

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

The following document contains information on Cypress products. The document has the ordering part numbering with the prefix "S". Cypress will offer these products to new and existing customers with the updated ordering part number (updated last digit).

How to Check the Ordering Part Number

- 1. Go to www.cypress.com/pcn.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

32-bit ARM® Cortex®-M0+ FM0+ Microcontroller

The FM0+ family of Flexible Microcontrollers is the industry's most energy-efficient 32-bit ARM® Cortex®-M0+ based MCUs. This family of MCUs is designed for ultra-low-power and cost-sensitive applications such as white goods, sensors, meters, HMI systems, power tools and Internet of Things (IoT) battery-powered or wearable devices.

This family of ultra-low-power MCUs features an industry-leading 35 μ A/CoreMark® score and 40 μ A/MHz Active Power consumption.

The S6E1C Series is a series of highly integrated 32-bit microcontrollers designed for embedded controllers aiming at low power consumption and low cost. This series has the ARM Cortex-M0+ Processor with on-chip Flash memory and SRAM, and consists of peripheral functions such as various timers, ADC and communication interfaces (UART, CSIO (SPI), I²C, I²S, Smart Card, and USB). The products which are described in this data sheet are placed into TYPE3-M0+ product categories in "FM0+ Family Peripheral Manual".

Features

Ultra Low Power MCU Subsystem

- ■40 MHz ARM Cortex-M0+ CPU with 1.65 V to 3.6 V operating voltage
- ■Maximum operating frequency: 40.8 MHz
- Nested Vectored Interrupt Controller (NVIC): 1 non-maskable interrupt (NMI) and 24 peripheral interrupt with 4 selectable interrupt priority levels
- ■24-bit System timer (Sys Tick): System timer for OS task management
- ■Up to 128 KB Flash, 16 KB SRAM
- Descriptor System Transfer Controller (DSTC)
- ■Industry's most efficient 35 µA/CoreMark Score
- Ultra-low-power consumption: Active 40 µA/MHz and Standby 0.6 µA
- Fast wake-up from standby mode (execute from Flash): 20 µs (Typ)

Digital Subsystem

- ■Up to 8x Base Timers
- ■1x Dual Timer. 1x Watch Counter
- ■Up to 6x Multi-Function Serial (MFS) interfaces configurable as SPI, UART, I²C
- ■Up to 1x USB, up to 2x I²S, up to 2x HDMI-CEC, up to 1x Smart Card interfaces

Analog Subsystem

- ■1x 12-bit, 1-Msps ADCs with an 8-channel multiplexer input
- ■1% high precision internal oscillator

Package Options

- ■32-/48-/64-pin LQFP
- ■32-/48-/64-pin QFN
- ■30-pin WLCSP

Low-Power Consumption Modes

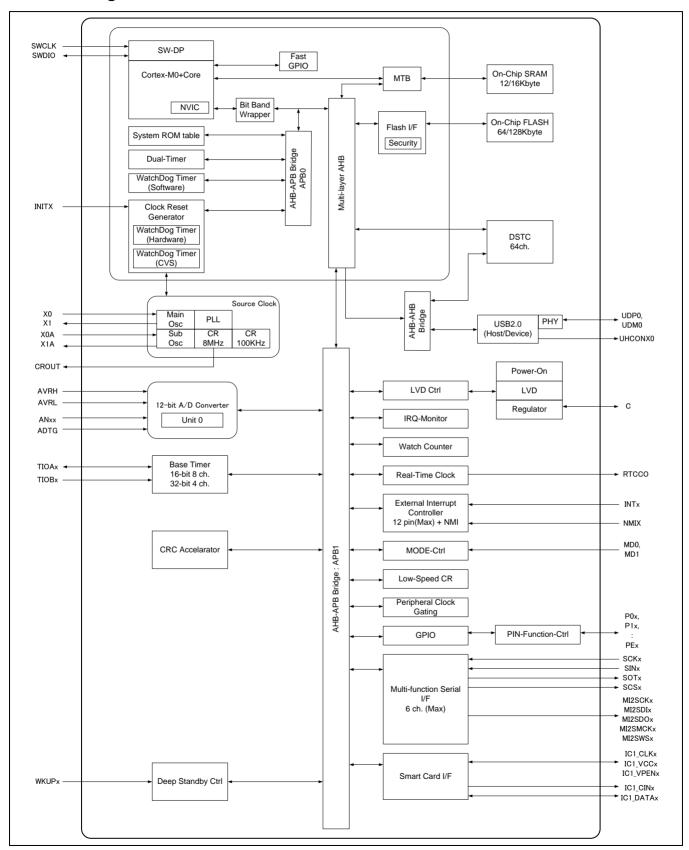
- ■This series has six low-power consumption modes:
- □ Sleep
- □ Timer
- □ RTC
- □ Stop
- Deep standby RTC (selectable between keeping the value of RAM and not)
- Deep standby Stop (selectable between keeping the value of RAM and not)

Ecosystem for Cypress FM0+ MCUs

Cypress provides a wealth of data at www.cypress.com to help you to select the right MCU for your design, and to help you to quickly and effectively integrate the device into your design. Following is an abbreviated list for FM0+ MCUs:

- Overview: Product Portfolio, Product Roadmap
- Product Selectors: FM0+ MCUs
- Application notes: Cypress offers a large number of FM0+ application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FM0+ family of MCUs are:
 - □ AN210985 FM0+ Getting Started with FM0+
 Development: AN210985 introduces you to the FM0+
 family of 32-bit general-purpose microcontrollers. The
 FM0+ family is based on the ARM® Cortex®-M0+
 processor core, ideal for ultra-low-power designs. This
 note provides an overview of hardware features and
 capabilities, firmware development, and the multitude of
 technical resources available to you. This application note
 uses the FM0+ S6E1B8-Series Starter Kit as an example.
 - □ AN203277 FM 32-Bit Microcontroller Family Hardware Design Considerations: This application note reviews several topics for designing a hardware system around FM0+, FM3, and FM4 family MCUs. Subjects include power system, reset, crystal, and other pin connections, and programming and debugging interfaces.

- □ AN205411 FM0+ IEC60730 Class B Self-Test Library :
 - This document covers how to use and implement the library functions provided. It will first show the requirement of IEC60730 Class B, and then explain how it can be implemented. At last an example is given to show how to integrate test functions into a real system.
- AN202487 Differences Among FM0+, FM3, and FM4 32-Bit Microcontrollers: Highlights the peripheral differences in Cypress's FM family MCUs. It provides dedicated sections for each peripheral and contains lists, tables, and descriptions of peripheral feature and register differences.
- □ AN204438 How to Setup Flash Security for FM0+, FM3 and FM4 Families: This application note describes how to setup the Flash Security for FM0+, FM3, and FM4 devices
- Development kits:
 - □ FM0-V48-S6E1A1 ARM® Cortex®-M0+ FM0+ MCU Evaluation Board
 - □ FM0-64L-S6E1C3 ARM® Cortex®-M0+ MCU Starter Kit with USB and Digital Audio Interface
- Peripheral Manuals


Table of Contents

Features	1
1. Block Diagram	4
2. Product Lineup	5
2.1 Package Dependent Features	6
2.2 Packages	6
3. Product Features in Detail	7
4. Pin Assignment	10
5. List of Pin Functions	
6. I/O Circuit Type	26
7. Handling Precautions	
7.1 Precautions for Product Design	
7.2 Precautions for Package Mounting	
7.3 Precautions for Use Environment	
8. Handling Devices	
9. Memory Map	
10. Pin Status in Each CPU State	
11. Electrical Characteristics	
11.1 Absolute Maximum Ratings	
11.2 Recommended Operating Conditions	
11.3 DC Characteristics	
11.3.1 Current Rating	
11.3.2 Pin Characteristics	
11.4 AC Characteristics	
11.4.1 Main Clock Input Characteristics	
11.4.2 Sub Clock Input Characteristics	
11.4.3 Built-in CR Oscillation Characteristics	54
11.4.4 Operating Conditions of Main PLL (In the Case of	\
Using the Main Clock as the Input Clock of the PLI	_)55
11.4.5 Operating Conditions of Main PLL (In the Case of	
Using the Built-in High-Speed CR Clock as the Inp	
Clock of the Main PLL)	
11.4.6 Reset Input Characteristics	
11.4.7 Power-on Reset Timing	
11.4.8 Base Timer Input Timing	
11.4.9 CSIO/SPI/UART Timing	
11.4.10 External Input Timing	
11.4.11 I ² C Timing	
11.4.12 I ² S Timing (MFS-I2S Timing)	
11.4.13 Smart Card Interface Characteristics	
11.4.14 SW-DP Timing	
11.5 12-bit A/D Converter	
11.6 USB Characteristics	
11.7 Low-Voltage Detection Characteristics	
11.7.1 Low-Voltage Detection Reset	
11.7.2 Low-Voltage Detection Interrupt	
11.8 Flash Memory Write/Erase Characteristics	
11.9 Return Time from Low-Power Consumption Mode	
11.9.1 Return Factor: Interrupt/WKUP	92

11.9.2	2 Return Factor: Reset	94
12. 0	rdering Information	96
13. A	cronyms	97
	ackage Dimensions	
15. Eı	rata	106
15.1	Part Numbers Affected	106
15.2	Qualification Status	106
15.3	Errata Summary	106
Docu	ment History	108
Sales	s, Solutions, and Legal Information	109

1. Block Diagram

2. Product Lineup

Memory Size

Product name	S6E1C11 S6E1C31	S6E1C12 S6E1C32
On-chip Flash memory	64 Kbytes	128 Kbytes
On-chip SRAM	12 Kbytes	16 Kbytes

Function

	Function Name	S6E1C1	S6E1C3			
0011		Cortex	k-M0+			
CPU	Frequency	40.8 MHz				
Power sup	ply voltage range	1.65 V t	to 3.6 V			
USB2.0 (C	Device/Host)	-	1 unit			
DSTC		64	ch.			
Base Time (PWC/Rele	er pad timer/PWM/PPG)	8 ch.	(Max)			
Dual Time	r	1 unit				
Real-time	Clock	1 u	ınit			
Watch Cou	unter	1 u	ınit			
CRC Acce	lerator	Υe	es			
Watchdog	timer	1 ch. (SW) +	- 1 ch. (HW)			
CSV (Cloc	k Supervisor)	Ye	es			
LVD (Low-	voltage Detection)	2 (ch.			
Duilt in OD	High-speed	8 MHz				
Built-in CR	Low-speed	100 kHz (Typ)				
Debug Fur	nction	SW-DP				
Unique ID		Yes				

Note:

- Because of package pin limitations, not all functions within the device can be brought out to external pins. You must carefully
 work out the pin allocation needed for your design.
 You must use the port relocate function of the I/O port according to your function use.
- See "11. Electrical Characteristics 11.4 AC Characteristics 11.4.3 Built-in CR Oscillation Characteristics" for accuracy of built-in CR.

2.1 Package Dependent Features

	Package					
Feature	30 WLCSP 32 LQFP 32 QFN		48 LQFP 48 QFN	64 LQFP 64 QFN		
Pin count	30	32	48	64		
Multi-function Serial Interface	4 ch. (Max) Ch.0/1/3 without FIFO Ch. 6 with FIFO	4 ch. (Max) Ch.0/1/3 without FIFO Ch. 6 with FIFO	6 ch. (Max) Ch.0/1/3 without FIFO Ch.4/6/7 with FIFO	6 ch. (Max) Ch.0/1/3 without FIFO Ch.4/6/7 with FIFO		
(UART/CSIO/I ² C/I ² S)	l ² S	: No	I ² S: 1 ch (Max) Ch. 6 with FIFO	I ² S: 2 ch (Max) Ch. 4/6 with FIFO		
External Interrupt		s (Max), II x 1	9 pins (Max), NMI x 1	12 pins (Max), NMI x 1		
I/O port	24 pin	s (Max)	38 pins (Max)	54 pins (Max)		
12-bit A/D converter	6 ch.	(1 unit)	8 ch. (1 unit)	8 ch. (1 unit)		
Smart Card Interface		No		1 ch (Max)		
HDMI-CEC/ Remote Control Receiver		.(Max) h.1		(Max) .0/1		

2.2 Packages

Package Suffix Package	ВОА	C0A	D0A
LQFP: LQB032 (0.80 mm pitch)	0	-	-
QFN: WNU032 (0.50 mm pitch)	0	-	-
WLCSP: U4M030 (0.40 mm pitch)	0		
LQFP: LQA048 (0.50 mm pitch)	-	•	-
QFN: WNY048 (0.50 mm pitch)	-	•	-
LQFP: LQD064 (0.50 mm pitch)	-	-	0
QFN: WNS064 (0.50 mm pitch)	-	-	0

O: Available

Note:

- See "14. Package Dimensions" for detailed information on each package.

3. Product Features in Detail

32-bit ARM Cortex-M0+ Core

- ■Maximum operating frequency: 40.8 MHz
- Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 24 peripheral interrupt with 4 selectable interrupt priority levels
- ■24-bit System timer (Sys Tick): System timer for OS task management

Bit Band Operation

Compatible with Cortex-M3 bit band operation.

On-Chip Memory

- ■Flash memory
 - □ Up to 128 Kbytes
 - □ Read cycle: 0 wait-cycle
 - □ Security function for code protection

■SRAM

The on-chip SRAM of this series has one independent SRAM.

- □ Up to 16 Kbytes
- ☐ 4Kbytes: can retain value in Deep standby Mode

USB Interface

USB interface is composed of Device and Host With Main PLL, USB clock can be generated by multiplication of Main clock.

■USB Device

- □ USB 2.0 Full-Speed supported
- □ Max 6 EndPoint supported
 - · EndPoint 0 is control transfer
 - EndPoint 1, 2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer
 - EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer
 - EndPoint 1 to 5 comprise Double Buffer
 - · The size of each EndPoint is according to the follows
 - EndPoint 0, 2 to 5: 64 bytes
 - EndPoint 1: 256 bytes

■USB host

- □ USB 2.0 Full/Low-Speed supported
- ☐ Bulk-transfer, Interrupt-transfer and Isochronous-transfer support
- □ USB Device connected/disconnected automatically detect
- □ IN/OUT token handshake packet automatically
- □ Max 256-byte packet-length supported
- □ Wake-up function supported

Multi-Function Serial Interface (Max 6channels)

- ■3 channels with 64Byte FIFO (Ch.4, 6 and 7), 3 channels without FIFO (Ch.0, 1 and 3)
- ■The operation mode of each channel can be selected from one of the following.
- □ UART
- ☐ CSIO (CSIO is known to many customers as SPI)
- □ I²C

■UART

- □ Full duplex double buffer
- □ Parity can be enabled or disabled.
- □ Built-in dedicated baud rate generator
- □ External clock available as a serial clock
- □ Hardware Flow control*: Automatically control the transmission by CTS/RTS (only ch.4)
 *: S6E1C32B0A/S6E1C31B0A and
 S6E1C32C0A/S6E1C31C0A do not support Hardware Flow control.
- Various error detection functions (parity errors, framing errors, and overrun errors)
- ■CSIO (also known as SPI)
 - ☐ Full duplex double buffer
 - ☐ Built-in dedicated baud rate generator
 - □ Overrun error detection function
 - ☐ Serial chip select function (ch1 and ch6 only)
 - □ Data length: 5 to 16 bits

■ I²C

- □ Standard-mode (Max: 100 kbps) supported / Fast-mode (Max 400 kbps) supported.
- ■I2S (MFS-I2S)
 - □ Using CSIO (Max 2 ch: ch.4, ch.6) and I2S clock generator
 - □ Supports two transfer protocol
 - I²S
 - MSB-justified
 - □ Master mode only

Descriptor System Data Transfer Controller (DSTC) (64 Channels)

- ■The DSTC can transfer data at high-speed without going via the CPU. The DSTC adopts the Descriptor system and, following the specified contents of the Descriptor that has already been constructed on the memory, can access directly the memory / peripheral device and performs the data transfer operation.
- It supports the software activation, the hardware activation, and the chain activation functions

Page 7 of 109

A/D Converter (Max: 8 Channels)

- ■12-bit A/D Converter
 - □ Successive approximation type
 - \square Conversion time: 2.0 μs @ 2.7 V to 3.6 V
 - □ Priority conversion available (2 levels of priority)
 - □ Scan conversion mode
 - ☐ Built-in FIFO for conversion data storage (for scan conversion: 16 steps, for priority conversion: 4 steps)

Base Timer (Max: 8 Channels)

The operation mode of each channel can be selected from one of the following.

- ■16-bit PWM timer
- ■16-bit PPG timer
- ■16/32-bit reload timer
- ■16/32-bit PWC timer

General-Purpose I/O Port

This series can use its pin as a general-purpose I/O port when it is not used for an external bus or a peripheral function. All ports can be set to fast general-purpose I/O ports or slow general-purpose I/O ports. In addition, this series has a port relocate function that can set to which I/O port a peripheral function can be allocated.

- All ports are Fast GPIO which can be accessed by 1 cycle
- ■Capable of controlling the pull-up of each pin
- ■Capable of reading pin level directly
- ■Port relocate function
- ■Up to 54 fast general-purpose I/O ports @64-pin package
- Certain ports are 5 V tolerant. See 5.List of Pin Functions and 6.I/O Circuit Type for the corresponding pins.

Dual Timer (32-/16-bit Down Counter)

The Dual Timer consists of two programmable 32-/16-bit down counters. The operation mode of each timer channel can be selected from one of the following.

- ■Free-running mode
- ■Periodic mode (= Reload mode)
- ■One-shot mode

Real-Time Clock

The Real-time Clock counts year/month/day/hour/minute/second/day of the week from year 00 to year 99.

- ■The RTC can generate an interrupt at a specific time (year/month/day/hour/minute) and can also generate an interrupt in a specific year, in a specific month, on a specific day, at a specific hour or at a specific minute.
- It has a timer interrupt function generating an interrupt upon a specific time or at specific intervals.
- ■It can keep counting while rewriting the time.

■It can count leap years automatically.

Watch Counter

The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock.

Interval timer: up to 64 s (sub clock: 32.768 kHz)

External Interrupt Controller Unit

- ■Up to 12 external interrupt input pins
- ■Non-maskable interrupt (NMI) input pin: 1

Watchdog Timer (2 Channels)

The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value.

This series consists of two different watchdogs, hardware watchdog and software watchdog.

The hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the hardware watchdog is active in any low-power consumption modes except RTC, Stop, Deep standby RTC and Deep standby Stop mode.

CRC (Cyclic Redundancy Check) Accelerator

The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage.

- ■CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 - □ CCITT CRC16 Generator Polynomial: 0x1021
 - □ IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7

HDMI-CEC/Remote Control Receiver (Up to 2 Channels)

- ■HDMI-CEC transmitter
 - ☐ Header block automatic transmission by judging Signal free
- ☐ Generating status interrupt by detecting Arbitration lost
- ☐ Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
- ☐ Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)
- ■HDMI-CEC receiver
- □ Automatic ACK reply function available
- ☐ Line error detection function available
- ■Remote control receiver
 - □ 4 bytes reception buffer
 - ☐ Repeat code detection function available

Smart Card Interface (Max 1 Channel)

- ■Compliant with ISO7816-3 specification
- ■Card Reader only/B class card only
- ■Available protocols
 - ☐ Transmitter: 8E2, 8O2, 8N2
 - ☐ Receiver: 8E1, 8O1, 8N2, 8N1, 9N1
 - □ Inverse mode
- ■TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes)

Clock and Reset

■Clocks

A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL).

□ Main clock:
 □ Sub clock:
 □ Built-in high-speed CR clock:
 8 MHz to 48 MHz
 32.768 kHz
 □ Built-in high-speed CR clock:
 8 MHz

☐ Built-in low-speed CR clock: 100 kHz

☐ Main PLL clock 8MHz to 16MHz (Input),

75MHz to 150MHz (Output)

■Resets

☐ Reset request from the INITX pin

□ Power on reset

□ Software reset

□ Watchdog timer reset

□ Low-voltage detection reset

□ Clock supervisor reset

Clock Supervisor (CSV)

The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator.

- If an external clock failure (clock stop) is detected, a reset is asserted.
- If an external frequency anomaly is detected, an interrupt or a reset is asserted.

Low-Voltage Detector (LVD)

This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset.

- ■LVD1: monitor V_{CC} and error reporting via an interrupt
- ■LVD2: auto-reset operation

Low Power Consumption Mode

This series has six low power consumption modes.

- ■Sleep
- ■Timer
- **■**RTC
- ■Stop
- ■Deep standby RTC (selectable between keeping the value of RAM and not)
- ■Deep standby Stop (selectable between keeping the value of RAM and not)

Peripheral Clock Gating

The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used.

