +3	°C
放电低温保护解除迟	T _{DUTR}			5		°C
滞温度	וטטוא			J		U
DCTRL 端子高电平输	V _{DCTRL}		2.5			V
入电压	V DC FRL		۷.5			v
DCTRL 端子低电平输	\/pc==:				4	V
入电压	VDCTRL				1	V
断线判断电压	Vow			50		mV
延迟时间		•	1			

描述	项目	测试条件	最小值	典型值	最大值	单位
		VC1=VC2=VC3=VC4=VC5=VC6	0.8*		1.2*	
过充保护延时	Toc	= 3.7V	T _{oc}	T _{OC}	Toc	s
		VC7=3.7V→4.5V	100		100	
过充保护重置延时	T _{RESET}			2.5		ms
		VC1=VC2=VC3=VC4=VC5=VC6				
过充保护解除延时	Tocr	= 3.7V		200		ms
		VC7=4.5V→3.7V				
		VC1=VC2=VC3=VC4=VC5=VC6	0.7*		1.3*	
过放保护延时	T _{OD}	= 3.7V	Top	T _{OD}	T _{OD}	S
		VC7=3.7V→2.0V				
		VC1=VC2=VC3=VC4=VC5=VC6				
过放保护解除延时	Todr	= 3.7V		200		ms
休眠延时		VC7=2.0V→3.7V				
休眠延时	T _{SLP}			30		S
充电过温保护延时	Тсот			1.5		S
充电过温保护解除延	T _{COTR}			1.5		s
时						
放电过温保护延时	Трот			1.5		S
放电过温保护解除延	T _{DOTR}			1.5		s
时	_					
充电低温保护延时	T _{CUT}			1.5		S
充电低温保护解除延 时	T _{CUTR}			1.5		S
放电低温保护延时	Трит			1.5		S
放电低温保护解除延	_					
时	T _{DUTR}			1.5		S
断线检测延时	Tow	输入电容=0.1μF			8	S
断线回复延时	Towr			6		S
0V 充电功能			.	l		
0V 充电开始电压	V ₀ V		1.5			V
引脚输出电压						
CO 逻辑低电平输出	00:2			1,000		
电压	CO*3			VSS		V
DO 逻辑高电平输出		V 44.0V		40.5		
电压		V _{DD} >=11.3V		10.6		V
DO 逻辑高电平输出	50	V .44.9V		\/DD		
电压	DO	V _{DD} <11.3V		VDD -0.7		V
DO 逻辑低电平输出	1			VCC		11
电压				VSS		V
驱动电流*4						
CO 端子输出电流	СО	CO端子逻辑高电平				μА

描述	项目	测试条件	最小值	典型值	最大值	单位
		CO端子逻辑低电平		10		μΑ
DO 地区於山山冻	DO	DO 端子逻辑高电平		70		μΑ
DO 端子输出电流	DO	DO 端子逻辑低电平		-680		μΑ


^{*1} 详细保护阈值选择,请参阅选择指南表

^{*2} 充电过温保护温度取决于不同电阻的设定,放电过温保护温度默认为充电过温保护温度+20℃,即充电过温保护温度为 50℃,则放电过温保护温度为 70℃,充放电低温保护温度设置与充放电高温设置一致;

^{*3} CO 端子的输出高电平为高阻态

^{*4} CO、DO 端子输出电流测试的外部电压源为 0.5V

原理框图

功能描述

正常状态

所有电池电压处于过充检测电压(V_{OC})和过放检测电压(V_{OD})之间,且电池温度在工作范围内时,CW1072 处于正常工作状态。

过充电状态

正常状态下,任意一节电池电压高于过充检测电压(V_{oc}),且超过过充保护延迟时间(T_{oc}),CO 端子输出高阻态关断充电MOSFET,停止充电。

过充保护延时时间(T_{OC})内,若所检测电池电压低于过充检测电压(V_{OC})的时间超过过充重置延时(T_{RESET}),则过充累积的延迟时间(T_{OC})重置。否则,电池电压的下降则认为是无关的干扰从而被屏蔽。

过充电保护解除条件:

所有电池电压低于过充解除电压(VocR)且超过过充解除延迟时间(TocR)。

过放电状态

正常状态下,任意一节电池电压低于过放保护电压(V_{OD}),且超过过放保护延迟时间(T_{OD}),DO 端子输出低电平关断放电 MOSFET,停止放电。

过放电保护解除条件:

所有电池电压高于过放解除电压(V_{ODR})且维持超过过放解除延时(T_{ODR})。

温度保护功能

CW1072 通过一颗 NTC 电阻实现充放电过温保护以及充电低温保护功能,ROT、RUT 端子检测 NTC 电阻电压,若检测电压达到内部比较阈值,且维持充放电温度保护延时时间,温度保护功能触发。

充电温度保护后,充电 MOSFET 关断,停止充电;

放电温度保护后,放电 MOSFET 关断,停止放电;

充电温度保护解除条件:

温度回到充电解除温度以内,且时间超过充电温度解除延时,充电温度保护解除。

放电温度保护解除条件:

温度回到放电解除温度以内,且时间超过放电温度解除延时,放电温度保护解除。

过温阈值设置步骤

- 1. 选择 NTC 电阻, CW1072 推荐 NTC 电阻型号为: 103AT, B=3435;
- 2. 确定充电过温保护阈值,如:50°C;
- 3. 根据 NTC 电阻的温度曲线图,找到 50°C 对应的电阻值,如 3.5kΩ;
- 4. 使用 10 倍阻值的正常电阻连接至 ROT 端子,即 35kΩ;
- 5. 确定充电过温保护阈值后,放电过温保护阈值默认为 50° C+ 20° C = 70° C;
- 6. 充电低温保护设置使用相同的方法,但电阻需连接至 RUT 端子;
- 7. 详细电路请参考应用电路,通过选择电阻来设定合适的保护温度;

