

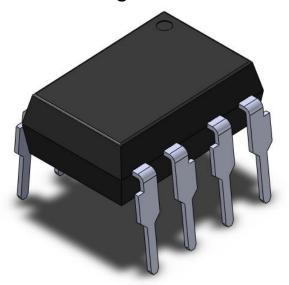
6N135, 6N136, CT4502, CT4503

1Mbit/s High Speed Phototransistor Optocoupler

Features

- High speed 1MBit/s
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed CTR performance from 0°C to 70°C
- Wide operating temperature range of -55°C to 100°C
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950

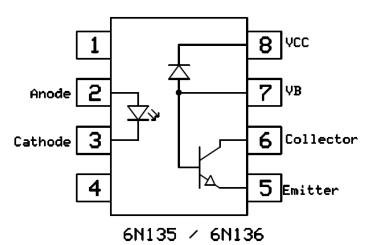
Applications


- Line receivers
- Telecommunication equipment
- High speed logic ground isolation
- Feedback loop in switch-mode power supplies
- Home appliances

Description

The 6N135, 6N136, CT4502 and CT4503 devices each consist of an infrared emitting diode, optically coupled to a high speed photo detector transistor. A separate connection for the photodiode bias and output-transistor collector increase the speed by several orders of magnitude over conventional phototransistor couplers by reducing the base-collector capacitance of the input transistor.

The devices are packaged in an 8-pin DIP package and also available in gullwing (400mil) and surface mount lead forming.


Package Outline

Note: Different bending options available. See package

dimension.

Schematic

Pin 7 not connected for CT4502/CT4503

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	5000	V _{RMS}	1
Topr	Operating temperature	-55 ~ +100	°C	
Тѕтс	Storage temperature	-55 ~ +125	°C	
Tsol	Soldering temperature	260	°C 2	
Emitter		·		
l _F	Forward current	25	mA	
I _{FP}	Peak forward current (50% duty, 1ms P.W)	50	mA	
I _{F(TRANS)}	Peak transient current (≤1µs P.W,300pps)	1	А	
V _R	Reverse voltage	5	V	
P _D	Power dissipation	40	mW	
Detector		·		
P _D	Power dissipation	100	mW	
V _{EBR}	Emitter-Base reverse voltage	5	V	
lΒ	Base current	5	mA	
I _{O(AVG)}	Average Output current	8	mA	
I _{O (Peak)}	Peak Output current	16	mA	
Vo	Output voltage	-0.5 to 20	V	
Vcc	Supply voltage	-0.5 to 30	V	

Notes

- 1. AC for 1 minute, $RH = 40 \sim 60\%$.
- 2. For 10 second peak

Electrical Characteristics

 $T_A = 0$ - 70°C (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Max	Units	Notes
VF	Forward voltage	IF = 16mA	-	1.45	1.6	V	
VR	Reverse Voltage	IR = 10μA	5.0	-	-	V	
ΔV _F /ΔT _A	Temperature coefficient of forward voltage	IF =16mA	-	-1.8	-	mV/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур	Мах	Units	Notes
	Logic High Output Current	I _F =0mA, V _O =V _{CC} =5.5V,		0.001	0.5	μА	
		T _A =25°C					
Іон		I _F =0mA, V _O =V _{CC} =15V,		0.01	1		
		T _A =25°C	-				
		I _F =0mA, V _O =V _{CC} =15V	-	-	50		
loo	Logic Low Supply Current	I _F =16mA, V _O =Open,	-	140	200	μA	
ICCL		Vcc=15V					
	Logic High Supply Current	I _F =0mA, V _O =Open, V _{CC} =15V,	-	0.01	1		
Іссн		T _A =25°C				۸	
ICCH		IF=0mA, VO=Open,			2	- μA	
		VCC=15V	-	-			

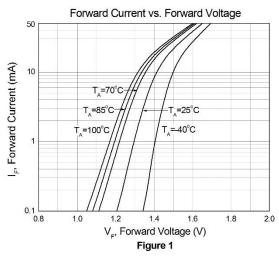
Electrical Characteristics

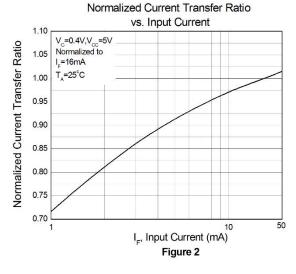
 $T_A = 0$ - 70°C (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$