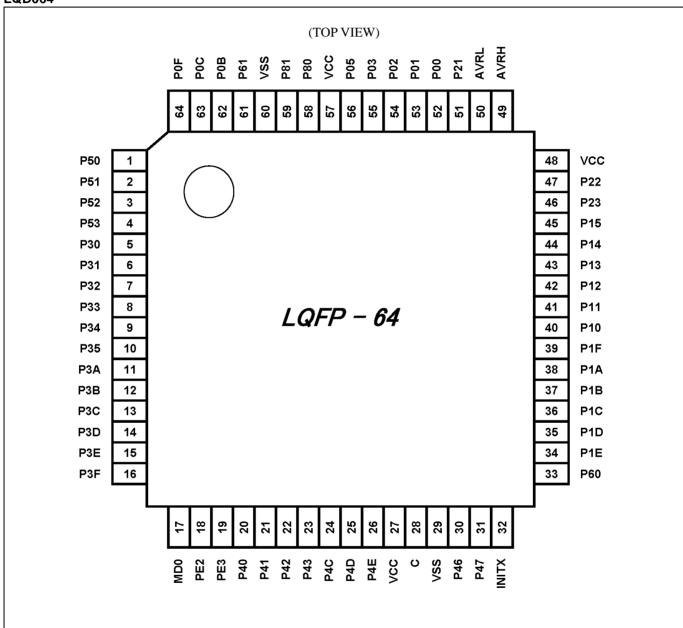
Debug

- Serial Wire Debug Port (SW-DP)
- ■Micro Trace Buffer (MTB)

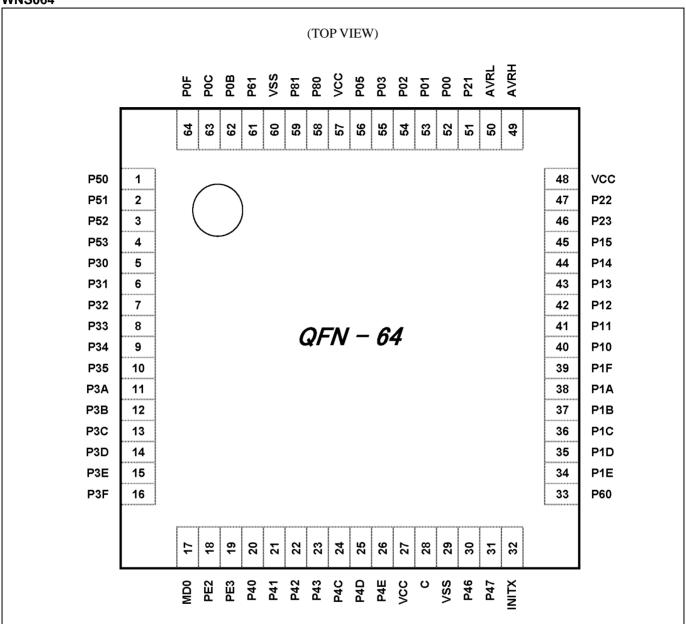
Unique ID

A 41-bit unique value of the device has been set.

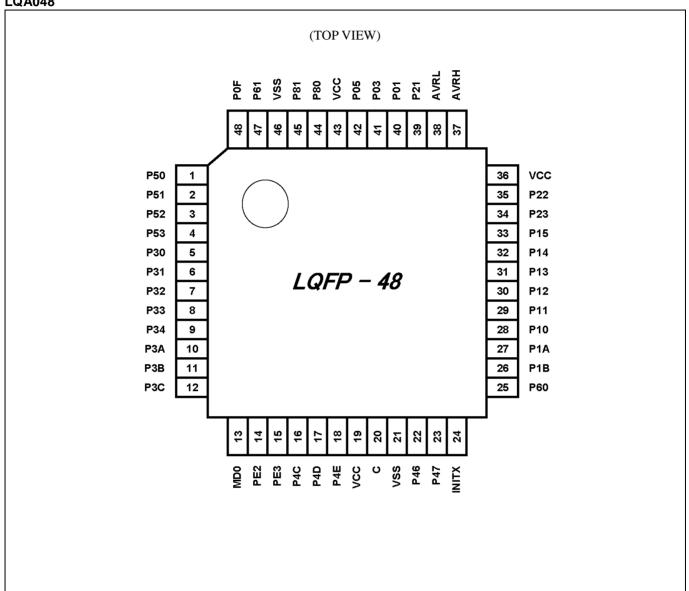
Power Supply


■Wide voltage range:

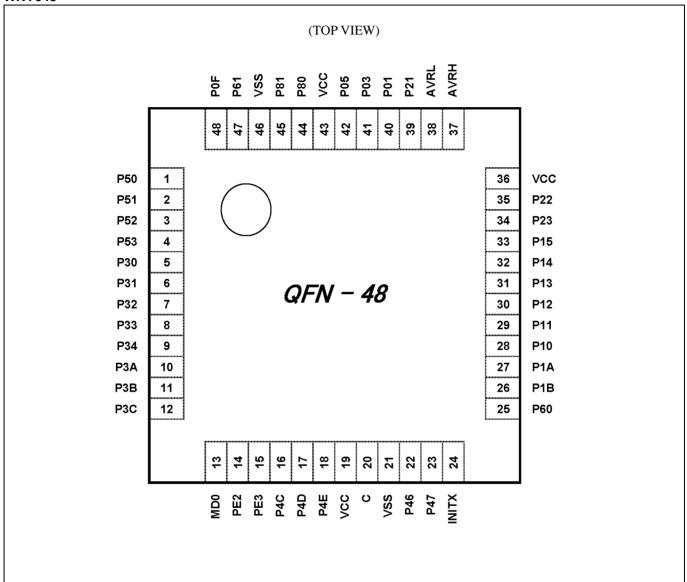
VCC = 1.65V to 3.6 V VCC = 3.0V to 3.6V (when USB is used)


4. Pin Assignment

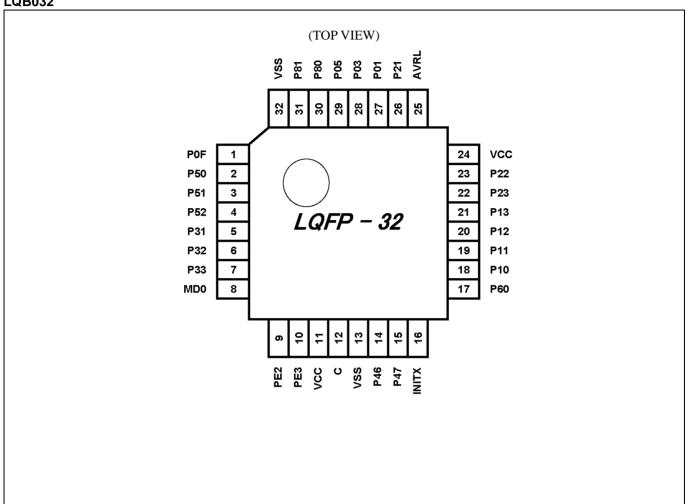
LQD064



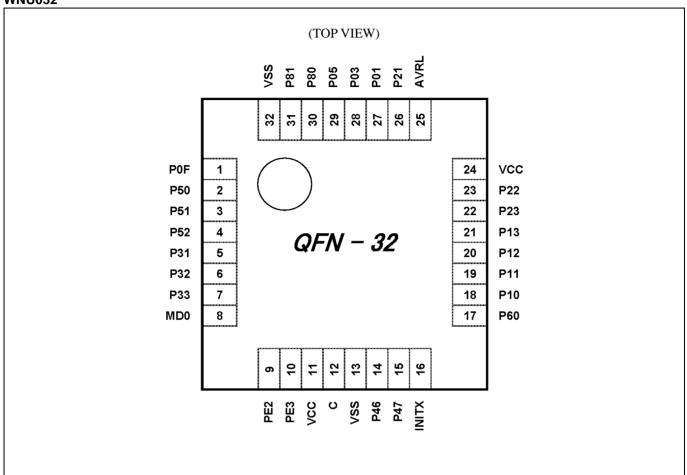
WNS064



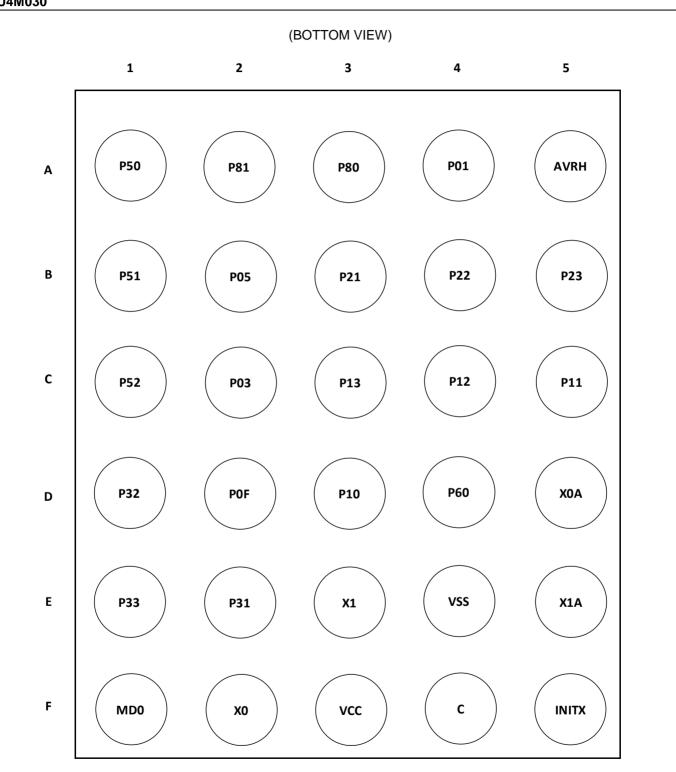
LQA048



WNY048



LQB032



WNU032

U4M030

5. List of Pin Functions

List of Pin Numbers

The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used.

	Pin	No.									Pin State Type
LQFP-64 QFN-64	LQFP-48 QFN-48	LQFP-32 QFN-32	WLCSP-30	Pin Name		Alternate Functions					
1	1	2	A1	P50	SIN3_1	INT00_0				D	K
2	2	3	B1	P51	SOT3_1	INT01_0				D	K
3	3	4	C1	P52	SCK3_1	INT02_0				D	K
4	4	-	-	P53	TIOA1_2	INT07_2				D	K
5	5	-	-	P30	SCS60_1	TIOB0_1	INT03_2	MI2SWS6_1		D	K
6	6	-	-	P31	SCK6_1	INT04_2	MI2SCK6_1			Н	K
-	-	5	E2	P31	SCK6_1	INT04_2				Н	K
7	7	-	-	P32	SOT6_1	TIOB2_1	INT05_2	MI2SDO6_1		Н	K
-	-	6	D1	P32	SOT6_1	TIOB2_1	INT05_2			Н	K
8	8	-	-	P33	ADTG_6	SIN6_1	INT04_0	MI2SDI6_1		Н	K
-	-	7	E1	P33	ADTG_6	SIN6_1	INT04_0			Н	K
9	-	-	-	P34	SCS61_1	TIOB4_1	MI2SMCK6_1			D	K
-	9	-	-	P34	SCS61_1	MI2SMCK6_1				D	K
10	-	-	-	P35	SCS62_1	TIOB5_1	INT08_1			D	K
11	-	-	-	P3A	TIOA0_1	INT03_0	RTCCO_2	SUBOUT_2	IC1_CIN_0	D	K
-	10	-	-	P3A	TIOA0_1	INT03_0	RTCCO_2	SUBOUT_2		D	K
12	-	-	-	P3B	TIOA1_1	IC1_DATA_0				D	K
-	11	-	-	P3B	TIOA1_1					D	K
13	-	-	-	P3C	TIOA2_1	IC1_RST_0				D	K
-	12	-	-	P3C	TIOA2_1					D	K
14	-	-	-	P3D	TIOA3_1	IC1_VPEN_0				D	K
15	-	-	-	P3E	TIOA4_1	IC1_VCC_0				D	K
16	-	-	-	P3F	TIOA5_1	IC1_CLK_0				D	K
17	13	8	F1	MD0						I	F
18	14	9	F2	PE2	X0					Α	Α
19	15	10	E3	PE3	X1					Α	В
20	-	-	-	P40	TIOA0_0	INT12_1				D	K
21	-	-	-	P41	TIOA1_0	INT13_1				D	K
22	-	-	-	P42	TIOA2_0					D	K
23	-	-	-	P43	ADTG_7	TIOA3_0				D	K
24	-	-	-	P4C	SCK7_1	TIOB3_0				D	K
-	16	-	-	P4C	SCK7_1					D	K
25	17	-	-	P4D	SOT7_1					D	K
26	18	-	-	P4E	SIN7_1	INT06_2				D	K
27	19	11	F3	VCC						-	-
28	20	12	F4	С						-	-
29	21	13	E4	VSS						-	-
30	22	14	D5	P46	X0A					С	С

	Pin	No.									Pin State Type
LQFP-64 QFN-64	LQFP-48 QFN-48	LQFP-32 QFN-32	WLCSP-30	Pin Name		Alternate Functions					
31	23	15	E5	P47	X1A					С	D
32	24	16	F5	INITX						В	Е
33	25	17	D4	P60	TIOA2_2	INT15_1	CEC1_0			Н	K
34	-	-	-	P1E	RTS4_1	MI2SMCK4_1				D	K
35	-	-	-	P1D	CTS4_1	MI2SWS4_1				D	K
36	-	-	-	P1C	SCK4_1	MI2SCK4_1				D	K
37	-	-	-	P1B	SOT4_1	MI2SDO4_1				D	K
-	26	-	-	P1B	SOT4_1					D	K
38	-	-	ı	P1A	SIN4_1	INT05_1	CEC0_0	MI2SDI4_1		Н	K
-	27	•	-	P1A	SIN4_1	INT05_1	CEC0_0			Н	K
39	-	-	-	P1F	ADTG_5					D	K
40	28	18	D3	P10	AN00					F	J
41	29	19	C5	P11	AN01	SIN1_1	INT02_1	WKUP1		G	J
42	30	20	C4	P12	AN02	SOT1_1				F	J
43	31	21	C3	P13	AN03	SCK1_1	RTCCO_1	SUBOUT_1		F	J
44	32	-	-	P14	AN04	SIN0_1	SCS10_1	INT03_1		F	J
45	33	-	-	P15	AN05	SOT0_1	SCS11_1			F	J
46	34	22	B5	P23	AN06	SCK0_0	TIOA7_1			F	J
47	35	23	B4	P22	AN07	TIOB7_1				F	J
48	36	24	A5	VCC						-	-
49	37	-	-	AVRH1						-	-
50	38	25	-	AVRL						-	-
51	39	26	В3	P21	INT06_1	WKUP2				Е	K
52	-	-	-	P00	WKUP4					Е	K
53	40	27	A4	P01	SWCLK	SOT0_0				D	K
54	-	-	-	P02	WKUP5					Е	K
55	41	28	C2	P03	SWDIO	SIN0_0	TIOB7_0			D	K
56	42	29	B2	P05	MD1	TIOA5_2	INT00_1	WKUP3		Е	K
57	43	-	-	VCC						-	-
58	44	30	A3	P80	UDM0					J	G
59	45	31	A2	P81	UDP0					J	G
60	46	32	-	VSS						-	-
61	47	-	-	P61	UHCONX0	TIOB2_2				Н	K
62	-	-	-	P0B	TIOB6_1	WKUP6				Е	K
63	-	-	-	P0C	TIOA6_1	WKUP7				Е	K
64	48	1	D2	P0F	NMIX	WKUP0	RTCCO_0	SUBOUT_0	CROUT_1	Е	

Document Number: 002-00233 Rev. *D

 $^{^{\}rm 1}\,$ In a 32-pin package, the AVRH pin is internally connected to the V_{CC} pin.

List of Pin Functions

The number after the underscore ("_") in a function name such as XXX_1 and XXX_2 indicates one of the relocate options to route that function to a different pin. Use the Extended Port Function Register (EPFR) to disable or select the desired relocate option.

				Pin No.				
Pin Function	Pin Name	Pin Name Function Description		LQFP-48	LQFP-32	WLCSP-		
			QFN-64	QFN-48	QFN-32	30		
	ADTG_5		39	-	-	-		
ADC	ADTG_6	A/D converter external trigger input pin	8	8	7	E1		
	ADTG_7		23	-	-	-		
	AN00		40	28	18	D3		
	AN01		41	29	19	C5		
	AN02		42	30	20	C4		
400	AN03	A/D converter analog input pin.	43	31	21	C3		
ADC	AN04	ANxx describes ADC ch.xx.	44	32	-	-		
	AN05		45	33	-	-		
	AN06		46	34	22	B5		
	AN07		47	35	23	B4		
	TIOA0_0	D	20	-	-	-		
Base Timer 0	TIOA0_1	Base timer ch.0 TIOA pin	11	10	-	-		
	TIOB0_1	Base timer ch.0 TIOB pin	5	5	-	-		
	TIOA1_0		21	-	-	-		
Base Timer 1	TIOA1_1	Base timer ch.1 TIOA pin	12	11	-	-		
	TIOA1_2		4	4	-	-		
	TIOA2_0		22	-	-	-		
	TIOA2_1	Base timer ch.2 TIOA pin	13	12	-	-		
Base Timer 2	TIOA2_2	<u> </u>	33	25	17	D4		
	TIOB2_1		7	7	6	D1		
	TIOB2_2	Base timer ch.2 TIOB pin	61	47	-	-		
	TIOA3_0		23	-	-	-		
Base Timer 3	TIOA3_1	Base timer ch.3 TIOA pin	14	-	-	-		
Base Timer 3	TIOB3_0	Base timer ch.3 TIOB pin	24	-	-	-		
	TIOA4_1	Base timer ch.4 TIOA pin	15	-	-	-		
Base Timer 4	 TIOB4_1	Base timer ch.4 TIOB pin	9	-	-	-		
	TIOA5_1		16	-	-	-		
Base Timer 5	TIOA5_2	Base timer ch.5 TIOA pin	56	42	29	B2		
	TIOB5_1	Base timer ch.5 TIOB pin	10	-	-	-		
D T .	 TIOA6_1	Base timer ch.6 TIOA pin	63	-	-	-		
Base Timer 6	TIOB6_1	Base timer ch.6 TIOB pin	62	-	-	-		
	TIOA7_1	Base timer ch.7 TIOA pin	46	34	22	B5		
Base Timer 7	TIOB7_0		55	41	28	C2		
	 TIOB7_1	Base timer ch.7 TIOB pin	47	35	23	B4		
	SWCLK	Serial wire debug interface clock input pin	53	40	27	A4		
Debugger	SWDIO	Serial wire debug interface data input / output pin	55	41	28	C2		

				Pin	No.	
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-
			QFN-64	QFN-48	QFN-32	30
	INT00_0	External interrupt request 00 input pin	1	1	2	A1
	INT00_1	External interrupt request 00 input pin	56	42	29	B2
	INT01_0	External interrupt request 01 input pin	2	2	3	B1
	INT02_0	External interrupt request 02 input pin	3	3	4	C1
	INT02_1	External interrupt request oz input pin	41	29	19	C5
	INT03_0		11	10	-	1
	INT03_1	External interrupt request 03 input pin	44	32	-	1
	INT03_2		5	5	-	•
	INT04_0	External interrupt request 04 input pin	8	8	7	E1
External	INT04_2	External interrupt request 04 input pin	6	6	5	E2
Interrupt	INT05_1	External interrupt request 05 input pin	38	27	-	-
interrupt	INT05_2	- External interrupt request 05 input pin	7	7	6	D1
	INT06_1	External interrupt request 06 input pin	51	39	26	В3
	INT06_2	External interrupt request 06 input pin	26	18	-	-
	INT07_2	External interrupt request 07 input pin	4	4	-	•
	INT08_1	External interrupt request 08 input pin	10	-	-	1
	INT12_1	External interrupt request 12 input pin	20	-	-	•
	INT13_1	External interrupt request 13 input pin	21	-	-	1
	INT15_1	External interrupt request 15 input pin	33	25	17	D4
	NMIX	Non-Maskable Interrupt input pin	64	48	1	D2
	P00		52	-	-	-
	P01		53	40	27	A4
	P02		54	-	-	1
CPIO	P03	General-purpose I/O port 0	55	41	28	C2
	P05	General-purpose 1/O port o	56	42	29	B2
	P0B		62	-	-	1
	P0C		63	-	-	•
	P0F		64	48	1	D2
	P10		40	28	18	D3
	P11		41	29	19	C5
	P12		42	30	20	C4
	P13		43	31	21	C3
	P14		44	32	-	-
GPIO	P15	General-purpose I/O port 1	45	33	-	-
GI IO	P1A		38	27	-	-
	P1B		37	26	-	
	P1C		36	-	-	-
	P1D	_	35	-	-	-
	P1E		34	-	-	-
	P1F		39	-	-	-
	P21		51	39	26	В3
GPIO	P22	General-purpose I/O port 2	47	35	23	B4
	P23		46	34	22	B5

				Pin	No.	
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-
		·	QFN-64	QFN-48	QFN-32	30
	P30		5	5	-	-
	P31		6	6	5	E2
	P32		7	7	6	D1
	P33		8	8	7	E1
	P34		9	9	-	-
ODIO	P35	0.0000000000000000000000000000000000000	10	-	-	-
GPIO	P3A	General-purpose I/O port 3	11	10	-	-
	P3B		12	11	-	-
	P3C		13	12	-	-
	P3D		14	-	-	-
	P3E		15	-	-	-
	P3F		16	-	-	-
	P40		20	-	-	-
	P41		21	-	-	-
	P42		22	-	-	-
	P43		23	-	-	-
GPIO	P46	General-purpose I/O port 4	30	22	14	D5
	P47		31	23	15	E5
	P4C		24	16	-	-
	P4D		25	17	-	-
	P4E		26	18	-	-
	P50		1	1	2	A1
GPIO	P51	Conoral nurnoso I/O port 5	2	2	3	B1
GFIO	P52	General-purpose I/O port 5	3	3	4	C1
	P53		4	4	-	-
GPIO	P60	General-purpose I/O port 6	33	25	17	D4
GFIO	P61	General-purpose I/O port 6	61	47	-	-
GPIO	P80	General-purpose I/O port 8	58	44	30	A3
GFIO	P81	General-purpose I/O port o	59	45	31	A2
GPIO	PE2	General-purpose I/O port E	18	14	9	F2
<u> </u>	PE3	General-purpose I/O port E	19	15	10	E3
	SIN0_0	Multi-function serial interface ch.0 input	55	41	28	C2
	SIN0_1	pin	44	32	-	-
	SOT0_0	Multi-function serial interface ch.0 output	53	40	27	A4
	(SDA0_0)	pin. This pin operates as SOT0 when	33	40	21	A 4
Multi-function	SOT0_1	used as a UART/CSIO/LIN pin (operation				
	(SDA0_1)	mode 0 to 3) and as SDA0 when used as	45	33	-	-
Serial 0	(02.10_1)	an I ² C pin (operation mode 4).				
		Multi-function serial interface ch.0 clock				
	SCK0_0	I/O pin. This pin operates as SCK0 when				
	(SCL0_0)	used as a CSIO pin (operation mode 2)	46	34	22	B5
		and as SCL0 when used as an I ² C pin				
		(operation mode 4).				

