

Features

- Peak Output Current : IoP = ±0.6A (max)
- Threshold Input Current: IFLH = 5 mA (max)
- Common mode transient immunity : ±10kV/µs (min)
- Pb free and RoHS compliant.
- Regulatory Approvals
 - UL UL1577 (E364000)
 - VDE EN60747-5-5(VDE0884-5)
 - CQC GB4943.1, GB8898
 - IEC60065, IEC60950

Applications

- Isolated IGBT/Power MOSFET gate drive
- Industrial Inverter
- AC brushless and DC motor drives
- Induction Heating

Description

The CTS701 consists of a GaAsP LED optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices.

Truth Table

LED	Vcc-V _{EE}	Vcc-V _{EE}	Output
	Positive Going	Negative Going	
Off	0 to 30 V	0 to 30V	Low
On	0 to 6.5V	0 to 6V	Low
On	6.5 to 8.3V	6 to 8V	Transition
On	8.3 to 30V	8 to 30V	High

Absolute Maximum Rating at 25°C

Symbol	Parameters	Ratings	Units	Notes
Viso	Isolation voltage	5000	VRMS	1
Topr	Operating temperature	-40 ~ +100	٥C	
Тѕтс	Storage temperature	-55 ~ +125	٥C	
Tsol	Soldering temperature	260	٥C	2
f _{OPR}	Operating Frequency	25	kHz	3
Emitter				
lF	Forward current	25	mA	
I _{FP}	Peak forward current (P _w ≤1µs, 300pps)	1	А	
VR	Reverse voltage	5	V	
PD	Input Power Dissipation	40	mW	
Detector				
Pc	Power dissipation	160	mW	
V _{O(PEAK)}	Peak Output Voltage	35	V	
V _{CC}	Supply Voltage	35	V	
Іорн	Output High Peak Current	-0.6	А	4
I _{OPL}	Output Low Peak Current	0.6	А	4

Notes

- 1. AC for 1 minute, $RH = 40 \sim 60\%$.
- 2. For 10 second peak
- 3. Exponential Waveform, IO(PEAK) \leq |0.3A|, Pulse Width \leq 2us
- 4. Pulse Width $\leq 2uS$, f $\leq 15kHz$

Recommended Operating Conditions

Characteristics	Symbol	Min.	Тур.	Max.	Unit
Input Current	I _{F(ON)}	7.5		10	Ma
Input Voltage	VF(OFF)	0		0.8	V
Supply Voltage	V _{CC}	10		30	V
Peak Output Current	IOPH/IOPL			±0.2	А
Operating Temperature	Topr	-40		100	°C

Electrical Characteristics

Typical values are measured at Vcc=30V, V_{EE}= Gnd, T_A = -40°C to 100°C (unless otherwise specified)

Emitter Characteristics

Symbol	Parameters	Test Conditions	Min	Тур*	Max	Units	Notes
VF	Forward Voltage	I _F = 5mA	-	1.4	1.7	V	
VR	Reverse Voltage	I _R = 10μΑ	5.0	-	-	V	
A)/-/AT.	Temperature coefficient of forward	L. EmA		17		m\//%C	
Δν _γ /Δια	voltage		-	-1.7	-	111V/°C	

Detector Characteristics

Symbol	Parameters	Test Conditions	Min	Тур*	Max	Units	Notes
ICCL	Logic Low Supply Current	$V_F = 0$ to 0.8V, $V_O = Open$	-	1.95	3	~ ^	
Іссн	Logic High Supply Current	I_{F} = 7mA to 10mA, V_{O} = Open	-	1.98	3	ШA	