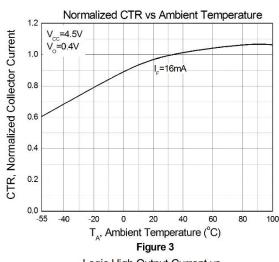
Transfer Characteristics

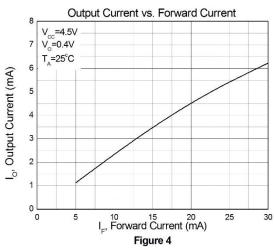
Symbol	Paramete	ers	Test Conditions	Min	Тур	Max	Units	Notes
	 	6N135		7	-	50		
		6N136	I _F =16mA, V _O =0.4V,V _{CC} =4.5V,					
		CT4502	T _A =25°C	19	-	50		
CTR	Current Transfer	CT4503					%	
CIK	Ratio	6N135		5	-	-	70	
		6N136] 		-			
		CT4502	I _F =16mA, V _O =0.5V, V _{CC} =4.5V	15		-		
		CT4503						
	Logic Low Output CT4 Voltage 6N1 6N1	6N12E	I _F =16mA,I _O =1.1mA,V _{CC} =4.5V,	-	0.18	0.4		
		011133	T _A =25°C					
		6N136	I _F =16mA, I _O =3mA, V _{CC} =4.5V,					
		CT4502	T _A =25°C	-	0.18 0.4	0.4		
Vol		CT4503	TA-20 0				V	
VOL		6N135	I _F =16mA, I _O =0.8mA,	_	_	0.5	v	
		011100	V _{CC} =4.5V					
		6N136	I _F =16mA, I _O =2.4mA,			0.5		
		CT4502	V _{CC} =4.5V	-	-			
		CT4503	VCC-4.0 V					

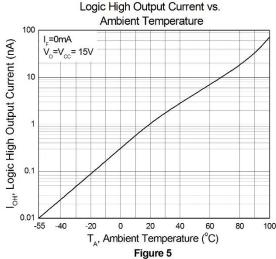
Electrical Characteristics

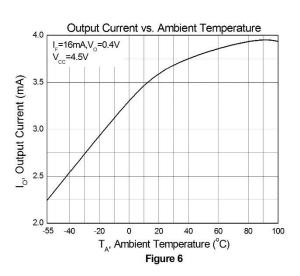

 $T_A = 0$ - 70°C (unless otherwise specified). Typical values are measured at $T_A = 25^{\circ}$ C and $V_{CC} = 5V$

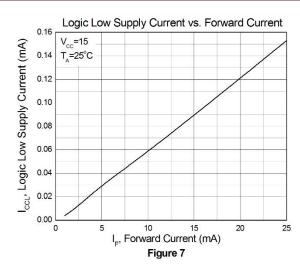

Switching Characteristics

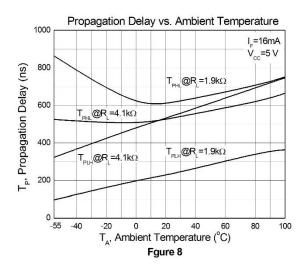

Symbol	Paramete	ers	Test Conditions	Min	Тур	Max	Units	Notes
	Propagation Delay Time Logic High to Logic Low	6N135	R _L =4.1KΩ, T _{A=} 25°C	-	0.35	1.5		
		GIVIO	R _L =4.1KΩ	-	-	2.0		
T _{PHL}		6N136	R _L =1.9KΩ, T _A =25°C	-	0.35	0.8	μs	
		CT4502 CT4503	R _L =1.9KΩ	-	-	1.0		
	5 5	CNIAGE	R _L =4.1KΩ, T _{A=} 25°C	-	0.5	1.5		
	Propagation Delay	6N135	R _L =4.1KΩ	-	-	2.0		
T _{PLH}	Time Logic Low to	6N136	R _L =1.9KΩ, T _A =25°C	-	0.3	0.8	μs	
	Logic High	CT4502 CT4503	R _L =1.9KΩ	-	-	1.0		
	Common Mode Transient Immunity at Logic High	6N135	I _F = 0mA , V _{CM} =10Vp-p,	1,000				
			R _L =4.1KΩ, T _A =25°C		-	-		
СМн		6N136	I _F = 0mA , V _{CM} =10Vp-p,	1,000		-	V/µs	
CIVIH		CT4502	R _L =1.9KΩ, T _A =25°C		-			
		I _F = 0mA , V _{CM} =1500Vp-p,	15,000	20,000]		
		C14303	R _L =1.9KΩ, T _A =25°C	13,000	20,000			
		6N135 R _L =4.1KΩ, T _A =25°C	I _F = 16mA , V _{CM} =10Vp-p,	4.000		-		
	Common Mode Transient Immunity at Logic Low		R _L =4.1KΩ, T _A =25°C	1,000	-			
CML		6N136	I _F = 16mA , V _{CM} =10Vp-p,	1,000			V/µs	
CIVIL		CT4502	R _L =1.9KΩ, T _A =25°C		-	•	v/µS	
		CT4503	I _F = 16mA , V _{CM} =1500Vp-p,	15,000	20,000			
		014303	R _L =1.9KΩ, T _A =25°C					