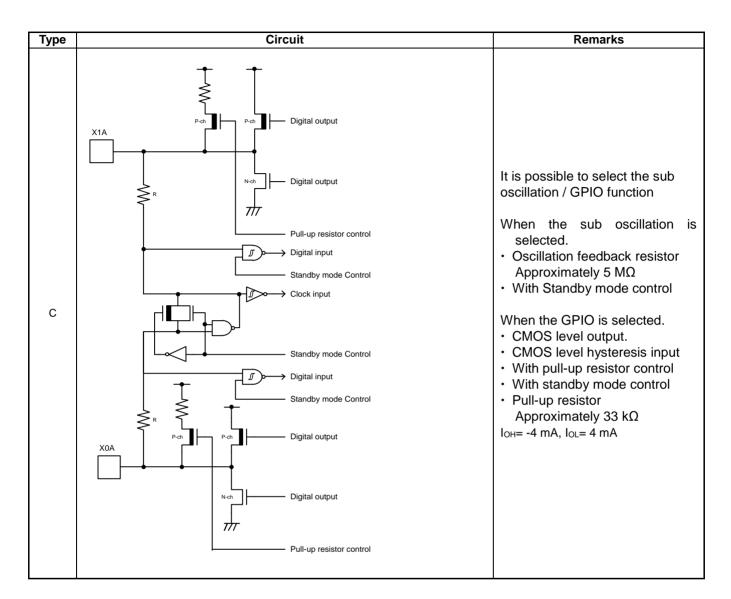
				Pin	No.	
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-
			QFN-64	QFN-48	QFN-32	30
	SIN1_1	Multi-function serial interface ch.1 input pin	41	29	19	C5
	SOT1_1 (SDA1_1)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA1 when used as an I ² C pin (operation mode 4).	42	30	20	C4
Multi-function Serial 1	SCK1_1 (SCL1_1)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when used as a CSIO pin (operation mode 2) and as SCL1 when used as an I ² C pin (operation mode 4).	43	31	21	C3
	SCS10_1	Multi-function serial interface ch.1 serial chip select 0 input/output pin.	44	32	-	-
	SCS11_1	Multi-function serial interface ch.1 serial chip select 1 output pin.	45	33	-	-
	SIN3_1	Multi-function serial interface ch.3 input pin	1	1	2	A1
Multi-function Serial 3	SOT3_1 (SDA3_1)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA3 when used as an I ² C pin (operation mode 4).	2	2	3	B1
	SCK3_1 (SCL3_1)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3 when used as an I ² C pin (operation mode 4).	3	3	4	C1
	SIN4_1	Multi-function serial interface ch.4 input pin	38	27	-	-
	SOT4_1 (SDA4_1)	Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA4 when used as an I ² C pin (operation mode 4).	37	26	-	-
Multi-function Serial 4	SCK4_1 (SCL4_1)	Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4 when used as an I ² C pin (operation mode 4).	36	-	-	-
	CTS4_1	Multi-function serial interface ch4 CTS input pin	35	-	-	-
	RTS4_1	Multi-function serial interface ch4 RTS output pin	34	-	-	-

				Pin No.			
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-	
			QFN-64	QFN-48	QFN-32	30	
	SIN6_1	Multi-function serial interface ch.6 input	8	8	7	E1	
		pin		0	,	<u></u> □ I	
	SOT6_1 (SDA6_1)	Multi-function serial interface ch.6 output					
		pin. This pin operates as SOT6 when					
		used as a UART/CSIO/LIN pin (operation	7	7	6	D1	
		mode 0 to 3) and as SDA6 when used as					
		an I ² C pin (operation mode 4).					
	SCK6_1 (SCL6_1)	Multi-function serial interface ch.6 clock					
Multi-function		I/O pin. This pin operates as SCK6 when	6	6	5	E2	
Serial 6		used as a CSIO (operation mode 2) and					
		as SCL6 when used as an I2C pin					
		(operation mode 4).					
	SCS60_1	Multi-function serial interface ch.6 serial	5	-			
		chip select 0 input/output pin.		5		_	
	SCS61_1	Multi-function serial interface ch.6 serial	9	9	-	-	
		chip select 1 output pin.					
	SCS62_1	Multi-function serial interface ch.6 serial	10	-	-	-	
		chip select 2 output pin.					
	SIN7_1	Multi-function serial interface ch.7 input	26	18			
		pin	20	10	_	-	
	SOT7_1 (SDA7_1)	Multi-function serial interface ch.7 output					
Multi-function Serial 7		pin. This pin operates as SOT7 when	25	17	-	-	
		used as a UART/CSIO/LIN pin (operation					
		mode 0 to 3) and as SDA7 when used as					
		an I ² C pin (operation mode 4).					
	SCK7_1 (SCL7_1)	Multi-function serial interface ch.7 clock					
		I/O pin. This pin operates as SCK7 when					
		used as a CSIO (operation mode 2) and	24	16	-	-	
		as SCL7 when used as an I ² C pin					
		(operation mode 4).					

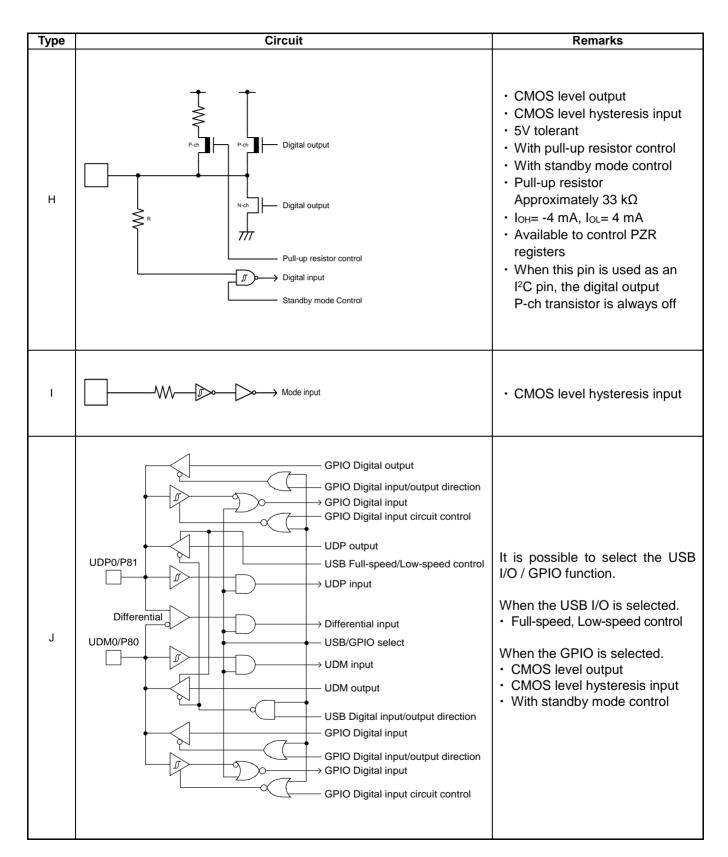
			Pin No.				
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-	
			QFN-64	QFN-48	QFN-32	30	
	MI2SDI4_1	I ² S Serial Data Input pin (operation mode 2).	38	-	-	-	
	MI2SDO4_1	I ² S Serial Data Output pin (operation mode 2).	37	-	-	-	
	MI2SCK4_1	I ² S Serial Clock Output pin (operation mode 2).	36	-	-	-	
	MI2SWS4_1	I ² S Word Select Output pin (operation mode 2).	35	-	-	1	
I2S(MFS)	MI2SMCK4_1	I ² S Master Clock Input/output pin (operation mode 2).	34	-	-	1	
123(IVIF3)	MI2SDI6_1	I ² S Serial Data Input pin (operation mode 2).	8	8	-	-	
	MI2SDO6_1	I ² S Serial Data Output pin (operation mode 2).	7	7	-	-	
	MI2SCK6_1	I ² S Serial Clock Output pin (operation mode 2).	6	6	-	-	
	MI2SWS6_1	I ² S Word Select Output pin (operation mode 2).	5	5	-	-	
	MI2SMCK6_1	I ² S Master Clock Input/output pin (operation mode 2).	9	9	-	-	
	IC1_CIN_0	Smart Card insert detection output pin	11	-	-	-	
Smart Card	IC1_CLK_0	Smart Card serial interface clock output pin	16	-	-	-	
Interface	IC1_DATA_0	Smart Card serial interface data input pin	12	-	-	-	
interface	IC1_RST_0	Smart Card reset output pin	13	-	-	-	
	IC1_VCC_0	Smart Card power enable output pin	15	-	-	1	
	IC1_VPEN_0	Smart Card programming output pin	14	-	-	•	
	UDM0	USB function/host D – pin	58	44	30	A3	
USB	UDP0	USB function/host D + pin	59	45	31	A2	
	UHCONX0	USB external pull-up control pin	61	47	-	•	
	RTCCO_0	0.5 accords bulge output him of	64	48	1	D2	
Real-time Clock	RTCCO_1	0.5 seconds pulse output pin of real-time clock	43	31	21	C3	
	RTCCO_2	Teal-time clock	11	10	-	-	
	SUBOUT_0	Sub clock output pin	64	48	1	D2	
	SUBOUT_1		43	31	21	C3	
	SUBOUT_2		11	10	-	-	
HDMI-CEC/Re mote Control	CEC0_0	HDMI-CEC/Remote Control Reception ch.0 input/output pin	38	27	-	-	
Reception	CEC1_0	HDMI-CEC/Remote Control Reception ch.1 input/output pin	33	25	17	D4	

			Pin No.			
Pin Function	Pin Name	Function Description	LQFP-64	LQFP-48	LQFP-32	WLCSP-
			QFN-64	QFN-48	QFN-32	30
	WKUP0	Deep Standby mode return signal input pin 0	64	48	1	D2
	WKUP1	Deep Standby mode return signal input pin 1	41	29	19	C5
	WKUP2	Deep Standby mode return signal input pin 2	51	39	26	В3
Low Power	WKUP3	Deep Standby mode return signal input pin 3	56	42	29	B2
Consumption Mode	WKUP4	Deep Standby mode return signal input pin 4	52	-	-	-
	WKUP5	Deep Standby mode return signal input pin 5	54	-	-	-
	WKUP6	Deep Standby mode return signal input pin 6	62	-	-	-
	WKUP7	Deep Standby mode return signal input pin 7	63	-	-	-
RESET	INITX	External Reset Input pin. A reset is valid when INITX="L".	32	24	16	F5
	MD0	Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H".	17	13	8	F1
MODE	MD1	Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = "L" must be input.	56	42	29	B2
	X0	Main clock (oscillation) input pin	18	14	9	F2
	X0A	Sub clock (oscillation) input pin	30	22	14	D5
CLOCK	X1	Main clock (oscillation) I/O pin	19	15	10	E3
CLOCK	X1A	Sub clock (oscillation) I/O pin	31	23	15	E5
	CROUT_1	Built-in high-speed CR oscillation clock output port	64	48	1	D2
	VCC		27	19	11	F3
POWER	VCC	Power supply pin	48	36	24	A5
	VCC		57	43	-	-
ON-	VSS	GND pin	29	21	13	E4
GND	VSS		60	46	32	-
Analog	AVRH ²	A/D converter analog reference voltage input pin	49	37	-	-
Reference	AVRL	A/D converter analog reference voltage input pin	50	38	25	-
C pin	С	Power supply stabilization capacitance pin	28	20	12	F4

Document Number: 002-00233 Rev. *D


 $^{^{2}\,}$ In case of 32-pin package, AVRH pin is internally connected to the V_{CC} pin.

6. I/O Circuit Type



Туре	Circuit	Remarks
D	P.ch Digital output R Pull-up resistor control Digital input Standby mode Control	 CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor Approximately 33 kΩ I_{OH}= -4mA, I_{OL}= 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off
E	P.ch Digital output Pull-up resistor control Digital input Standby mode Control Wake up request Wake up control	 CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor Approximately 33 kΩ I_{OH}= -4 mA, I_{OL}= 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off

Туре	Circuit	Remarks
F	P.ch Digital output Neh Digital output Pull-up resistor control Standby mode Control Analog input Input control	 CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor Approximately 33 kΩ I_{OH}= -4 mA, I_{OL}= 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off
G	P.ch Digital output Pull-up resistor control Digital input Standby mode Control Wake up request Wake up Control Input control	 CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor Approximately 33 kΩ IoH= -4 mA, IoL= 4 mA When this pin is used as an I²C pin, the digital output P-ch transistor is always off

7. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

7.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

(1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

(2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device.

Therefore, avoid this type of connection.

(3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Document Number: 002-00233 Rev. *D Page 31 of 109

Latch-Up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (2) Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

7.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should mount only under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Document Number: 002-00233 Rev. *D Page 32 of 109

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 °C and 30 °C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ).
 - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (4) Ground all fixtures and instruments, or protect with anti-static measures.
- (5) Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.

Document Number: 002-00233 Rev. *D Page 33 of 109

7.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

(1) Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

(2) Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

(3) Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

(4) Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

(5) Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

8. Handling Devices

Power Supply Pins

In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVRH pin and AVRL pin near this device.

Stabilizing Supply Voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal Oscillator Circuit

Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

Sub Crystal Oscillator

This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation.

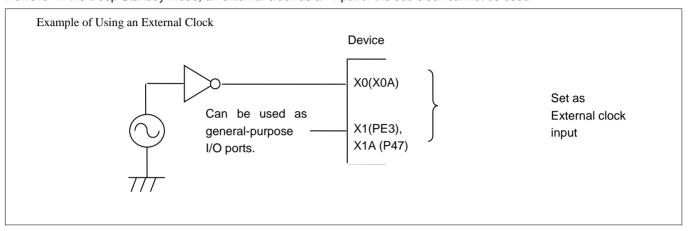
■Surface mount type

Size: More than 3.2 mm x 1.5 mm

Load capacitance: Approximately 6 pF to 7 pF

■Lead type

Load capacitance: Approximately 6 pF to 7 pF



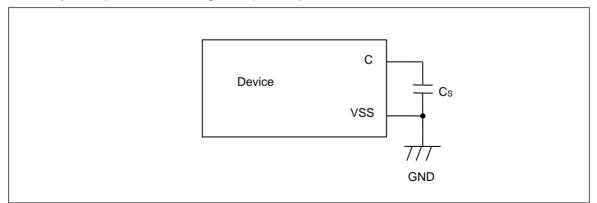
Using an External Clock

When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port.

Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.

However in the Deep Standby mode, an external clock as an input of the sub clock cannot be used.

Handling when Using Multi-Function Serial Pin as I²C Pin


If it is using the multi-function serial pin as I²C pins, P-ch transistor of digital output is always disabled. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to the external I²C bus system with power OFF.

C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (Cs) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 μF would be recommended for this series.

Incidentally, the C pin becomes floating in Deep standby mode.

Mode Pins (MD0)

Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on Power-on

Turn power on/off in the following order or at the same time.

Turning on : $VCC \rightarrow AVRH$ Turning off : $AVRH \rightarrow VCC$

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory Products and MASK Products

The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Pull-Up Function of 5 V Tolerant I/O

Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.

Handling when Using Debug Pins

When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input.

Document Number: 002-00233 Rev. *D Page 37 of 109

9. Memory Map

Memory Map (1)

		;		Decembe
		ı İ		Reserved
0xFFFF_FFFF 0xF802_0000	Reserved	į	0x4006_2000	
UXI-802_0000	FAST GPIO	!	0x4006_2000 0x4006_1000	DSTC
0xF800_0180	(Single-cycle I/O port)	<u> </u>	0x4005_0000	Reserved
0XF600_0160	VIR (Vector Indicate reg.)	 	0x4004_0000	USB
0xF800_0100	(Single-cycle I/O port)	j	0X4004_0000	ОЗВ
0X1 000_0100	FAST GPIO	 	04000 CD00	Reserved
0xF800_0000	(Single-cycle I/O port)	!	0x4003_CB00	MFS-I2S Clock Gen.
UXF600_0000	(Girigie eyele #8 port)	-	0x4003_CA00 0x4003 C900	Smart Card I/F
0vE000 2000	Reserved	l ;	_	
0xF000_2000		j	0x4003_C200	Reserved Peripheral Clock Gating
0.,5000 1000	MTB_DWT	į	0x4003_C100	
0xF000_1000		 	0x4003_C000 0x4003_B000	Low Speed CR Prescaler RTC
	CM0+	<u> </u>		Watch Counter
. ====	Coresight-MTB(SFR)	<u>'</u>	0x4003_A000	
0xF000_0000		i i	0x4003_9000	CRC Accelerator
	CM0+	į	0x4003_8000	MFS
	Private Peripherals	į		5
0xE000_0000	·	<u> </u>		Reserved
		 	0x4003_7000	
	Reserved	l ;	0x4003_6000	USB Clock ctrl
		i	0x4003_5000	LVD/DS mode
0x4400_0000		<u>į</u>		HDMI-CEC/
	32 Mbytes Bit band alias	!	0x4003_4000	Remote Control Receiver
	0x40000000 ~ 0x40100000		0x4003_3000	GPIO
0x4200_0000	0X 10000000	'i	0x4003_2000	Reserved
	Davinhanda]	0x4003_1000	Int-Req.Read
0x4000_0000	Peripherals		0x4003_0000	EXTI
_		17	0x4002_F000	Reserved
	Reserved	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0x4002_E000	HCR Trimming
0x2400_0000		\ \ \ \ \		·
		Ì		Reserved
	32 Mbytes Bit band alias	į	0 4000 0000	110001100
0,,2200, 0000	0x20000000 ~ 0x20100000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0x4002_8000	A/D Convertor
0x2200_0000		<u> </u>	0x4002_7000	A/D Converter Reserved
	December	<u>'</u>	0x4002_6000 0x4002_5000	Base Timer
	Reserved	j	0X4002_5000	Base IIIIlei
0x2000_4000		į		
	CDAM	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Reserved
	SRAM	<u>'</u>	0 4004 0000	
0x2000_0000		i i	0x4001_6000	Dest Care
	Reserved	į	0x4001_5000	Dual timer
0x0010_0008		į		Reserved
0x0010_0004	CR Trim] ',	0x4001_3000	
0x0010_0000 L	Security] ;	0x4001_2000	SW-Watchdog
	Reserved	į	0x4001_1000	HW-Watchdog
0x0001_FFF0	Noscived	į	0x4001_0000	Clock/Reset
Г		j		
	FLASH	,		Reserved
0x0000_0000] ',		Reserved
			0x4000_1000	

Memory Map (2)

Memory Map (2)					
	S	6E1C11/S6E1C31		S6E1C12/S6E1C32	
	0x2008_0000		0x2008_0000		
		Reserved		Reserved	
	0x2000_4000		0x2000_4000		
	0x2000_3000	SRAM 4K byte	0x2000_3000	SRAM 4K byte	
	0x2000_1000	SRAM 8K byte		SRAM	
	5X2555_1555		0x2000_0000	12K byte	
		Reserved		Reserved	
	0x0010_0004	CR trimming	0x0010_0004		
	0x0010_0000	Security	0x0010_0000	Security	
		Reserved		Reserved	
	_		0x0001_FFF0		
	0x0000_FFF0	Flash 65520 Byte (64Kbyte -		Flash 131056 Byte (128Kbyte - 16Byte) [*]	
	0x0000_0000	16Byte) *	0x0000_0000		

^{*:} See "S6E1C1/C3 Series Flash Programming Manual" to check details of the flash memory.