CW1072 可选放电低温保护功能,放电低温保护温度设置默认为充电低温保护温度-20℃。

低功耗状态

CW1072 进入过放保护状态,并超过休眠延时时间(T_{SLP}),则 CW1072 进入低功耗状态。DO 端子保持低电平,维持放电 MOSFET 关闭; CO 端子保持低电平状态,维持充电 MOSFET 开启。

休眠状态解除条件:

电池电压高于过放解除电压(VodR)且维持超过过放解除延时(TodR)。

断线保护功能

CW1072 包含断线检测和保护功能。

正常状态下,当电池包中任意一节电池的检测线断开,且维持超过断线检测延时(T_{OW}),DO 端子输出低电平关断放电 MOSFET; CO 输出高阻态关断充电 MOSFET; CW1072 进入断线保护状态。

断线保护状态解除条件:

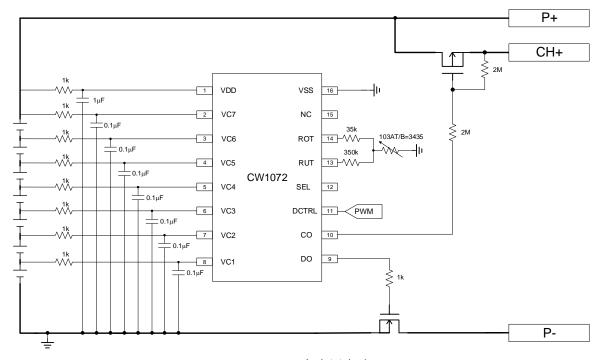
检测线重新连接,并维持超过断线解除延时(Town),断线保护状态解除。

ov 充电(允许)

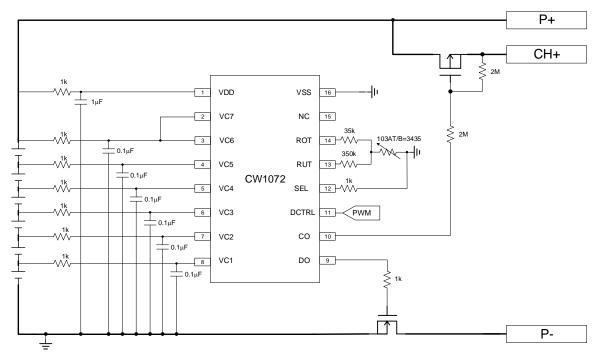
CW1072 支持电池 0V 充电功能,即当电池电压低于芯片正常工作电压时,电池包可正常充电。 CW1072 的 VDD 电压高于 0V 充电开始电压(Vov),连接充电器且充电器输出电压高于充电 MOSFET 开启阈值,电池包开始充电。

串数选择

SEL 端子是电池串联数选择端子,可通过它来选择电池串联数量。

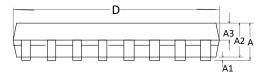

SEL 端子接地,则 CW1072 保护的电池串数为 6 串, 6 串电池应用时,VC7 端子与 VC6 端子短接; SEL 端子悬空,则 CW1072 保护的电池串数为 7 串;

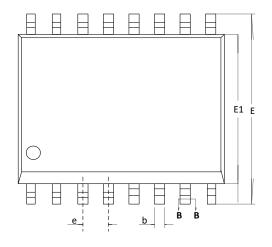
PWM 控制驱动


CW1072 内置 MOS 驱动功能,支持外部 PWM 信号可通过 DCTRL 端子控制 DO 端子输出。正常状态下,DCTRL 端子输入电压高于 2.5V,DO 端子输出低电平; DCTRL 端子输入电压低于 1V,DO 端子输出高电平。不需要外部信号控制 DO 端子时,DCTRL 端子串联电阻接地;

当 CW1072 芯片内部保护状态发生,如过放、过流、放电过温以及断线保护,芯片的保护动作会优先执行。

参考应用电路


CW1072 7 串应用电路


CW1072 6 串应用电路

封装图和封装尺寸

SSOP16 Package

CVMPOL		MILLIMETER			
SYMBOL	MIN.	NOM.	MAX.		
А			1.75		
A1	0.10		0.225		
A2	1.30	1.40	1.50		
А3	0.50	0.60	0.70		
b	0.24		0.30		
b1	0.23	0.254	0.28		
С	0.20		0.25		
c1	0.19	0.20	0.21		
D	4.80	4.90	5.00		
E	5.80	6.00	6.20		
E1	3.80		4.00		
е		0.635BSC			
h	0.25		0.50		
L	0.50	0.65	0.80		
L1	1.05BSC				
θ	0		8°		

版本履历

日期	版本	修改项目	修改	批准
2018-10-22	1.0	新版说明书发布	曾抗	周军

声明

赛微微电子公司为提高产品的可靠性、功能或设计,保留对其做出变动的权利,恕不另行通知。对于本文描述的任何产品和电路应用中出现的问题,赛微微电子公司不承担任何责任;不转让其专利权下的任何许可证,也不转让其他权利。

若无赛微微电子公司总裁正式的书面授权,其产品不可作为生命支持设备或系统中的关键器件。

具体如下:

- 生命支持器件或系统是指如下的设备或系统: (a)用于外科植入人体,或(b)支持或维持生命,以及即使依照标示中的使用说明进行正确操作,但若操作失败,仍将对使用者造成严重的伤害。
- 2. 关键器件是指生命支持设备或系统中,由 于该器件的失效会导致整个生命支持设备 或系统的失效,或是影响其安全性及使用 效果。

单击下面可查看定价,库存,交付和生命周期等信息

>>Cellwise