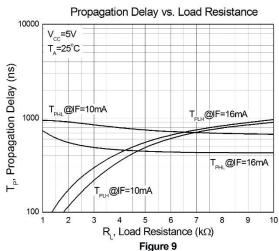


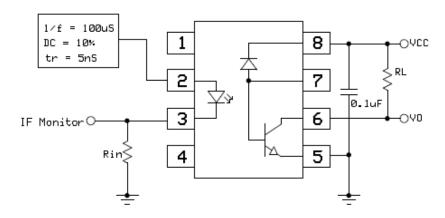

Typical Characteristic Curves

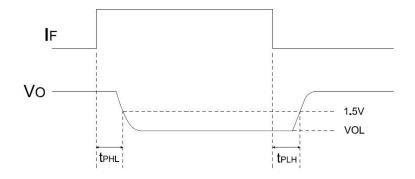




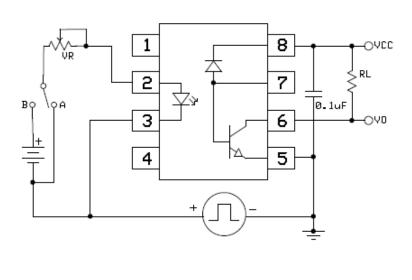








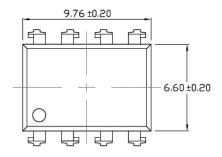
Test Circuits



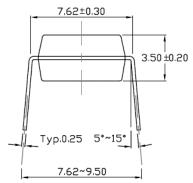


Switching Time Test Circuit

Test Circuits

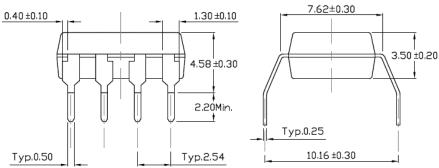


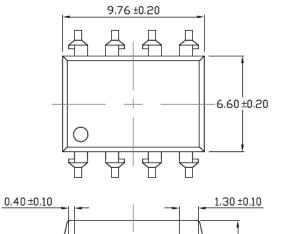
CMR Test Circuit

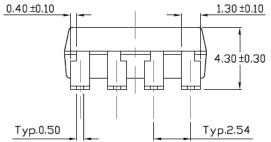


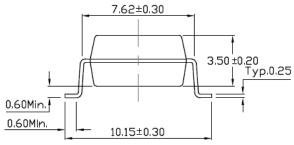
Package Dimension Dimensions in mm unless otherwise stated

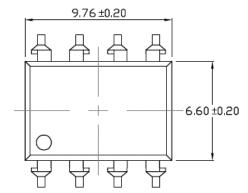
Standard DIP - Through Hole

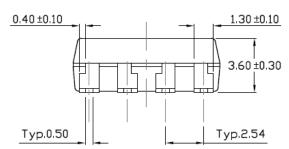


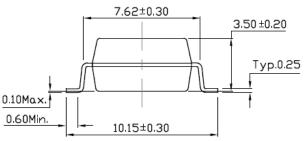

Gullwing (400mil) Lead Forming – Through Hole (M Type)



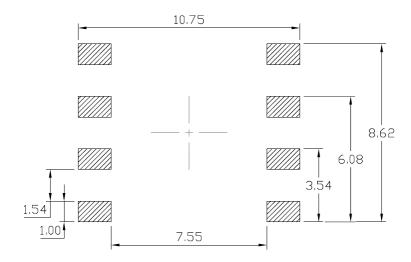


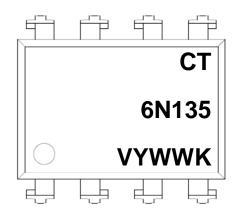

Surface Mount Lead Forming (S Type)

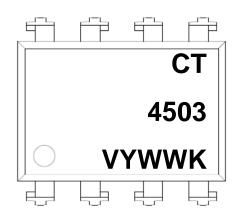




Surface Mount (Low Profile) Lead Forming (SL Type)







Recommended Solder Mask Dimensions in mm unless otherwise stated

Device Marking

CT : Denotes "CT Micro"