Peripheral Address Map

Peripheral Address N Start Address	End Address	Bus	Peripheral
0x4000_0000	0x4000_0FFF	ALID	Flash memory I/F register
0x4000_1000	0x4000_FFFF	AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog Timer
0x4001_2000	0x4001_2FFF	A DD0	Software Watchdog Timer
0x4001_3000	0x4001_4FFF	APB0	Reserved
0x4001_5000	0x4001_5FFF		Dual-Timer
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Reserved
0x4002_1000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		Reserved
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	_	Reserved
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Built-in CR trimming
0x4002 F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt Controller
0x4003_1000	0x4003_1FFF		Interrupt Request Batch-Read Function
0x4003_2000	0x4003_2FFF		Reserved
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF	APB1	HDMI-CEC/Remote Control Receiver
0x4003_5000	0x4003_5FFF	ALDI	Low-Voltage Detection / DS mode / Vref Calibration
0x4003_6000	0x4003_6FFF		USB Clock Generator
0x4003_7000	0x4003_77FF		Reserved
0x4003_7800	0x4003_79FF		Reserved
0x4003_7A00	0x4003_7FFF		Reserved
0x4003_8000	0x4003_8FFF		Multi-function Serial Interface
0x4003_9000	0x4003_9FFF		CRC
0x4003_A000	0x4003_AFFF		Watch Counter
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_C0FF		Low-speed CR Prescaler
0x4003_C100	0x4003_C7FF		Peripheral Clock Gating
0x4003_C800	0x4003_C8FF		Reserved
0x4003_C900	0x4003_C9FF		Smart Card Interface
0x4003_CA00	0x4003_CAFF	_	MFS-I2S Clock Generator
0x4003_CB00	0x4003_FFFF		Reserved
0x4004_0000 0x4005_0000	0x4004_FFFF 0x4006_0FFF	_	USB ch.0
0x4005_0000 0x4006_1000	0x4006_0FFF 0x4006_1FFF	AHB	Reserved DSTC
0x4006_1000 0x4006_2000	0x40FF_FFFF	1	Reserved
0A+000_2000		1	1.0001700

10. Pin Status in Each CPU State

The following table shows pin status in each CPU state.

T		Oalastad Bin Francisco				CPU S	tate			
Type		Selected Pin Function	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
۸	Main oscillation circuit selected ³	Main oscillation circuit selected	os	os	OE	OE	OE	GS	IS	os
Α	Digital I/O	Main clock external input selected	-	-	IE/IS	IE/IS	IE/IS	IS	IS	IS
	selected ⁴	GPIO selected	-	-	PC	HC	IS	HS	IS	HS
В	Main oscillation circuit selected ³	Main oscillation circuit selected	OS	os	OE	OE	OE	GS	IS	os
	Digital I/O selected ⁴	GPIO selected	-	-	PC	HC	IS	GS	IS	GS
	Sub oscillation circuit selected ³	Sub oscillation circuit selected	os	OE	OE	OE	OE	OE	OE	OE
С	Digital I/O selected ⁴	Sub clock external input selected	-	-	IE/IS	IE/IS	IE/IS	IS	IS	IS
	00100100	GPIO selected	-	-	PC	HC	IS	HS	IS	HS
D	Sub oscillation circuit selected ³	Sub oscillation circuit selected	os	OE	OE	OE	OE	OE	OE	OE
J	Digital I/O selected ⁴	GPIO selected	-	-	PC	НС	IS	HS	IS	HS
E	Digital I/O selected	INITX input	This pi	in is digit		in, pull up nut off in a			nd digita	al input
F	Digital I/O selected	MD0 input	This pi	n is digita		in, pull up ut off in all			digital i	nput is
	USB I/O selected ⁵	USB port selected	-	-	UE	US	US	US	US	US
G	Digital I/O selected ⁶	GPIO selected	IS	IE	СР	НС	IS	HS	IS	HS
	Digital I/O	SW selected	IS	IP ⁷	PC	IP	IP	IP	IP	IP
Н	selected	GPIO selected	-	-	PC	HC	IS	HS	IS	HS
		NMI selected	-	-	IP	IP	IP	-	-	-
1	Digital I/O selected	WKUP0 enable and input selected	-	-	IP	IP	IP	ΙP	IP	IP
	Selected	GPIO selected	IS	IE	PC	HC	IS	-	-	-
	Analog input selected ⁸	Analog input selected		An	alog inpu	t is enable	ed in all (CPU sta	te	•
J		WKUP enable and input selected	-	-	IP	IP	IP	IP	IP	IP
3	Digital I/O	External interrupt enable and input selected	-	-	IP	IP	IP	GS	IS	GS
	selected ⁹	GPIO selected	-	-	PC	HC	IS	HS	IS	HS
		Resource other than above selected	-	-	PC	HC	IS	GS	IS	GS
		CEC pin selected	-	-	CP	CP	CP	CP	CP	CP
	Digital I/O	WKUP enable and input selected	-	-	IP	IP	IP	IP	IP	IP
K	selected	External interrupt enable and input selected	-	-	PC	HC	IP	GS	IS	GS
		GPIO selected	IS	IE	PC	HC	IS	HS	IS	HS
		Resource other than above selected	-	-	PC	HC	IS	GS	IS	GS

Terms in the table above have the following meanings.

³ In this type, when internal oscillation function is selected, digital output is disabled. (Hi-Z) pull up resistor is off, digital input is shut off by fixed 0.

⁴ In this type, when Digital I/O function is selected, internal oscillation function is disabled.

In this type, when Digital I/O function is selected, digital output is disabled. (Hi-Z), digital input is shut off by fixed 0.

In this type, when Digital I/O function is selected, USB I/O function is disabled. This pin does not have pull up resistor.

In this case, PCR register is initialized to "1". Pull up resistor is on.

In this type, when analog input function is selected, digital output is disabled, (Hi-Z). pull up resistor is off, digital input is shut off by fixed 0.

In this type, when Digital I/O function is selected, analog input function is not available.

Type

This indicates a pin status type that is shown in "pin list table" in "5. List of Pin Functions"

Selected Pin function

This indicates a pin function that is selected by user program.

CPU state

This indicates a state of the CPU that is shown below.

- (1) Reset state. CPU is initialized by Power-on reset or a reset due to low Power voltage supply.
- (2) Reset state. CPU is initialized by INITX input signal or system initialization after power on reset.
- (3) Run mode or SLEEP mode state.
- Timer mode, RTC mode or STOP mode state.
- The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0".
- Timer mode, RTC mode or STOP mode state.
- (5) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1".
- (6) Deep standby STOP mode or Deep standby RTC mode state,
 - The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0"
- Deep standby STOP mode or Deep standby RTC mode state,
- (7) The standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1"
 - Run mode state after returning from Deep Standby mode.
- (8) (I/O state hold function(CONTX) is fixed at 1)

Each pin status

The meaning of the symbols in the pin status table is as follows.

- IS Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is shut off by fixed 0.
- IE Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is not shut off.
- IP Digital output is disabled. (Hi-Z) Pull up resistor is defined by the value of the PCR register. Digital input is not shut off.
- IE/IS Digital output is disabled. (Hi-Z) Pull up resistor is off. Digital input is shut off in case of the OSC stop. Digital input is not shut off in case of the OSC operation.
- The OSC is in operation state. However, it may be stopped in some operation mode of the CPU.
 - For detail, see chapter "Low Power Consumption Mode" in peripheral manual.
- OS The OSC is in stop state. (Hi-Z)
- UE USB I/O function is controlled by USB controller.
- US USB I/O function is disabled(Hi-Z)
- PC Digital output and pull up resistor is controlled by the register in the GPIO or peripheral function. Digital input is not shut off
- CP Digital output is controlled by the register in the GPIO or peripheral function. Pull up resistor is off. Digital input is not shut off.
- HC Digital output and pull up resistor is maintained the status that is immediately prior to entering the current CPU state. Digital input is not shut off
- HS Digital output and pull up resistor is maintained the status that is immediately prior to entering the current CPU state. Digital input is shut off
- GS Digital output and pull up resistor is copied the GPIO status that is immediately prior to entering the current CPU state and the status is maintained. Digital input is shut off.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

Parameter	Cumbal	Ra	Unit	Remarks	
	Symbol	Min	Max	Unit	Remarks
Power supply voltage ^{10, 11}	Vcc	Vss - 0.5	Vss + 4.6	V	
Analog reference voltage ^{10, 12}	AVRH	Vss - 0.5	V _{SS} + 4.6	V	
Input voltage ¹⁰	Vı	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 4.6 V)	V	
		V_{SS} - 0.5	V _{SS} + 6.5	V	5 V tolerant
Analog pin input voltage ¹⁰	VIA	V _{SS} - 0.5	V _{CC} + 0.5 (≤ 4.6 V)	V	
Output voltage ¹⁰	Vo	V _{SS} - 0.5	Vcc + 0.5 (≤ 4.6 V)	V	
L level maximum output current ¹³	lol	-	10	mA	4 mA type
L level average output current ¹⁴	lolav	-	4	mA	4 mA type
L level total maximum output current	∑lo∟	-	100	mA	
L level total average output current ¹⁵	∑lolav	-	50	mA	
H level maximum output current ¹³	Іон	-	- 10	mA	4 mA type
H level average output current ¹⁴	Іонач	-	- 4	mA	4 mA type
H level total maximum output current	Σloн	-	- 100	mA	
H level total average output current ¹⁵	∑lohav	-	- 50	mA	
Power consumption	PD	-	200	mW	
Storage temperature	Tstg	- 55	+ 150	°C	

<WARNING>

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

¹⁰ These parameters are based on the condition that V_{SS} = 0 V.

 ¹ V_{CC} must not drop below V_{SS} - 0.5 V.
 12 Ensure that the voltage does not to exceed V_{CC} + 0.5 V at power-on.
 13 The maximum output current is the peak value for a single pin.
 14 The average output is the average current for a single pin over a period of 100 ms.
 15 The total average output current is the average current for all pins over a period of 100 ms.

11.2 Recommended Operating Conditions

 $(V_{SS} = 0.0 V)$

Parameter	Symbol	Conditions	Va	lue	Unit	Remarks
Farameter	Symbol	Conditions	Min	Max	Ollic	Remarks
Power supply voltage	\/oo	_	1.65 ¹⁶	3.6	V	
Power supply voltage	Vcc	-	3.0	3.6	V	17
A 1 6	AVRH	-	2.7	Vcc	V	V _{CC} ≥ 2.7 V
Analog reference voltage			Vcc	Vcc	V	V _{CC} < 2.7 V
	AVRL	-	V_{SS}	Vss	V	
Smoothing capacitor	Cs	-	1	10	μF	For regulator ¹⁸
Operating temperature	Ta	-	- 40	+ 105	°C	

<WARNING>

- 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
- 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
- 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet.
- Users considering application outside the listed conditions are advised to contact their representatives beforehand.

 ¹⁶ In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only.
 ¹⁷ When P81/UDP0 and P80/UDM0 pins are used as USB (UDP0, UDM0).
 ¹⁸ See "C Pin" in "8. Handling Devices" for the connection of the smoothing capacitor.

11.3 DC Characteristics

11.3.1 Current Rating

Symbol		Conditions	HCLK	Va	lue	I I mit	Damari
(Pin Name)		Conditions	Frequency ¹⁹	Typ ²⁰	Max ²¹	Unit	Remarks
•		8 MHz external clock input, PLL ON ²²	8 MHz	1.4	2.7		
		NOP code executed	20 MHz	2.6	4.1	mA	23
		Built-in high speed CR stopped All peripheral clock stopped by CKENx	40 MHz	3.9	5.6	1	
	Run mode,	8 MHz external clock stopped by CKENX	8 MHz	1.3	2.6		
	code executed	Benchmark code executed	20 MHz	2.3	3.8	mA	23
	from Flash	Built-in high speed CR stopped	40 MHz	3.4	5.1	111/5	
		PCLK1 stopped 8 MHz crystal oscillation, PLL ON ²²	8 MHz	1.6	3.0		
		NOP code executed	20 MHz	2.8	4.4	mA	23, 24,
		Built-in high speed CR stopped All peripheral clock stopped by CKENx	40 MHz	4.1	5.9	1	, ,
Run mode,	Run mode	8 MHz external clock input, PLL ON ²²	8 MHz	1.0	2.1		
	code executed	NOP code executed	20 MHz	1.7	2.9	mA	23
lcc (VCC)	Icc (VCC) from RAM	Built-in high speed CR stopped All peripheral clock stopped by CKENx	40 MHz	2.7	4.0	1117	
code execu	Run mode, code executed from Flash	8 MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped	40 MHz	1.6	3.1	mA	23, 25, 26
		Built-in high speed CR ²⁷ NOP code executed All peripheral clock stopped by CKENx	8 MHz	1.1	2.4	mA	23
	Run mode, code executed from Flash	32 kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx	32 kHz	240	1264	μA	23
		Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx	100 kHz	246	1271	μA	23
		2.11	8 MHz	0.8	1.9		
		8 MHz external clock input, PLL ON ²² All peripheral clock stopped by CKENx	20 MHz	1.3	2.4	mA	23
		All periprieral clock stopped by CNLINX	40 MHz	1.8	3.0		
Iccs (VCC)	Sleep operation	Built-in high speed CR ²⁷ All peripheral clock stopped by CKENx	8 MHz	0.6	1.7	mA	23
(۷۵۵)	орегация	32 kHz crystal oscillation All peripheral clock stopped by CKENx	32 kHz	237	1261	μA	23
		Built-in low speed CR All peripheral clock stopped by CKENx	100 kHz	238	1262	μA	23

PCLK0 is set to divided rate 8.
 T_A=+25°C, V_CC=3.3 V
 T_A=+105°C, V_CC=3.6 V
 When HCLK=8, PLL is off.

²³ All ports are fixed
24 When IMAINSEL bit (MOSC_CTL:IMAINSEL) is "10" (default).
25 Flash sync down is set to FRWTR.RWT=111 and FSYNDN.SD=1111
26 VCC=1.65 V

²⁷ The frequency is set to 8 MHz by trimming

	Symbol			Va	lue		5	
Parameter	(Pin Name)	Co	nditions	Тур	Max	Unit	Remarks	
			Ta=25°C Vcc=3.3 V	12.4	52.4	μA	28, 29	
	I _{ССН} (VCC)	Stop mode	Ta=25°C Vcc=1.65 V	12.0	52.0	μA	28, 29	
			Ta=105°C Vcc=3.6 V	-	597	μA	28, 29	
Power	Icct (VCC)		Ta=25°C Vcc=3.3 V 32 kHz Crystal oscillation	15.6	55.6	μA	28, 29	
		Sub timer mode	Ta=25°C Vcc=1.65 V 32 kHz Crystal oscillation	15.0	55.0	μA	28, 29	
supply current			Ta=105°C Vcc=3.6 V 32 kHz Crystal oscillation	-	601	μA	28, 29	
	I _{CCR} (VCC)		Ta=25°C Vcc=3.3 V 32 kHz Crystal oscillation	13.2	53.2	μA	28, 29	
		RTC mode	Ta=25°C Vcc=1.65 V 32 kHz Crystal oscillation	12.7	52.7	μA	28, 29	
			Ta=105°C Vcc=3.6 V 32 kHz Crystal oscillation	-	598	μA	28, 29	

 $^{^{28}\,}$ All ports are fixed. LVD off. Flash off. $^{29}\,$ When CALDONE bit(CAL_CTL:CALDONE) is "1". In case of "0", Bipolar Vref current is added.

	Symbol				Va	alue			
Parameter	(Pin Name)		Conditions		Тур	Max	Unit	Remarks	
			RAM off	Ta=25°C Vcc=3.3 V	0.58	1.85	μA	30, 31	
				Ta=25°C Vcc=1.65 V	0.56	1.83	μA	30, 31	
I _{CCHD} (VCC)	Deep standby		Ta=105°C Vcc=3.6 V	-	46	μA	30, 31		
	Stop mode		Ta=25°C Vcc=3.3 V	0.78	6.6	μA	30, 31		
			RAM on	Ta=25°C Vcc=1.65 V	0.76	6.6	μA	30, 31	
Power				Ta=105°C Vcc=3.6 V	-	88	μA	30, 31	
supply current			RAM off	Ta=25°C Vcc=3.3 V	1.16	2.4	μA	30, 31	
				Ta=25°C Vcc=1.65 V	1.15	2.4	μA	30, 31	
	I _{CCRD}	Deep standby		Ta=105°C Vcc=3.6 V	-	46	μA	30, 31	
	(VCC)	RTC mode		Ta=25°C Vcc=3.3 V	1.37	7.2	μA	30, 31	
			RAM on	Ta=25°C Vcc=1.65 V	1.35	7.2	μA	30, 31	
				Ta=105°C Vcc=3.6 V	-	88	μA	30, 31	

 $^{^{\}rm 30}\,$ All ports are fixed. LVD off. $^{\rm 31}\,$ When CALDONE bit(CAL_CTL:CALDONE) is "1". In case of "0", Bipolar Vref current is added.

LVD Current

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Faranietei	Syllibol	Name	Conditions	Тур	Max	5	Remarks
Low-Voltage				0.15	0.3	μΑ	For occurrence of reset
detection circuit (LVD) power supply current	Icclvd	VCC	At operation	0.10	0.3	μΑ	For occurrence of interrupt

Bipolar Vref Current

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Value		Unit	Domarks
Parameter	Syllibol	Name	Conditions	Тур	Max	Ullit	Remarks
Bipolar Vref Current	Iccbgr	VCC	At operation	100	200	μΑ	

Flash Memory Current

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks
Farameter	Syllibol	Name	Conditions	Тур	Max	Oill	Remarks
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	4.4	5.6	mA	

A/D converter Current

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
i arameter	Gyillibol	Name	Conditions	Тур	Max	Oill	Remarks
Power supply current	I _{CCAD}	VCC	At operation	0.5	0.75	mA	
Reference power supply	1 AV		At operation	0.69	1.3	mA	AVRH=3.6 V
current (AVRH)	ICCAVRH	AVRH	At stop	0.1	1.3	μΑ	

Peripheral Current Dissipation

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, V_{SS}=0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

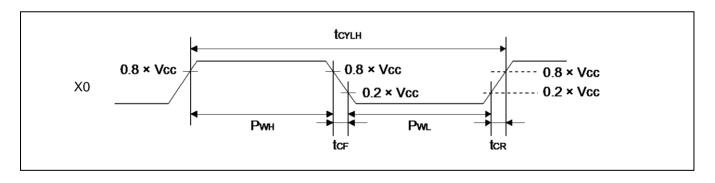
Clock	Darinharal	Conditions	Fr	equency (MHz)	1	Unit	Remarks
System	Peripheral	Conditions	8	20	40	Unit	Remarks
	GPIO	At all ports operation	0.05	0.12	0.23	4	
HCLK	DSTC	At 2ch operation	0.02	0.06	0.10	mA	
	USB	At 1ch operation	0.13	0.13	0.13	mA	32
	Base timer	At 4ch operation	0.02	0.05	0.10		
	ADC	At 1 unit operation	0.04	0.10	0.21		
PCLK1	Multi-function serial	At 1ch operation	0.01	0.03	0.06	mA	
	MFS-I2S	At 1ch operation	0.02	0.05	0.08		
	Smart Card I/F	At 1ch operation	0.04	0.08	0.18		

 $^{^{32}\,}$ USB itself uses 48 MHz clock

11.3.2 Pin Characteristics

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions		Value		Unit	Remarks
rarameter	Syllibol	r III IVallie	Conditions	Min	Тур	Max	Offic	Remarks
H level input		CMOS hysteresis	V _{CC} ≥ 2.7 V	Vcc × 0.8	_	Vcc +0.3	V	
voltage (hysteresis	Vihs	input pin, MD0	V _{CC} < 2.7 V	V _{CC} × 0.7		VCC 10.0		
input)		5 V tolerant	V _{CC} ≥ 2.7 V	Vcc × 0.8		V _{SS} +5.5	V	
		input pin	V _{CC} < 2.7 V	Vcc × 0.7	-	VSS +5.5	V	
L level input		CMOS hysteresis	V _{CC} ≥ 2.7 V	Vss - 0.3	_	Vcc × 0.2	V	
voltage (hysteresis V _{ILS}	V _{ILS}	input pin, MD0	Vcc < 2.7 V			Vcc × 0.3	-	
input)		5 V tolerant	V _{CC} ≥ 2.7 V	.,	-	V _{CC} × 0.2	.,	
		input pin	Vcc < 2.7 V	V _{SS} - 0.3	-	Vcc × 0.3	V	
H level	Vон	4 mA type	V _{CC} ≥ 2.7 V, I _{OH} = - 4 mA	V _{CC} - 0.5	_	Vcc	V	
output voltage	VOIT	i iiii tiybo	V _{CC} < 2.7 V, I _{OH} = - 2 mA	Vcc - 0.45		• 60	,	
L level output voltage	VoL	4 mA type	$V_{CC} \ge 2.7 \text{ V},$ $I_{OL} 4 \text{ mA}$ $V_{CC} < 2.7 \text{ V},$ $I_{OL} = 2 \text{ mA}$	- Vss	-	0.4	V	
Input leak current	I₁∟	-	-	- 5	-	+ 5	μA	
Pull-up			V _{CC} ≥ 2.7 V	21	33	48		
resistance R _{PU} value	R _{PU}	Pull-up pin	V _{CC} < 2.7 V			88	kΩ	
Input capacitance	C _{IN}	Other than VCC, VSS, AVRH	-	-	5	15	pF	

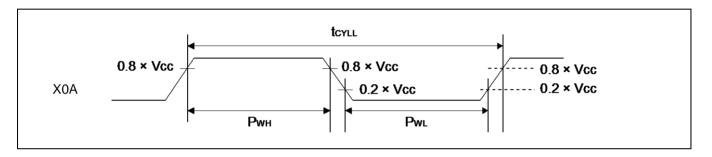


11.4 AC Characteristics

11.4.1 Main Clock Input Characteristics

 $(V_{CC}= 1.65 \text{ V to } 3.6 \text{ V}, V_{SS}= 0 \text{ V}, T_{A}=-40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Cumbal	Pin	Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	name	Conditions	Min	Max	Unit	Remarks
			V _{CC} ≥ 2.7V	8	48	MHz	When the crystal
Input fraguancy	E		Vcc < 2.7V	8	20	IVII IZ	oscillator is connected
Input frequency	F _{CH}		-	8	48	MHz	When the external clock is used
Input clock cycle	tcylh	X0, X1	-	20.83	125	ns	When the external clock is used
Input clock pulse width	-		Pwh/tcylh, Pwl/tcylh	45	55	%	When the external clock is used
Input clock rising time and falling time	tcr, t _{CR}		-	-	5	ns	When the external clock is used
	F _{CM}	-	-	-	40.8	MHz	Master clock
Internal operating	Fcc	-	-	-	40.8	MHz	Base clock (HCLK/FCLK)
clock ³³ frequency	F _{CP0}	-	-	-	40.8	MHz	APB0 bus clock ³⁴
	F _{CP1}	-	-	-	40.8	MHz	APB1 bus clock ³⁴
	t cyccm	-	-	24.5	-	ns	Master clock
Internal operating	tcycc	-	-	24.5	-	ns	Base clock (HCLK/FCLK)
clock ³³ cycle time	t _{CYCP0}	-	-	24.5	-	ns	APB0 bus clock ³⁴
	t _{CYCP1}	-	-	24.5	-	ns	APB1 bus clock ³⁴


For details of each internal operating clock, refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".
 For details of the APB bus to which a peripheral is connected, see the Peripheral Address Map.