Transfer Characteristics

Symbol	Parameters	Test Conditions	Min	Тур*	Max	Units	Notes
V _{OH}	High Level Output Voltage	I _F = 5mA, I _O = -100mA 6.0 9.7		-	V		
Vol	Low Level Output Voltage	Vcc= 10V, Io= 100mA	-	0.28	1.0	v	
IOPH High Level Output Current	Lligh Lovel Output Current	V _{CC} = 15V, V ₆₋₅ = 4V, I _F = 5mA	-	-1.1	-0.2	٨	
	High Level Output Current	V_{CC} = 15V, V_{6-5} = 10V, I_{F} = 5mA		-1.8	-0.4	A	
IOPL Low Level Output Current		V_{CC} = 15V, V_{6-5} = 2V, I_{F} = 0mA	0.2	0.66	-	٨	
	V_{CC} = 15V, V_{6-5} = 10V, I_{F} = 0mA	0.4	1.34	-	A		
IFLH	Input Threshold Current	Vo> 1V, Vcc= 15V	-	3.8	5	mA	
VFHL	Input Threshold Voltage	Vo< 1V, Vcc= 15V	0.8	-	-	V	

(*): All typical value are at Ta = 25°c

Electrical Characteristics

Typical values are measured at Vcc=30V, V_{EE} = Gnd, T_A = -40°C to 100°C (unless otherwise specified)

Switching Characteristics

Symbol	Parameters	Test C	onditions	Min	Тур	Max	Units	Notes
TPHL	High to Low Propagation Delay	_		-	110	200	ns	
TPLH	Low to High Propagation Delay			-	120	200	ns	
Pwd	Pulse Width Distortion	I _F = 7 to 16m	A, $C_L=3nF$,	-	-	45	ns	
tрsк	Propagation Delay Skew	RL= 47Ω		-	-	38	ns	
tr	Rise Time			-	30	100	ns	
tr	Fall Time			-	15	60	ns	
СМн	Common Mode Transient High	V _{CC} = 30V,	I _F = 7 to 16mA V _{O(min)} =26V	-10	-	-	kV/μs	
CM∟	Common Mode Transient Low	$V_{CM}= 25^{\circ}C,$	IF= 0mA V _{O(max)} =1V	10	-	-	kV/µs	

(*): All typical value are at Ta = 25°c

Typical Performance Curve

CTS701

0.6A MOSFET/IGBT Gate Driver Optocoupler

Test Circuits

Fig. 11 Test Circuit : IOPH

Fig. 14 Test circuit : VoL

Fig. 15 Test circuit : I_{CCH}

Fig. 16 Test circuit : ICCL

Fig. 17 Test circuit: IFLH

Fig. 18 Test circuit: VFHL

Fig. 19 Test circuit and waveforms for $t_{\text{PHL}},\,t_{\text{PLH}},\,t_{\text{r}},\,\text{and}\,t_{\text{f}}$

Package Dimension Dimensions in mm unless otherwise stated

Surface Mount Lead Forming

Surface Mount (Gullwing) Lead Forming (SM Type)

Device Marking

Note:

CT	: Denotes "CT Micro"
701	: Part Number
Y	: Fiscal Year
WW	: Work Week
K	: Manufacturing Code

Ordering Information

CTS701(Y)(Z)

- Y = Lead form option (SM or none)
- Z = Tape and reel option (T1, T2)

Option	Description	Quantity
(T1)	Option 1 Taping	1500 Units/Reel
(T2)	Option 2 Taping	1500 Units/Reel
(SM)(T1)	Option 1 Taping	1500 Units/Reel
(SM)(T2)	Option 2 Taping	1500 Units/Reel

Reflow Profile

Profile Feature	Pb-Free Assembly Profile
Temperature Min. (Tsmin)	150 <i>°</i> C
Temperature Max. (Tsmax)	200 <i>°</i> C
Time (ts) from (Tsmin to Tsmax)	60-120 seconds
Ramp-up Rate (t_L to t_P)	3℃/second max.
Liquidous Temperature (TL)	217℃
Time (t _L) Maintained Above (T_L)	60 – 150 seconds
Peak Body Package Temperature	260 ℃ +0 ℃ / -5 ℃
Time (t⊳) within 5 ℃ of 260 ℃	30 seconds
Ramp-down Rate (TP to TL)	6°C/second max
Time 25 ℃ to Peak Temperature	8 minutes max.

DISCLAIMER

CT MICRO RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. CT MICRO DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

CT MICRO ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT EXPRESS WRITTEN APPROVAL OF CT MICRO INTERNATIONAL CORPORATION.

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instruction for use provided in the labelling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

单击下面可查看定价,库存,交付和生命周期等信息

>>CT-MICRO(兆龙科技)