6N135 : Product Number 4503 : Product Number

V : VDE OptionY : Fiscal YearWW : Work Week

K : Production Code

Ordering Information

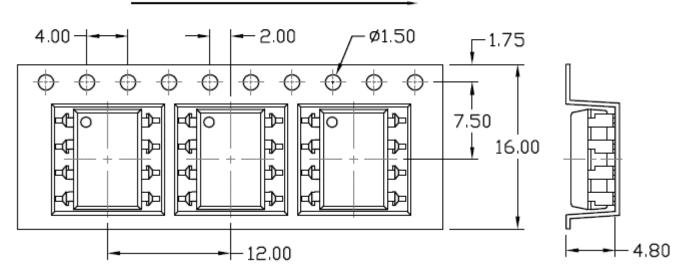
6N13X(V)(Y)(Z) or CT450X(V)(Y)(Z)

X = Part No. (5,6 for 6N13X series), (2,3 for CT450X series)

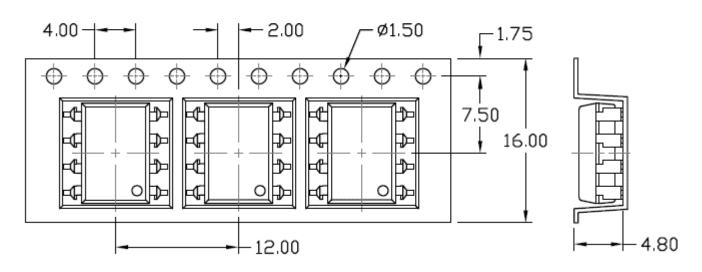
V = VDE Option (V or None)

Y = Lead form option (S, SL, M or none)

Z = Tape and reel option (T1, T2 or none)


Option	Option Description	
None	None Standard 8 Pin Dip	
М	M Gullwing (400mil) Lead Forming	
S(T1)	S(T1) Surface Mount Lead Forming – With Option 1 Taping	
S(T2)	S(T2) Surface Mount Lead Forming – With Option 2 Taping	
SL(T1)	SL(T1) Surface Mount (Low Profile) Lead Forming– With Option 1 Taping	
SL(T2) Surface Mount (Low Profile) Lead Forming– With Option 2 Taping		1000 Units/Reel

Carrier Tape Specifications Dimensions in mm unless otherwise stated

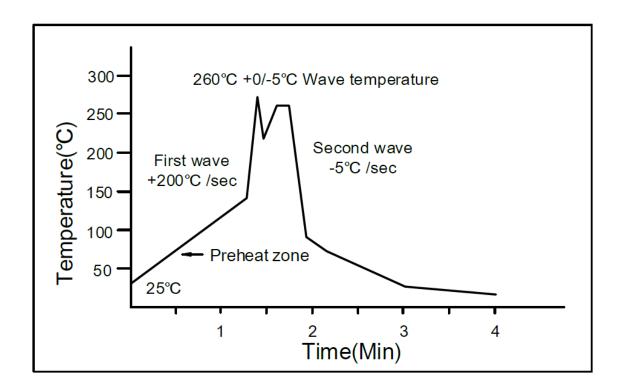

Option S(T1) & SL(T1)

Input Direction

Option S(T2) & SL(T2)

Input Direction

Wave soldering (follow the JEDEC standard JESD22-A111)


One time soldering is recommended within the condition of temperature.

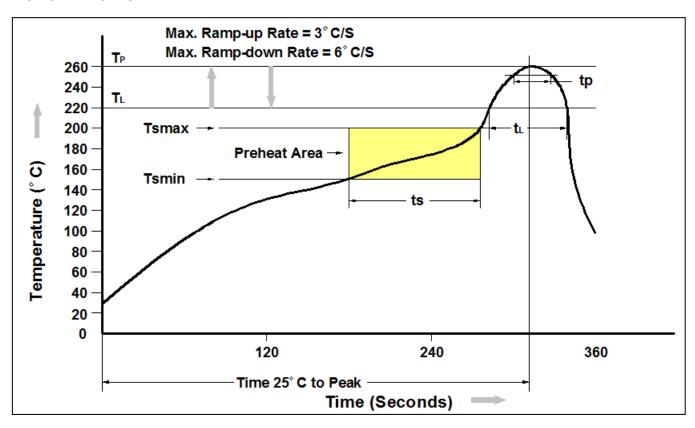
Temperature: 260+0/-5°C.

Time: 10 sec.

Preheat temperature:25 to 140°C.

Preheat time: 30 to 80 sec.

Iron soldering (follow the standard MIL-STD 202G, Method 210F)


Allow single lead soldering in every single process.

One time soldering is recommended. Temperature: 350+±10°C

Time: 5 sec max.

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150°C
Temperature Max. (Tsmax)	200°C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t∟ to t _P)	3°C/second max.
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	260°C +0°C / -5°C
Time (t _P) within 5°C of 260°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second max
Time 25°C to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

单击下面可查看定价,库存,交付和生命周期等信息

>>CT-MICRO(兆龙科技)