11.4.2 Sub Clock Input Characteristics³⁵

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks	
Farailletei	Syllibol	Name	Conditions	Min	Тур	Max	Oilit	Remarks	
Input frequency	fcL		-	-	32.768	-	kHz	When the crystal oscillator is connected	
		X0A,	-	32	-	100	kHz	When the external clock is used	
Input clock cycle	tcyll	X1A	-	10	-	31.25	μs	When the external clock is used	
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When the external clock is used	

 $^{^{\}rm 35}$ See "Sub crystal oscillator" in "11. Handling Devices" for the crystal oscillator used.

11.4.3 Built-in CR Oscillation Characteristics

Built-in High-Speed CR

 $(V_{CC}= 1.65 \text{ V to } 3.6 \text{ V}, V_{SS}= 0 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

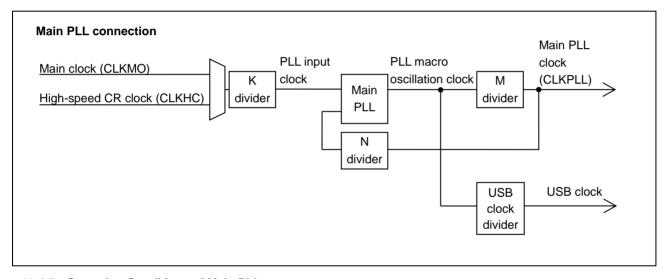
Doromotor	Cymphol	Conditions		Value		Unit	Domorko
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Clock frequency FCRH	L	Ta = - 10° C to + 105° C,	7.92	8	8.08	MHz	After trimming 36
	FCRH	Ta = -40° C to $+105^{\circ}$ C,	7.84	8	8.16	MHz	After trimming ³⁶
Frequency stabilization time	tcrwt	-	-	-	300	μs	37

Built-in Low-Speed CR

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Symbol Conditions	Value			Unit	Remarks
	Syllibol	Conditions	Min	Тур	Max	Unit	Remarks
Clock frequency	f _{CRL}	-	50	100	150	kHz	

Document Number: 002-00233 Rev. *D Page 54 of 109


In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming.
 This is time from the trim value setting to stable of the frequency of the High-speed CR clock.
 After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock.

11.4.4 Operating Conditions of Main PLL (In the Case of Using the Main Clock as the Input Clock of the PLL)

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Value			Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time ³⁸ (LOCK UP time)	tLOCK	50	-	-	μs	
PLL input clock frequency	F _{PLLI}	8	-	16	MHz	
PLL multiple rate	-	5	-	18	multiple	
PLL macro oscillation clock frequency	F _{PLLO}	75	-	150	MHz	
Main PLL clock frequency ³⁹	FCLKPLL	-	-	40	MHz	
USB clock frequency ⁴⁰	FCLKSPLL	-	-	48	MHz	

11.4.5 Operating Conditions of Main PLL (In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL)

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Value			Unit	Remarks
r al ameter	Syllibol	Min	Тур	Max	Oilit	Kemarks
PLL oscillation stabilization wait time ⁴¹ (LOCK UP time)	tLOCK	50	-	-	μs	
PLL input clock frequency	F _{PLLI}	7.84	8	8.16	MHz	
PLL multiple rate	-	9	-	18	multiple	
PLL macro oscillation clock frequency	F _{PLLO}	75	-	150	MHz	
Main PLL clock frequency ⁴²	FCLKPLL	-	-	40.8	MHz	

Note:

For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency and temperature have been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

The wait time is the time it takes for PLL oscillation to stabilize.

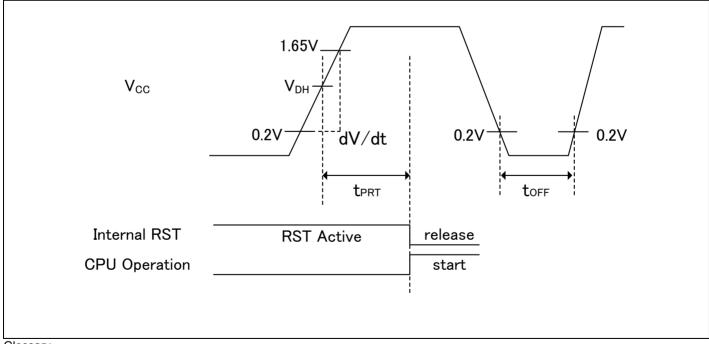
³⁹ For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".

⁴⁰ For more information about USB clock, see "Chapter: USB Clock Generation" in "FM0+ Family Peripheral Manual Communication Macro Part".

⁴¹ The wait time is the time it takes for PLL oscillation to stabilize.

⁴² For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual".

11.4.6 Reset Input Characteristics


 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Pin			lue	Unit	Remarks
raiametei	Cymbol	Name	Conditions	Min	Max	Ome	Remarks
Reset input time	t _{INITX}	INITX	-	500	-	ns	

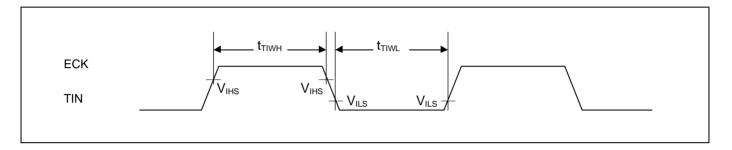
11.4.7 Power-on Reset Timing

 $(V_{SS}= 0 V, T_{A}=- 40^{\circ}C to +105^{\circ}C)$

Parameter	Symbol	Pin	Condition		Value			Remarks
Farameter	Syllibol	Name	Condition	Min	Тур	Max	Unit	Remarks
Power supply shut down time	toff	VCC	-	2	-	-	ms	V _{CC} must be held below 0.2V for a minimum period of toff. Improper initialization may occur if this condition is not met.
Power ramp rate	dV/dt		Vcc: 0.2V to 1.65V	0.6	-	1000	mV/μs	This dV/dt characteristic is applied at the power-on of cold start (toff>2ms).
Time until releasing Power-on reset	tprt		-	0.43	-	3.4	ms	

Glossary

□ VDH: detection voltage of Low-Voltage detection reset. See "11.7 Low-Voltage Detection Characteristics".



11.4.8 Base Timer Input Timing

Timer Input Timing

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter	Syllibol	i Pin Name Conditions		Min	Max	Oilit	Remarks
		TIOAn/TIOBn					
Input pulse width	t _{TIWH} , t _{TIWL}	(when using as	-	2 t _{CYCP}	-	ns	
		ECK, TIN)					

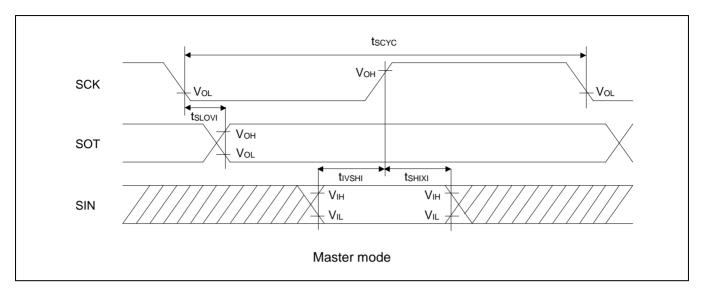
Trigger Input Timing

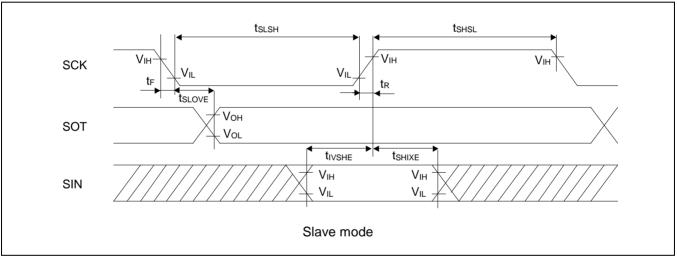
(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A =- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter	Syllibol	FIII Naille	Conditions	Min	Max	Oilit	Kelliaiks
Input pulse width	tтrgн, tтrgl	TIOAn/TIOBn (when using as TGIN)	-	2 tcycp	-	ns	

- t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map
- _ "

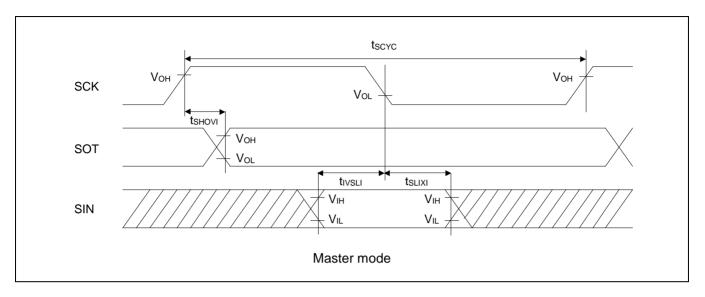
11.4.9 CSIO/SPI/UART Timing

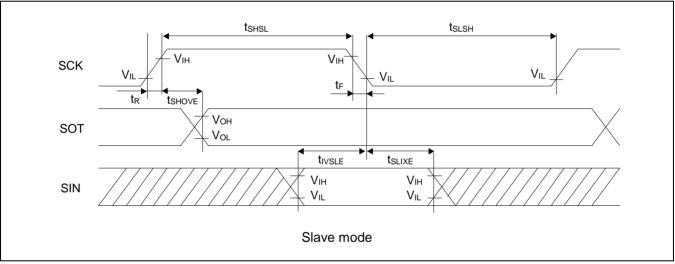

CSIO (SPI=0, SCINV=0)


(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	Vcc < 2.7 V		V _{CC} ≥ 2.7 V		Unit
Parameter	Syllibol	name	Conditions	Min	Max	Min	Max	Ullit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4 tcycp		4 tcycp	-	ns
$SCK\downarrow\toSOTdelaytime$	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \rightarrow SCK \uparrow setup time$	tıvsнı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \to SIN \; hold \; time$	t _{SHIXI}	SCKx, SINx		0	-	0	-	ns
Serial clock "L" pulse width	tslsh	SCKx		2 t _{CYCP} - 10	1	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10	-	tcycp + 10	-	ns
$SCK \downarrow \to SOT delay time$	tslove	SCKx, SOTx	Slave mode	-	50	-	30	ns
$SIN \to SCK \uparrow setup time$	tivshe	SCKx, SINx	Slave mode	10	1	10	-	ns
$SCK \uparrow \to SIN \; hold \; time$	tshixe	SCKx, SINx		20	-	20		ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

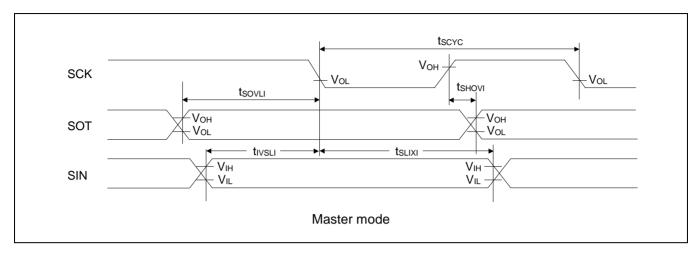
- The above AC characteristics are for clock synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- The characteristics are applicable only when the relocate port numbers are the same.
 For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

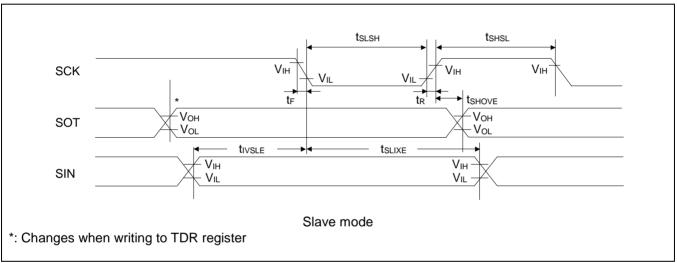

CSIO (SPI=0, SCINV=1)


(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	V _{CC} < 2.7V		V _{CC} ≥ 2.7V		Unit
Faranietei	Syllibol	name	Conditions	Min	Max	Min	Max	Ollit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4 tcycp	-	4 tcycp		ns
$SCK \uparrow \rightarrow SOT$ delay time	t _{SHOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup \ time$	tıvslı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK\downarrow\toSIN\;hold\;time$	tslixi	SCKx, SINx		0		0		ns
Serial clock "L" pulse width	tslsн	SCKx		2 t _{CYCP} - 10	ı	2 t _{CYCP} - 10	ı	ns
Serial clock "H" pulse width	t _{SHSL}	SCKx		t _{CYCP} + 10		t _{CYCP} + 10		ns
SCK ↑ → SOT delay time	t _{SHOVE}	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \downarrow setup \ time$	tivsle	SCKx, SINx	Slave mode	10	1	10	1	ns
$SCK\downarrow\toSIN\;hold\;time$	t _{SLIXE}	SCKx, SINx		20	ı	20	ı	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

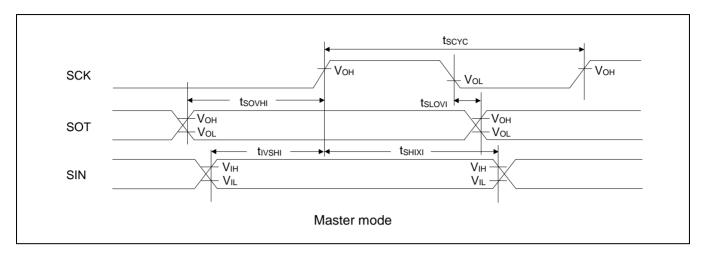
- The above AC characteristics are for clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- The characteristics are applicable only when the relocate port numbers are the same.
 For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

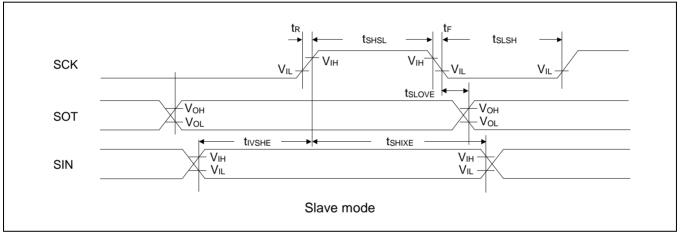

SPI (SPI=1, SCINV=0)


(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	V _{CC} < 2.7 V		V _{CC} ≥ 2.7 V		Unit
r arameter	Symbol	name	Conditions	Min	Max	Min	Max	Oiiit
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4 tcycp	-	4 tcycp	-	ns
$SCK \uparrow \to SOT$ delay time	t _{SHOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
$SIN \to SCK \downarrow setup time$	tıvslı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \downarrow \rightarrow SIN \text{ hold time}$	tsuxi	SCKx, SINx		0	-	0	-	ns
$SOT \rightarrow SCK \downarrow delay time$	tsovli	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	tslsh	SCKx		2 t _{CYCP} - 10	-	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	ns
$SCK \uparrow \to SOT \ delay \ time$	tshove	SCKx, SOTx		-	50	-	33	ns
$SIN \to SCK \downarrow setup time$	t _{IVSLE}	SCKx, SINx	Slave mode	10	-	10	-	ns
$SCK \downarrow \rightarrow SIN \text{ hold time}$	tslixe	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

- The above AC characteristics are for clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- The characteristics are applicable only when the relocate port numbers are the same.
 For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF


SPI (SPI=1, SCINV=1)


(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Pin	Conditions	V _{CC} < 2.7 V		V _{CC} ≥ 2.7 V		Unit
Farameter	Syllibol	name	Conditions	Min	Max	Min	Max	
Baud rate	-	-	-	-	8	-	8	Mbps
Serial clock cycle time	tscyc	SCKx		4 tcycp	-	4 tcycp	-	ns
$SCK\downarrow \to SOT$ delay time	t _{SLOVI}	SCKx, SOTx		- 30	+ 30	- 20	+ 20	ns
SIN → SCK ↑ setup time	tıvsнı	SCKx, SINx	Master mode	50	-	36	-	ns
$SCK \uparrow \rightarrow SIN \text{ hold time}$	tshixi	SCKx, SINx		0	-	0	-	ns
SOT → SCK ↑ delay time	tsovні	SCKx, SOTx		2 t _{CYCP} - 30	-	2 t _{CYCP} - 30	-	ns
Serial clock "L" pulse width	tslsн	SCKx		2 t _{CYCP} - 10	1	2 t _{CYCP} - 10	-	ns
Serial clock "H" pulse width	tshsl	SCKx		tcycp + 10		tcycp + 10	-	ns
$SCK \downarrow \rightarrow SOT$ delay time	tslove	SCKx, SOTx		-	50	-	33	ns
$SIN \rightarrow SCK \uparrow setup time$	tivshe	SCKx, SINx	Slave mode	10	1	10	-	ns
$SCK \uparrow \to SIN \; hold \; time$	tshixe	SCKx, SINx		20	-	20	-	ns
SCK falling time	tF	SCKx		-	5	-	5	ns
SCK rising time	tR	SCKx		-	5	-	5	ns

- The above AC characteristics are for clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- The characteristics are applicable only when the relocate port numbers are the same.
 For instance, they are not applicable for the combination of SCKx_0 and SOTx_1.
- External load capacitance C_L=30 pF

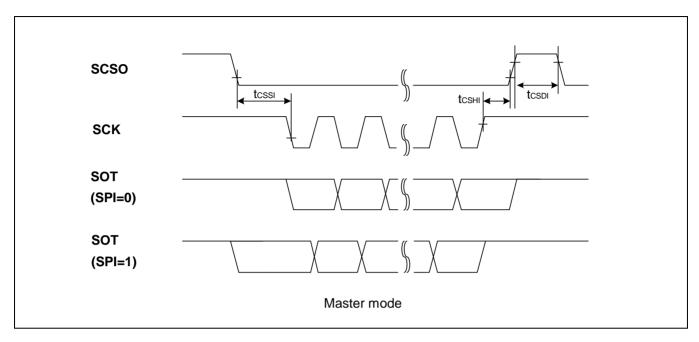
When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=1)

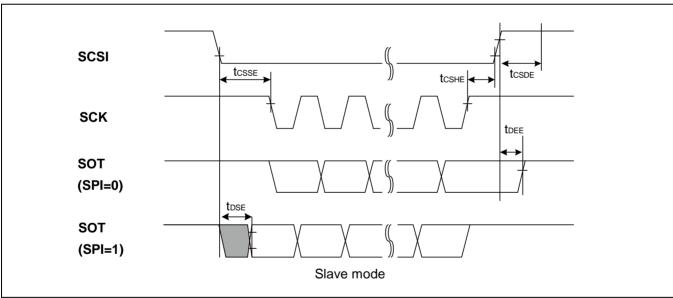
 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Conditions	V _{cc} < 2	2.7 V	V _{CC} ≥ 2	Unit	
	Symbol	Conditions	Min	Max	Min	Max	Oilit
SCS↓→SCK↓ setup time	tcssı		-50 ⁴³	+043	-50 ⁴³	+043	ns
SCK↑→SCS↑ hold time	tсsні	Master mode	+044	+5044	+044	+5044	ns
SCS deselect time	tcsdi		-50 ⁴⁵	+5044	-50 ⁴⁴	+5044	ns
SCS↓→SCK↓ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK↑→SCS↑ hold time	tcshe		0	-	0	-	ns
SCS deselect time	t _{CSDE}	Slave mode	3t _{CYCP} +30	-	3t _{CYCP} +30	-	ns
SCS↓→SOT delay time	tose		-	55	-	40	ns
SCS↑→SOT delay time	tdee		0	-	0	-	ns

Notes:

- tcycp indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics guarantee only the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L=30 pF.


Document Number: 002-00233 Rev. *D Page 66 of 109


 $^{^{43}}$ CSSU bit value × serial chip select timing operating clock cycle. 44 CSHD bit value × serial chip select timing operating clock cycle.

⁴⁵ CSDS bit value x serial chip select timing operating clock cycle.

Irrespective of CSDS bit setting, 5tcycp or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

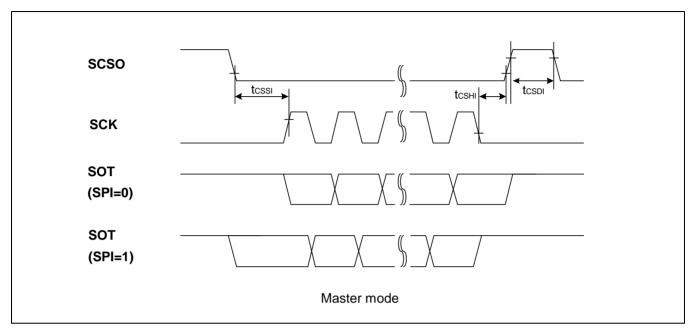
When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1)

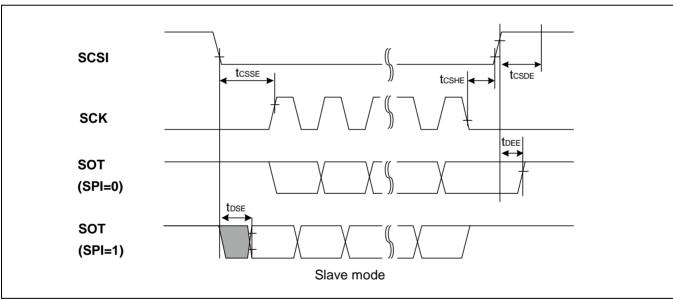
(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Conditions	Vcc < 2	2.7 V	V _{CC} ≥ 2.7 V		Unit
Farameter	Syllibol		Min	Max	Min	Max	Oiiit
SCS↓→SCK↑ setup time	tcssı		-50 ⁴⁶	+046	-50 ⁴⁶	+046	ns
SCK↓→SCS↑ hold time	tсsні	Master mode	+0 ⁴⁷	+5047	+047	+50 ⁴⁷	ns
SCS deselect time	t _{CSDI}		-50 ⁴⁸	+5048	-50 ⁴⁸	+5048	ns
SCS↓→SCK↑ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK↓→SCS↑ hold time	t _{CSHE}		0	-	0	-	ns
SCS deselect time	tcsde	Slave mode	3tcycp+30	-	3tcycp+30	-	ns
SCS↓→SOT delay time	tose		-	55	-	40	ns
SCS↑→SOT delay time	t _{DEE}		0	-	0	-	ns

Notes:

- tcycp indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics guarantee only the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L=30 pF.


Document Number: 002-00233 Rev. *D Page 68 of 109


 $^{^{46}}$ CSSU bit value × serial chip select timing operating clock cycle. 47 CSHD bit value × serial chip select timing operating clock cycle.

⁴⁸ CSDS bit value x serial chip select timing operating clock cycle.

Irrespective of CSDS bit setting, 5tcycp or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

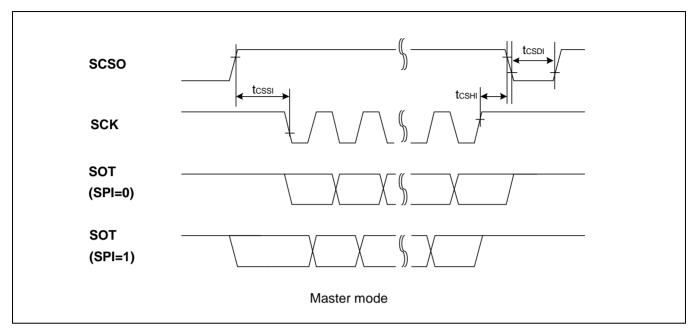
When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=0)

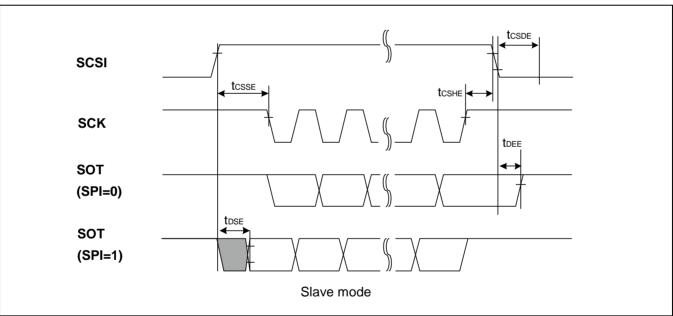
(Vcc= 1.65 V to 3.6 V, Vss= 0 V, Ta=- 40°C to +105°C)

Parameter	Symbol	Conditions	Vcc < 2	2.7 V	V _{cc} ≥ 2	Unit	
rai ailletei	Symbol	Conditions	Min	Max	Min	Max	Onit
SCS↑→SCK↓ setup time	tcssı		-50 ⁴⁹	+049	-50 ⁴⁹	+049	ns
SCK↑→SCS↓ hold time	tcsHI	Master mode	+0 ⁵⁰	+50 ⁵⁰	+0 ⁵⁰	+50 ⁵⁰	ns
SCS deselect time	tcspi		-50 ⁵¹	+50 ⁵¹	-50 ⁵¹	+50 ⁵¹	ns
SCS↑→SCK↓ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK↑→SCS↓ hold time	tcshe		0	-	0	-	ns
SCS deselect time	tcsde	Slave mode	3tcycp+30	-	3tcycp+30	-	ns
SCS↑→SOT delay time	tose		-	55	-	40	ns
SCS↓→SOT delay time	t _{DEE}		0	-	0	-	ns

Notes:

- tcycp indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- For information About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics guarantee only the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L =30 pF.


Document Number: 002-00233 Rev. *D Page 70 of 109


 $^{^{49}}$ CSSU bit value × serial chip select timing operating clock cycle. 50 CSHD bit value × serial chip select timing operating clock cycle.

⁵¹ CSDS bit value x serial chip select timing operating clock cycle.

Irrespective of CSDS bit setting, 5tcyce or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.

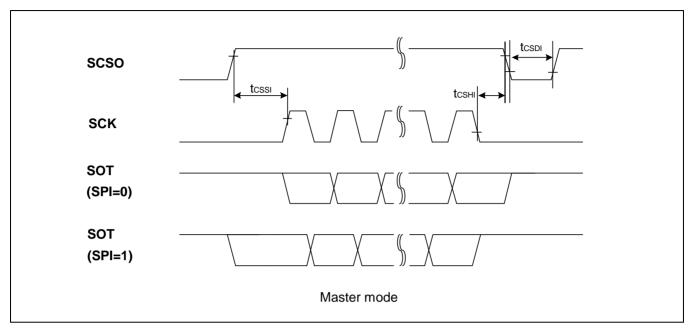
When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0)

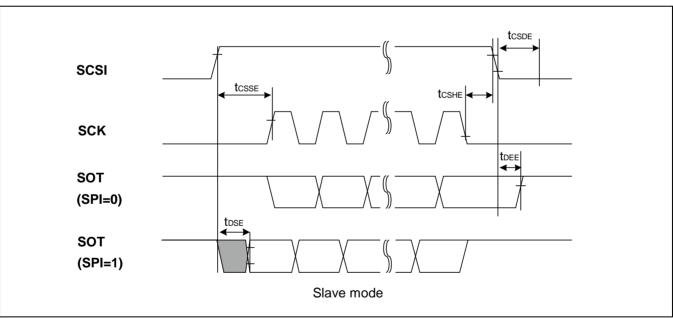
(Vcc= 1.65 V to 3.6 V, Vss= 0 V, Ta=- 40°C to +105°C)

Parameter	Symbol	Conditions	Vcc < 2	2.7 V	V _{cc} ≥ 2	2.7 V	Unit
Parameter	Symbol	Conditions	Min	Max	Min	Max	Offic
SCS↑→SCK↑ setup time	tcssı		-50 ⁵²	+0 ⁵²	-50 ⁵²	+0 ⁵²	ns
SCK↓→SCS↓ hold time	tcsHI	Master mode	+0 ⁵³	+50 ⁵³	+0 ⁵³	+50 ⁵³	ns
SCS deselect time	tcspi		- 50 ⁵⁴	+50 ⁵⁴	- 50 ⁵⁴	+50 ⁵⁴	ns
SCS↑→SCK↑ setup time	tcsse		3tcycp+30	-	3tcycp+30	-	ns
SCK↓→SCS↓ hold time	tcshe		0	-	0	-	ns
SCS deselect time	tcsde	Slave mode	3tcycp+30	-	3tcycp+30	-	ns
SCS↑→SOT delay time	tose		-	55	-	40	ns
SCS↓→SOT delay time	t _{DEE}		0	-	0	-	ns

Notes:

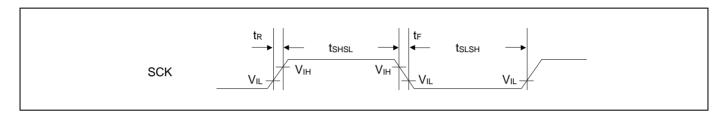
- tcycp indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
- For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual".
- These characteristics guarantee only the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed.
- When the external load capacitance C_L =30 pF.


Document Number: 002-00233 Rev. *D Page 72 of 109


 $^{^{52}}$ CSSU bit value \times serial chip select timing operating clock cycle. 53 CSHD bit value \times serial chip select timing operating clock cycle.

⁵⁴ CSDS bit value x serial chip select timing operating clock cycle.

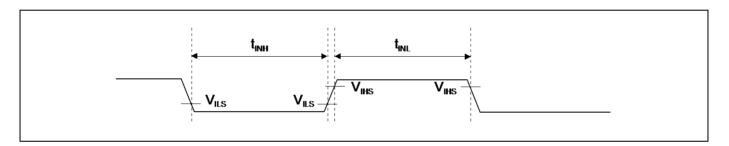
Irrespective of CSDS bit setting, 5tcyce or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again.



UART external clock input (EXT=1)

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } +105 ^{\circ}\text{C})$

Parameter	Symbol	Conditions	Va	Value			
raiametei	Syllibol	Conditions	Min	Max	Unit	Remarks	
Serial clock L pulse width	t _{SLSH}		t _{CYCP} +10	-	ns		
Serial clock H pulse width	tshsl	C _L =30 pF	tcycp +10	-	ns		
SCK falling time	tϝ	CL=30 pr	-	5	ns		
SCK rising time	t _R		-	5	ns		



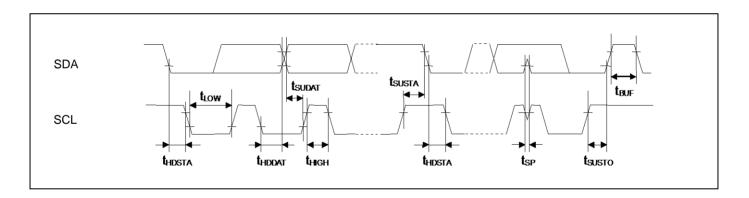
11.4.10 External Input Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Doromotor	Symbol	Pin Name	Conditions	Value		Unit	Remarks
Parameter	Symbol	Fill Name Condition		Min	Max	Unit	Remarks
Input pulse width	tinh, tinl	ADTGx	-	2 tcycp ⁵⁵	-	ns	A/D converter trigger input
		INT00 to INT08,	56	2 t _{CYCP} +100 ⁵⁵	-	ns	External
		INT12, INT13, INT15, NMIX	57	500	-	ns	interrupt, NMI
		WKUPx	58	500	-	ns	Deep standby wake up

Document Number: 002-00233 Rev. *D

tcycp indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.
 In Run mode and Sleep mode
 In Timer mode, RTC mode and Stop mode
 In Deep Standby RTC mode and Deep Standby Stop mode



11.4.11 PC Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Parameter	Symbol	Conditions	Standard	d-Mode	Fast-l	Mode	Unit	Remarks
Farameter	Symbol	Conditions	Min	Max	Min	Max	Uill	Remarks
SCL clock frequency	F _{SCL}		0	100	0	400	kHz	
(Repeated) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	ı	μs	
SCL clock L width	t _{LOW}		4.7	-	1.3	-	μs	
SCL clock H width	thigh		4.0	-	0.6	-	μs	
(Repeated) Start setup time SCL ↑ → SDA ↓	tsusta		4.7	-	0.6	-	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	C _L =30 pF, R=(Vp/I _{OL}) ⁵⁹	0	3.45 ⁶⁰	0	0.961	μs	
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	tsudat		250	-	100	1	ns	
Stop condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	tsusто		4.0	-	0.6	-	μs	
Bus free time between Stop condition and Start condition	t _{BUF}		4.7	-	1.3		μs	
Noise filter	tsp	-	2 tcycp ⁶²	-	2 tcycp ⁶²		ns	

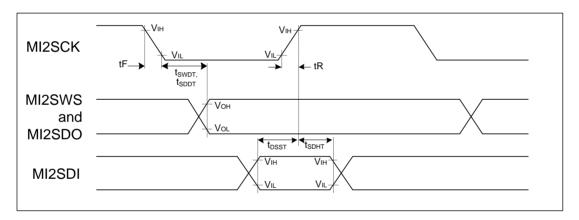
To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more.

⁵⁹ R represents the pull-up resistance of the SCL and SDA lines, and C_L the load capacitance of the SCL and SDA lines. V_P represents the power supply voltage of the pull-up resistance, and lo_L the V_{OL} guaranteed current.

⁶⁰ The maximum t_{HDDAT} must satisfy at least the condition that the period during which the device is holding the SCL signal at L (t_{LOW}) does not extend.

⁶¹ A Fast-mode l²C bus device can be used in a Standard-mode l²C bus system, provided that the condition of t_{SUDAT} ≥ 250 ns is fulfilled.

⁶² t_{CYCP} represents the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see the Peripheral Address Map.



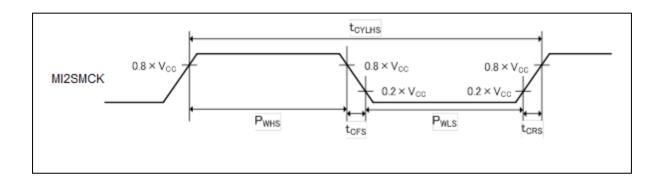
11.4.12 PS Timing (MFS-I2S Timing)

Master Mode Timing

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbo	Pin Name	Condition	Vcc < 2	2.7 V	V _{cc} ≥	2.7 V	Unit
Farameter	Ī	FIII Naille	s	Min	Max	Min	Max	Ollit
MI2SCK max frequency ⁶³	F _{MI2SCK}	MI2SCKx		-	6.144	ı	6.144	MHz
I ² S clock cycle time ⁶³	t _{ICYC}	MI2SCKx		4 t _{CYCP}	-	4 t _{CYCP}	1	ns
I ² S clock Duty cycle	Δ	MI2SCKx		45%	55%	45%	55%	
MI2SCK↓ → MI2SWS delay	town	MI2SCKx,		-30	+30	-20	+20	ns
time	tswdt	MI2SWSx		-30	+30	-20	+ 20	115
MI2SCK ↓ → MI2SDO delay	t	MI2SCKx,		-30	+30	-20	+20	no
time	tsddt	MI2SDOx	C _L =30 pF	-30	+30	-20	+20	ns
MI2SDI → MI2SCK ↑ setup	4	MI2SCKx,		50		36		
time	tdsst	MI2SDIx		50	-	36	-	ns
MI2SCK ↑ → MI2SDI hold	4	MI2SCKx,		0		0		
time	tsdht	MI2SDIx		U	-	U	-	ns
MI2SCK falling time	tF	MI2SCKx		-	5	-	5	ns
MI2SCK rising time	tR	MI2SCKx		-	5	-	5	ns

Document Number: 002-00233 Rev. *D Page 77 of 109


 $^{^{63}}$ l²S clock should meet the multiple of PCLK(t_{ICYC}) and the frequency less than F_{MI2SCK} meantime. The detail information please refer to Chapter I²S of Communication Macro Part of the Peripheral Manual.

MI2SMCK Input Characteristics

 $(V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}, V_{SS} = 0 \text{ V}, T_{A} = 40^{\circ}\text{C to } +105^{\circ}\text{C})$

Parameter	Symbol	Pin Name Conditions			lue	Unit	Remarks
rarameter	Symbol	Fili Name	Min I		Max	Offic	iveiliai ks
Input frequency	f _{CHS}	MI2SMCK	-	-	12.288	MHz	
Input clock cycle	tcylhs	-	-	81.3	-	ns	
Input clock pulse width	-	-	Pwhs/tcylhs Pwls/tcylhs	45	55	%	When using external clock
Input clock rise time and fall time	tcrs tcrs	-	-	-	5	ns	When using external clock

MI2SMCK Output Characteristics

(Vcc= 1.65 V to 3.6 V, Vss= 0 V, T_{A} =- 40°C to +105°C)

Parameter	Symbol	Pin Name Conditions		Value		Unit	Remarks
Farameter	Symbol	Fill Name	Conditions	Min	Max	Ollit	Remarks
Output fraguency	4	MIDEMOK		-	25	MHz	V _{CC} ≥ 2.7 V
Output frequency	†chs	MI2SMCK	-	-	20	MHz	Vcc < 2.7 V

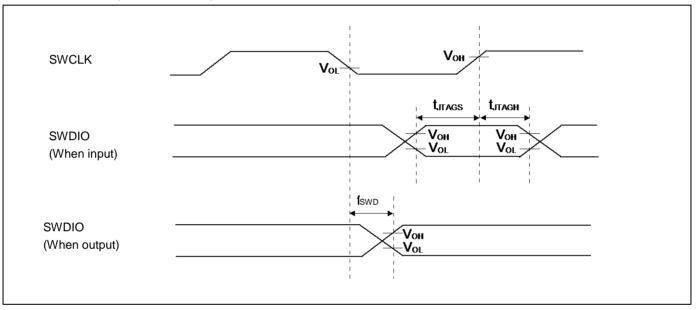
11.4.13 Smart Card Interface Characteristics

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A =- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Va	lue	Unit	Remarks
Farameter	Syllibol	Fili Name	Conditions	Min	Max	Onit	Kelliaiks
Output dialog time		ICx_VCC,		4	00		
Output rising time	t _R	ICx_RST,		4	20	ns	
Output folling time	4	ICx_CLK,	C _L =30 pF	4	20	20	
Output falling time	t _F	ICx_DATA	CL=30 pr	4	20	ns	
Output clock frequency	f _{CLK}	ICx CLK		ı	20	MHz	
Duty cycle	Δ	ICX_CLK		45%	55%		

■External pull-up resistor (20 k Ω to 50 k Ω) must be applied to ICx_CIN pin when it's used as smart card reader function.

Document Number: 002-00233 Rev. *D Page 79 of 109


11.4.14 SW-DP Timing

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A =- 40°C to +105°C)

Parameter	Symbol	Pin Name	Conditions	Val	lue	Unit	Remarks
Farameter	Symbol	Fill Name	Conditions	Min	Max	Ollit	Remarks
SWDIO setup time	tsws	SWCLK, SWDIO	-	15	-	ns	
SWDIO hold time	tswH	SWCLK, SWDIO	-	15		ns	
SWDIO delay time	tswD	SWCLK, SWDIO	-	-	45	ns	

Note:

External load capacitance C_L=30 pF

11.5 12-bit A/D Converter

Electrical Characteristics of A/D Converter (Preliminary Values)

(V_{CC}= 1.65 V to 3.6 V, V_{SS}= 0 V, T_A=- 40°C to +105°C)

Danamatan.	Comple ed	Dia Nama		Value		1111	Damada
Parameter	Symbol	Pin Name	Min	Тур	Max	Unit	Remarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	-	-	- 4.5	-	4.5	LSB	
Differential Nonlinearity	-	-	- 2.5	-	+ 2.5	LSB	
Zero transition voltage	V_{ZT}	ANxx	- 15	-	+ 15	mV	
Full-scale transition voltage	V _{FST}	ANxx	AVRH - 15	-	AVRH + 15	mV	
			1.0	-	-		V _{CC} ≥ 2.7 V
Conversion time ⁶⁴	-	-	4.0	-	-	μs	1.8 ≤ V _{CC} < 2.7 V
			10	-	-		1.65 ≤ V _{CC} < 1.8 V
			0.3	-			V _{CC} ≥ 2.7 V
Sampling time ⁶⁵	Ts	-	1.2	-	10	μs	1.8 ≤ V _{CC} < 2.7 V
			3.0	-			1.65 ≤ V _{CC} < 1.8 V
			50	-			V _{CC} ≥ 2.7 V
Compare clock cycle ⁶⁶	Tcck	-	200	-	1000	ns	1.8 ≤ V _{CC} < 2.7 V
			500	-			1.65 ≤ V _{CC} < 1.8 V
State transition time to operation permission	Tstt	-	-	-	1.0	μs	
Analog input capacity	CAIN	-	-	_	7.5	pF	
7 maiog mpar capacity	JAIN				2.2	Ρ.	V _{CC} ≥ 2.7 V
Analog input resistance	R _{AIN}	_	_	_	5.5	kΩ	1.8 ≤ V _{CC} < 2.7 V
, maneg mpar recicianies					10.5		1.65 ≤ V _{CC} < 1.8 V
Interchannel disparity	-	-	-	-	4	LSB	1.00 = 1.00 1 1.0 1
Analog port input leak current	-	ANxx	-	-	5	μA	
Analog input voltage	-	ANxx	Vss	-	AVRH	V	
Reference voltage	-	AVRH	2.7 Vcc	-	Vcc	V	VCC ≥ 2.7V VCC < 2.7V
1.5.5.5.100 101.490	-	AVRL	Vss	-	V _{SS}	V	

The minimum conversion time is computed according to the following conditions:

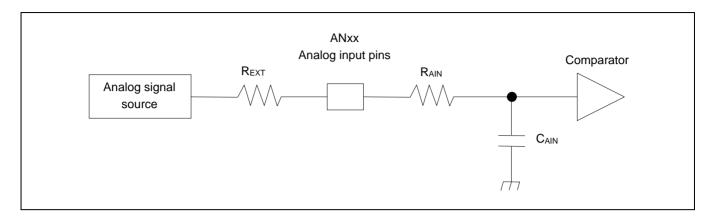
For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part". The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

For the number of the APB bus to which the A/D Converter is connected, see the Peripheral Address Map.

Document Number: 002-00233 Rev. *D Downloaded From Oneyac.com

⁶⁴ The conversion time is the value of sampling time (t_S) + compare time (t_C).

V_{CC} ≥ 2.7 V sampling time=0.3 µs, compare time=0.7 µs $1.8 \le V_{CC} < 2.7 \text{ V}$ sampling time=1.2 µs, compare time=2.8 µs $1.65 \le V_{CC} < 1.8 \text{ V}$ sampling time=3.0 µs, compare time=7.0 µs


Ensure that the conversion time satisfies the specifications of the sampling time (ts) and compare clock cycle (tcck).

The base clock (HCLK) is used to generate the sampling time and the compare clock cycle.

65 The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1).

66 The compare time (tc) is the result of (Equation 2).

(Equation 1) $t_S \ge (R_{AIN} + R_{EXT}) \times C_{AIN} \times 9$

ts: Sampling time

R_{AIN}: Input resistance of A/D Converter = $2.2 \text{ k}\Omega$ with $2.7 \le \text{VCC} \le 3.6$

Input resistance of A/D Converter = $5.5 \text{ k}\Omega$ with $1.8 \le \text{VCC} \le 2.7$ Input resistance of A/D Converter = $10.5 \text{ k}\Omega$ with $1.65 \le \text{VCC} \le 1.8$

Input capacitance of A/D Converter = 7.5 pF with $1.65 \le VCC \le 3.6$

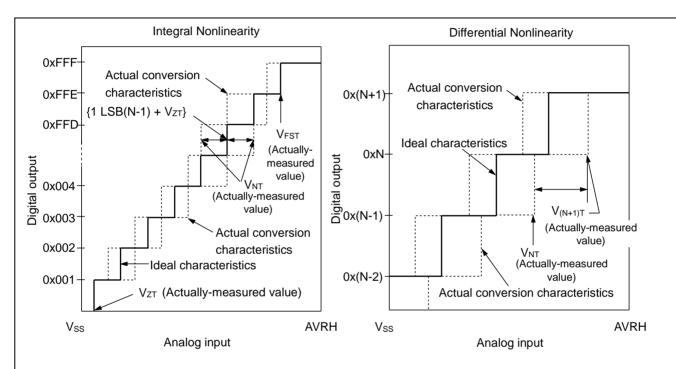
C_{AIN}: Input capacitance of A/D Converter = 7.5 pF with R_{EXT}: Output impedance of external circuit

(Equation 2) tc=tcck x 14

t_C: Compare time

tcck: Compare clock cycle

Definitions of 12-bit A/D Converter Terms


■ Resolution: Analog variation that is recognized by an A/D converter.

■ Integral Nonlinearity: Deviation of the line between the zero-transition point (0b00000000000 ←→ 0b00000000001) and the

full-scale transition point (0b111111111110 \longleftrightarrow 0b11111111111) from the actual conversion

characteristics.

■ Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.

Integral Nonlinearity of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{ZT}\}}{1LSB}$$
 [LSB]

Differential Nonlinearity of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]

$$1LSB = \frac{V_{FST} - V_{ZT}}{4094}$$

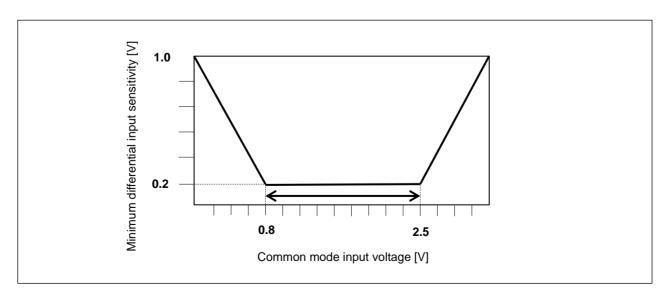
N : A/D converter digital output value.

 V_{ZT} : Voltage at which the digital output changes from 0x000 to 0x001. V_{FST} : Voltage at which the digital output changes from 0xFFE to 0xFFF. V_{NT} : Voltage at which the digital output changes from 0x(N - 1) to 0xN.

11.6 USB Characteristics

(V_{CC}=3.0 V to 3.6 V, V_{SS}=0 V, T_A=- 40°C to +105°C)

	Parameter	Cumahad	Pin	Conditions	Va	lue	Unit	Schematic
	Parameter	Symbol	Name	Conditions	Min	Max	Unit	Reference
	Input H level voltage	VIH		-	2.0	V _{CC} + 0.3	V	1
Input characteristics	Input L level voltage	VIL		-	V _{SS} – 0.3	0.8	٧	1
	Differential input sensitivity	VDI		-	0.2	-	V	2
	Differential common mode range	Vсм		-	0.8	2.5	V	2
	Output H level voltage	Vон		External pull-down resistance = 15 kΩ	2.8	3.6	V	3
	Output L level voltage	Vol	UDP0, UDM0	External pull-up resistance = 1.5 kΩ	0.0	0.3	٧	3
	Crossover voltage	Vcrs		-	1.3	2.0	V	4
Output	Rising time	tFR		Full-speed	4	20	ns	5
characteristic	Falling time	tFF		Full-speed	4	20	ns	5
	Rising/Falling time matching	tfrfm		Full-speed	90	111.11	%	5
	Output impedance	ZDRV		Full-speed	28	44	Ω	6
	Rising time	tLR		Low-speed	75	300	ns	7
	Falling time	tLF		Low-speed	75	300	ns	7
	Rising/Falling time matching	tlrfm		Low-speed	80	125	%	7

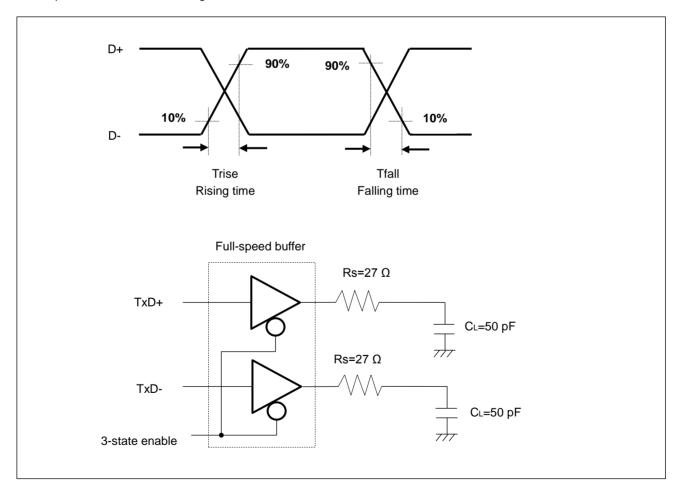

^{1.} The switching threshold voltage of single-end-receiver of USB I/O buffer is set as within VIL(Max)=0.8 V, VIH(Min)=2.0 V (TTL input standard).

There is some hysteresis to lower noise sensitivity.

2. Use differential-receiver to receive USB differential data signal.

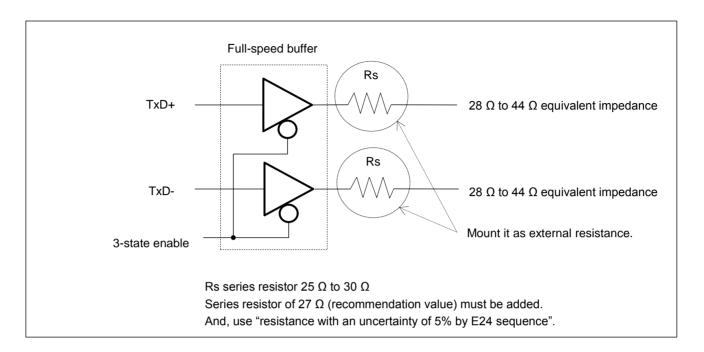
Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level.

Above voltage range is the common mode input voltage range.

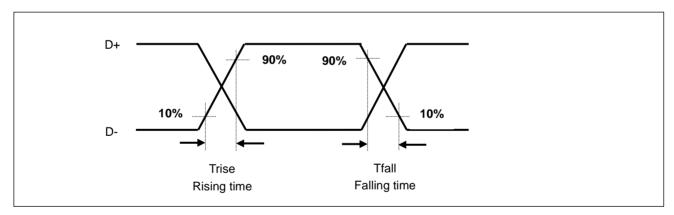


- 3. The output drive capability of the driver is below 0.3 V at Low-state (VoL) (to 3.6 V and 1.5 k Ω load), and 2.8 V or above (to the VSS and 1.5 k Ω load) at high-state (VoH)
- 4. The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V.

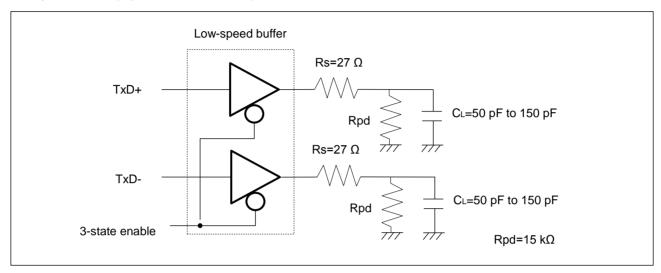
5. They indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission.

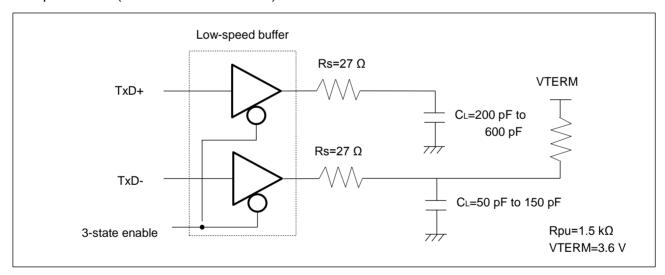


 USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode).

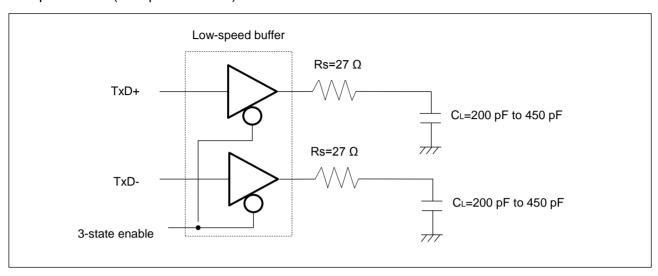

USB standard defines that output impedance of USB driver must be in range from 28 Ω to 44 Ω . So, discrete series resistor (Rs) addition is defined to satisfy the above definition and keep balance.

When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value: 27 Ω) series resistor Rs.


7. They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage.


See "Low-speed load (Compliance Load)" for conditions of external load.

· Low-Speed Load (Upstream Port Load) - Reference 1



· Low-Speed Load (Downstream Port Load) - Reference 2

· Low-Speed Load (Compliance Load)

11.7 Low-Voltage Detection Characteristics

11.7.1 Low-Voltage Detection Reset

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
Farailletei	Syllibol	Conditions	Min	Тур	Max	Oilit	Remarks
Detected voltage	VDL	Fixed ⁶⁷	1.38	1.50	1.60	V	When voltage drops
Released voltage	VDH	rixeu	1.43	1.55	1.65	V	When voltage rises
LVD stabilization wait time	T_{LVDW}	-	-	-	8160× tcycp ⁶⁸	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

Document Number: 002-00233 Rev. *D

 $^{^{67}}$ The value of low voltage detection reset is always fixed. 68 tc_{YCP} indicates the APB1 bus clock cycle time.

11.7.2 Low-Voltage Detection Interrupt

 $(T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$

D	0	O a stable la stable		Value		1121	Damanta
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	Remarks
Detected voltage	VDL	SVHI=00100	1.56	1.70	1.84	V	When voltage drops
Released voltage	VDH		1.61	1.75	1.89	V	When voltage rises
Detected voltage	VDL	SVHI=00101	1.61	1.75	1.89	V	When voltage drops
Released voltage	VDH		1.66	1.80	1.94	V	When voltage rises
Detected voltage	VDL	SVHI=00110	1.66	1.80	1.94	V	When voltage drops
Released voltage	VDH		1.70	1.85	2.00	V	When voltage rises
Detected voltage	VDL	SVHI=00111	1.70	1.85	2.00	V	When voltage drops
Released voltage	VDH		1.75	1.90	2.05	V	When voltage rises
Detected voltage	VDL	SVHI=01000	1.75	1.90	2.05	V	When voltage drops
Released voltage	VDH		1.79	1.95	2.11	V	When voltage rises
Detected voltage	VDL	SVHI=01001	1.79	1.95	2.11	V	When voltage drops
Released voltage	VDH		1.84	2.00	2.16	V	When voltage rises
Detected voltage	VDL	SVHI=01010	1.84	2.00	2.16	V	When voltage drops
Released voltage	VDH		1.89	2.05	2.21	V	When voltage rises
Detected voltage	VDL	SVHI=01011	1.89	2.05	2.21	V	When voltage drops
Released voltage	VDH		1.93	2.10	2.27	V	When voltage rises
Detected voltage	VDL	SVHI=01100	2.30	2.50	2.70	V	When voltage drops
Released voltage	VDH		2.39	2.60	2.81	V	When voltage rises
Detected voltage	VDL	SVHI=01101	2.39	2.60	2.81	V	When voltage drops
Released voltage	VDH		2.48	2.70	2.92	>	When voltage rises
Detected voltage	VDL	SVHI=01110	2.48	2.70	2.92	V	When voltage drops
Released voltage	VDH		2.58	2.80	3.02	V	When voltage rises
Detected voltage	VDL	SVHI=01111	2.58	2.80	3.02	V	When voltage drops
Released voltage	VDH		2.67	2.90	3.13	V	When voltage rises
Detected voltage	VDL	SVHI=10000	2.67	2.90	3.13	V	When voltage drops
Released voltage	VDH		2.76	3.00	3.24	V	When voltage rises
Detected voltage	VDL	SVHI=10001	2.76	3.00	3.24	V	When voltage drops
Released voltage	VDH		2.85	3.10	3.35	V	When voltage rises
Detected voltage	VDL	SVHI=10010	2.85	3.10	3.35	V	When voltage drops
Released voltage	VDH		2.94	3.20	3.46	V	When voltage rises
Detected voltage	VDL	SVHI=10011	2.94	3.20	3.46	V	When voltage drops
Released voltage	VDH		3.04	3.30	3.56	V	When voltage rises
LVD stabilization wait time	T _{LVDW}	-	-	-	8160 × tcycp ⁶⁹	μs	
LVD detection delay time	T _{LVDDL}	-	-	-	200	μs	

Document Number: 002-00233 Rev. *D

 $^{^{\}rm 69}~t_{\rm CYCP}$ represents the APB1 bus clock cycle time.

11.8 Flash Memory Write/Erase Characteristics

(V_{CC}=1.65 V to 3.6 V, T_A=- 40°C to +105°C)

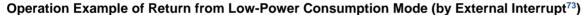
Parameter		Value ⁷⁰			Unit	Remarks	
Paramete	- 1	Min	Тур	Max	Ullit	Remarks	
Costor oroga tima	Large sector	-	1.1	2.7	The sector era	The sector erase time includes the time of	
Sector erase time	Small sector	-	0.3	0.9	S	writing prior to internal erase.	
Halfword (16-bit) write time		-	30	528	μs	The halfword (16-bit) write time excludes the system-level overhead.	
Chip erase time		-	4.5	11.7	s	The chip erase time includes the time of writing prior to internal erase.	

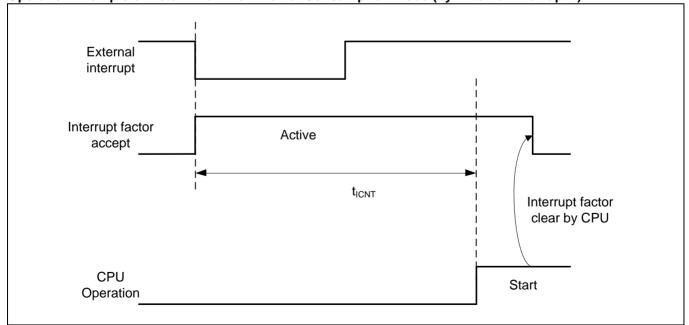
Write/Erase Cycle and Data Hold Time

Write/Erase Cycle	Data Hold Time (Year)	Remarks
1,000	20	These values come from the technology qualification
10,000	10	(using Arrhenius equation to translate high temperature acceleration test result into average temperature value at +85°C).

 $^{^{70}}$ The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write.

11.9 Return Time from Low-Power Consumption Mode

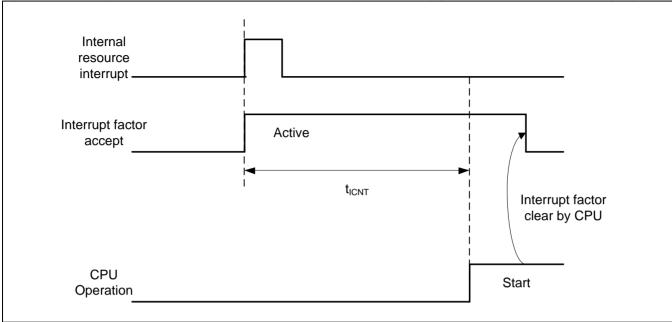

11.9.1 Return Factor: Interrupt/WKUP


The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

Return Count Time

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$


Para	meter	0	Val	ue	1111	Damada
Current Mode	Mode to return	Symbol	Тур	Max ⁷¹	Unit	Remarks
Sleep mode	each Run Mode		4*HC	CLK	μs	When High-speed CR is enabled
Timer mode	High-speed CR Run mode Main Run mode PLL Run mode		12*HCLK	13*HCLK	μs	When High-speed CR is enabled
	Low-speed CR Run mode Sub Run mode		34+12*HCLK	72+13*HCLK	μs	
	High-speed CR Run mode Low-speed CR Run mode	4	34+12*HCLK	72+13*HCLK	μs	
Stop Mode	Main Run mode Sub Run mode PLL Run mode	ticnt	34+12*HCLK +toscwr	72+13*HCLK +toscwT	μs	72
RTC mode	High-speed CR Run mode Low-speed CR Run mode Sub Run mode		34+12*HCLK	72+13*HCLK	μs	
	Main Run mode PLL Run mode		34+12*HCLK +toscwT	72+13*HCLK +toscwт	μs	72
Deep Standby RTC mode Deep Standby Stop mode	High-speed CR Run mode		43	281	μs	



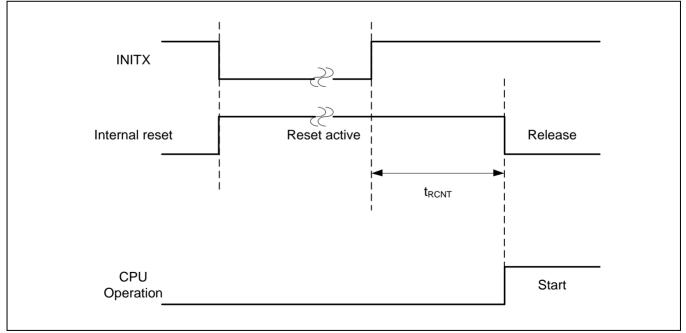
The maximum value depends on the condition of environment.
 toscwr: Oscillator stabilization time.
 External interrupt is set to detecting fall edge.

Notes:

- The return factor is different in each Low-Power consumption modes.
 See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual.
- When interrupt recovers, the operation mode that CPU recovers depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual".

 $^{^{74}}$ Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

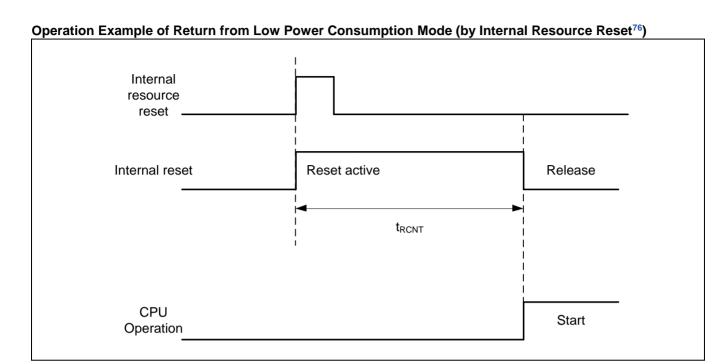
11.9.2 Return Factor: Reset


The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.

Return Count Time

 $(V_{CC}=1.65 \text{ V to } 3.6 \text{ V}, T_{A}=-40^{\circ}\text{C to } +105^{\circ}\text{C})$

Param	Parameter		Va	lue	Unit	Remarks
Current Mode	Mode to return	Symbol	Тур	Max ⁷⁵	Ullit	Remarks
High-speed CR Sleep mode Main Sleep mode PLL Sleep mode			20	22	μs	When High-speed CR is enabled
Low-speed CR Sleep mode			50	106	μs	When High-speed CR is enabled
Sub Sleep mode			112	137	μs	When High-speed CR is enabled
High-speed CR Timer mode Main Timer mode PLL Timer mode	High-speed CR Run mode	t _{RCNT}	20	22	μs	When High-speed CR is enabled
Low-speed CR Timer mode			87	159	μs	
Sub Timer mode			148	209	μs	
Stop mode RTC mode			45	68	μs	
Deep Standby RTC mode Deep Standby Stop mode			43	281	μs	



Document Number: 002-00233 Rev. *D

 $^{^{75}\,}$ The maximum value depends on the accuracy of built-in CR.

Notes:

- The return factor is different in each Low-Power consumption modes.
 See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual.
- When interrupt recovers, the operation mode that CPU recovery depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual".
- The time during the power-on reset/low-voltage detection reset is excluded. See "11.4.7 Power-on Reset Timing in 11.4 AC Characteristics in 11. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset
- When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time.
- The internal resource reset means the watchdog reset and the CSV reset.

Document Number: 002-00233 Rev. *D

⁷⁶ Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

12. Ordering Information

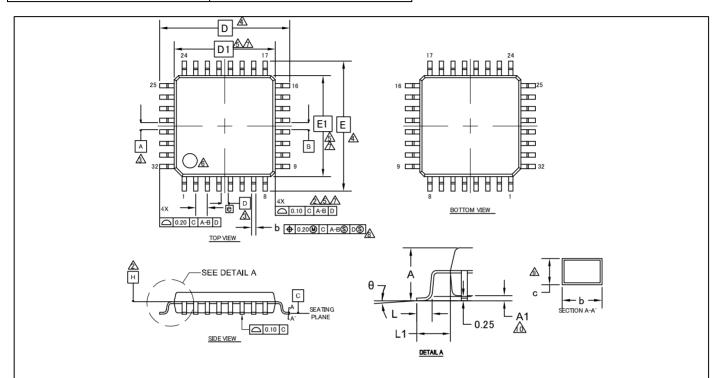
Part number	Flash [Kbyte]	SRAM [Kbyte]	USB2.0	I ² S	Package-Specific Features (see next table)	Package (Tray)
S6E1C32D0AGV20000	128	16	✓	✓	,	Plastic • LQFP
S6E1C31D0AGV20000					64 pip	(0.50 mm pitch),
	64	12	✓	✓	64-pin	64 pins
						(LQD064)
S6E1C32C0AGV20000	128	16	✓	✓		Plastic • LQFP
S6E1C31C0AGV20000					48-pin	(0.50 mm pitch),
	64	12	✓	✓	40-piii	48 pins
						(LQA048)
S6E1C32B0AGP20000	128	16	✓			Plastic • LQFP
S6E1C31B0AGP20000					32-pin	(0.80 mm pitch),
	64	12	✓		02 piii	32 pins
						(LQB032)
S6E1C32D0AGN20000	128	16	✓	✓		Plastic • QFN64
S6E1C31D0AGN20000					64-pin	(0.50 mm pitch),
	64	12	✓	✓		64 pins
005100001010000	400	4.0				(WNS064)
S6E1C32C0AGN20000	128	16	✓	✓		Plastic • QFN48
S6E1C31C0AGN20000		4.0			48-pin	(0.50 mm pitch),
	64	12	✓	✓	'	48 pins
00540005040N00000	400	40				(WNY048)
S6E1C32B0AGN20000	128	16	✓			Plastic • QFN32
S6E1C31B0AGN20000	64	40	√		32-pin	(0.50 mm pitch),
	64	12	•		·	32 pins
S6E1C32B0AGU1H000						(WNU032) Plastic • WLCSP30
36E1C32B0AG01H000						(0.40 mm pitch),
						30 pins
	128	16	✓		30-pin	(U4M030)
						* 7 inch reel only for
						this MPN
S6E1C12D0AGV20000	128	16		√		Plastic • LQFP
S6E1C11D0AGV20000	120	10				(0.50 mm pitch),
002101120/1012000	64	12		✓	64-pin	64 pins
	0.					(LQD064)
S6E1C12C0AGV20000	128	16		✓		Plastic • LQFP
S6E1C11C0AGV20000	_				40 .	(0.50 mm pitch),
	64	12		✓	48-pin	48 pins
						(LQA048)
S6E1C12B0AGP20000	128	16				Plastic • LQFP
S6E1C11B0AGP20000					32-pin	(0.80 mm pitch),
	64	12			32-pm	32 pins
						(LQB032)
S6E1C12D0AGN20000	128	16		✓		Plastic • QFN64
S6E1C11D0AGN20000					64-pin	(0.50 mm pitch),
	64	12		✓	υτ μπι	64 pins
						(WNS064)
S6E1C12C0AGN20000	128	16		✓		Plastic • QFN48
S6E1C11C0AGN20000					48-pin	(0.50 mm pitch),
	64	12		✓	.5 piii	48 pins
		4 -				(WNY048)
S6E1C12B0AGN20000	128	16				Plastic • QFN32
S6E1C11B0AGN20000	0.1	4.0			32-pin	(0.50 mm pitch),
	64	12				32 pins
				İ		(WNU032)

_	Package						
Feature	30 WLCSP	30 WLCSP 32 LQFP 32 QFN		64 LQFP 64 QFN			
Pin count	30	32	48	64			
Multi-function Serial Interface		(Max) ithout FIFO ith FIFO	6 ch. (Max) Ch.0/1/3 without FIFO Ch.4/6/7 with FIFO	6 ch. (Max) Ch.0/1/3 without FIFO Ch.4/6/7 with FIFO			
(UART/CSIO/I ² C/I ² S)	I ² S:	No	I ² S: 1 ch (Max) Ch. 6 with FIFO	I ² S: 2 ch (Max) Ch. 4/6 with FIFO			
External Interrupt		7 pins (Max), NMI x 1		12 pins (Max), NMI x 1			
I/O port	24 pins	s (Max)	38 pins (Max)	54 pins (Max)			
12-bit A/D converter	6 ch. (6 ch. (1 unit)		8 ch. (1 unit)			
Smart Card Interface		No		No		1 ch (Max)	
HDMI-CEC/ Remote Control Receiver		1 ch.(Max) Ch.1		` '		(Max) .0/1	

13. Acronyms

Acronym	Description
ADC	analog-to-digital converter
ACK	acknowledge
AHB	AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus
ARM [®]	Advanced RISC Machine, a CPU architecture
CEC	Consumer Electronics Control, a command and control interface over HDMI (High Definition Multimedia Interface)
CMOS	complementary metal oxide semiconductor
CPU	central processing unit
CR	clock and reset
CRC	cyclic redundancy check, an error-checking protocol
CSIO	clock synchronous serial interface
CSV	clock supervisor
CTS	clear to send, a flow control signal in some data communication interfaces
DTSC	descriptor system data transfer controller
EOM	end of message
FIFO	first in, first out
GPIO	general-purpose input/output
HDMI	High Definition Multimedia Interface
HDMI-CEC	High Definition Multimedia Interface - Consumer Electronics Control, see CEC
I/F	interface
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
I ² S, or IIS	Inter-IC (integrated circuit) Sound, a communications protocol
I/O	input/output, see also GPIO
IRQ	interrupt request
LIN	Local Interconnect Network, a communications protocol
LVD	low-voltage detect
MFS	multi-function serial
MSB	most significant byte
MTB	micro trace buffer
NMI	non-maskable interrupt

Document Number: 002-00233 Rev. *D



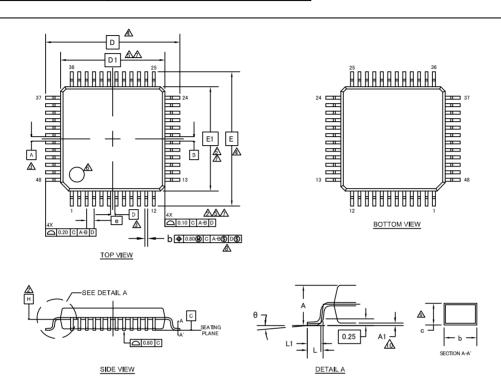
Acronym	Description
NVIC	nested vectored interrupt controller
OS	operating system
OSC	oscillator
PLL	phase-locked loop
PPG	programmable pulse generator
PWC	pulse-width counter
PWM	pulse-width modulator
RAM	random access memory
RX	receive
RTS	request to send, a flow control signal in some data communication interfaces
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SW-DP	serial wire debug port
TX	transmit
UART	universal asynchronous receiver transmitter
USB	Universal Serial Bus

14. Package Dimensions

Package Type	Package Code
LQFP-32	LQB032

SYMBOL	DIM	1ENSI01	NS	
STWIBOL	MIN.	NOM.	MAX.	
Α			1.60	
A1	0.05		0.15	
b	0.32	0.35	0.43	
С	0.13		0.18	
D	9.00 BSC			
D1	7.00 BSC			
е	0.80 BSC			
E	9.00 BSC			
E1	7.00 BSC			
L	0.45	0.60	0.75	
L1	0.30	0.50	0.70	
θ	0°		8°	

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

PACKAGE OUTLINE, 32 LEAD LQFP

002-13879 **

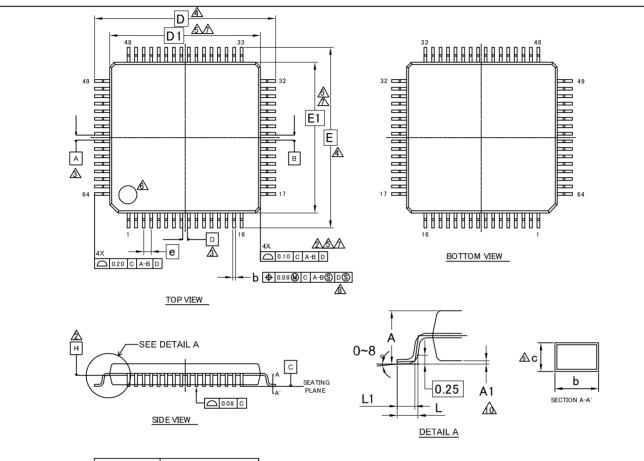
Package Type	Package Code
LQFP-48	LQA048

SYMBOL	DIMENSIONS				
SYMBOL	MIN.	MAX.			
Α	_		1.70		
A1	0.00		0.20		
b	0.15	0.15 — 0.2			
С	0.09	0.20			
D	9.00 BSC				
D1	7.00 BSC				
е	0.50 BSC				
E	9.00 BSC				
E1	7.00 BSC				
L	0.45 0.60 0.75				
L1	0.30	0.50	0.70		
θ	0° — 8°				

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.

 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.


 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 10 A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

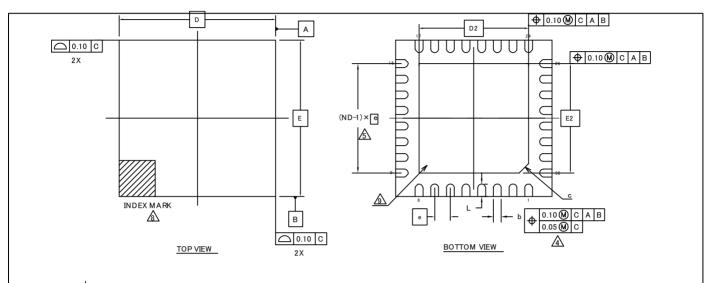
PACKAGE OUTLINE, 48 LEAD LQFP 7.0X7.0X1.7 MM LQA048 REV**

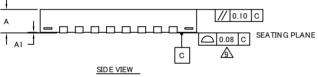
002-13731 **

Package Type	Package Code
LQFP-64	LQD064

SYMBOL	DIMENSIONS		
STWIBOL	MIN. NOM.		MAX.
Α	_		1.70
A1	0.00	_	0.20
b	0.15 —		0.2 7
С	0.09 —		0.20
D	12.00 BSC.		
D1	10.00 BSC.		
е	0.50 BSC		
E	12.00 BSC.		
E1	10.00 BSC.		
L	0.45	0.60	0.75
L1	0.30 0.50 0.70		

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS, DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

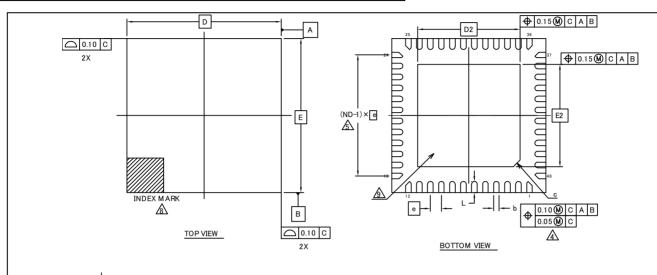

PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev**

002-11499 **

Package Type	Package Code
QFN-32	WNU032

0,41501	DIMENSIONS		
SYMBOL	MIN. NOM.		MAX.
Α	—		0.80
Α1	0.00 —		0.05
D	5.00 BSC		
E	5.00 BSC		
b	0.20 0.25 0.30		
D ₂	3.20 BSC		
E2	3.20 BSC		
е	0.50 BSC		
С	0.25 REF		
L	0.35 0.40 0.45		

NOTE


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCIN C CONFORMS TO ASME Y14.5-1994.
- 3. N IS THE TOTAL NU MBER OF TERMINALS.
- ⚠DIMENSION "b" APPLIES TO META LLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL. THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- ⚠ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
- 6. MAX. PACKAGE WARPAGE IS 0.05 mm.
- 7. MAXIMUM ALLOWABL E BURRS IS 0.076mm IN ALL DIRECTIONS.
- ♠PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
- ⚠BILATERAL COPLAN ARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
- 10. JEDEC SPEC IFICATION NO. REF: N/A

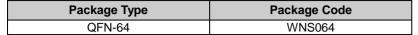
PACKAGE OUTLINE, 32 LEAD QFN 5.00X5.00X0.80 M M WNU032 3.20X3.20 M M EPAD (SAWN) REV*

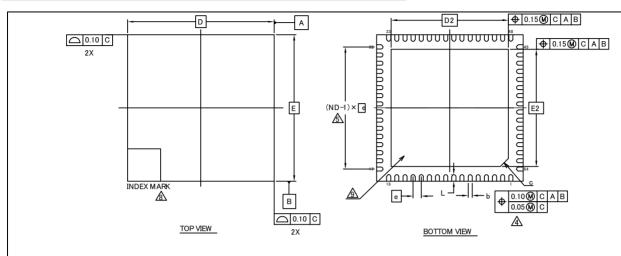
002-15907 **

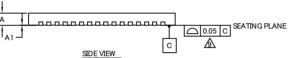
Package Type	Package Code
QFN-48	WNY048

<u> 1 </u>				
A = n n n n			s	EATING PLANE
t _{A1}			0.05 C	LA IIII CI LAIL
CII	SE VIEW	С	<u></u>	
<u>Sii</u>	DE VIEW_			

SYMBOL	DIMENSIONS			
STMBOL	MIN. NOM.		MAX.	
Α		—	0.80	
A1	0.00	0.05		
D	7.00 BSC			
E	7.00 BSC			
b	0.18 0.25 0.30			
D ₂	4.65 BSC			
E2	4.65 BSC			
е	0.50 BSC			
С	0.30 REF			
L	0.45 0.50 0.55			


NOTE


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5–1994.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.
- ⚠DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIPLIF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL THE DIMENSION "b" "SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- $\underline{\underline{\mathbb{A}}}$ ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.
- 6. MAX. PACKAGE WARPAGE IS 0.05 mm.
- 7. MAXIMUM ALLOWABLE BURRS IS 0.076mm IN ALL DIRECTIONS.
- ⚠PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
- ⚠BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT SINK SLUG AS WELL AS THE TERMINALS.
- 10. JEDEC SPECIFICATION NO. REF: N/A


PACKAGE OUTLINE, 48 LEAD QFN
7.00X7.00X0.80 M M WNY048 4.65X4.65 M M EPAD (SAWN) REV*

002-16422 **

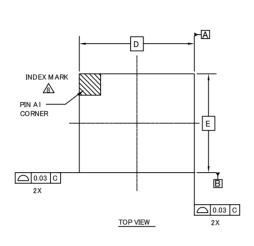
SYMBOL	DIMENSIONS			
STMBOL	MIN.	MIN. NOM. MA		
Α	_	_	0.80	
A1	0.00	0.05		
D	9.00 BSC			
E	9.00 BSC			
b	0.20 0.25 0.30			
D ₂	7.20 BSC			
E2	7.20 BSC			
е	0.50 BSC			
С	0.50 REF			
L	0.35 0.40 0.45			

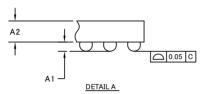
NOTE

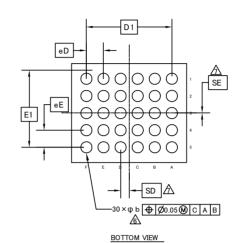
- $1.\,\mathsf{ALL}\,\mathsf{DIMENSIONS}\,\mathsf{ARE}\,\mathsf{IN}\,\mathsf{MILLIMETERS}.$
- 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5–1994.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.

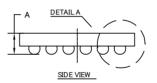
⚠DIMENSION "Ъ" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL THE DIMENSION "Ъ" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

⚠ND REFER TO THE NUMBER OF TERMINALS ON D OR E SIDE.


- 6. MAX. PACKAGE WARPAGE IS 0.05m m.
- 7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTION S.
- ⚠PIN #1 ID ON TOP WILL BE LOCATED WITHIN INDICATED ZONE.
- ⚠BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSEDHEAT SINK SLUG AS WELL AS THE TERMINALS.
- 10. JEDEC SPECIFICATION NO. REF: N/A


PACKAGE OUTLINE, 64 LEAD QFN 9.00X9.00X0.80 M M WNS0647.20X7.20 M M EPAD (SAWN) REV**


002-16424 **



Package Type	Package Code
WLCSP 30	U4M030

SYMBOL	DIMENSIONS		
SYMBOL	MIN.	MIN. NOM. MAX	
Α	_	_	0.534
A1	0.164		0.224
D	2	.690 BSC	;
E	2	.310 BSC	;
D1	2.000 BSC		
E 1	1.600 BSC		
MD	6		
ME	5		
n	30		
φь	0.24 0.27 0.30		
eD	0.400 BSC		
eE	0.40 BSC		
SD / SE	0.20 / 0 BSC		

NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONS AND TOLERANCES METHODS PER ASME Y14.5-2009. THIS OUTLINE CONFORMS TO JEP95, SECTION 4.5.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-010.
- 4. "e" REPRESENTS THE SOLDER BALL GRID PITCH.
- 5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION.

 IN IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME.
- ⚠DIMENSION ">" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.
- ↑ "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.
- WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.
- A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK.
 METALLIZED MARK IN DENTATION OR OTHER MEANS.
- 9. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.
- 10. JEDEC SPECIFICATION NO. REF: N/A.

PACKAGE OUTLINE, 30 BALL W LCSP 2.31X2.69X0.534 MM U4M030 Rev**

002-18455 **

15. Errata

This chapter describes the errata for S6E1C product family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

15.1 Part Numbers Affected

Part Number
S6E1C32D0AGV20000, S6E1C32C0AGV20000, S6E1C32B0AGP20000, S6E1C32D0AGN20000, S6E1C32C0AGN20000, S6E1C32B0AGN20000 S6E1C32B0AGU1H000
S6E1C31D0AGV20000, S6E1C31C0AGV20000, S6E1C31B0AGP20000, S6E1C31D0AGN20000, S6E1C31C0AGN20000, S6E1C31B0AGN20000
S6E1C12D0AGV20000, S6E1C12C0AGV20000, S6E1C12B0AGP20000, S6E1C12D0AGN20000, S6E1C12C0AGN20000, S6E1C12B0AGN20000
S6E1C11D0AGV20000, S6E1C11C0AGV20000, S6E1C11B0AGP20000, S6E1C11D0AGN20000, S6E1C11C0AGN20000, S6E1C11B0AGN20000

15.2 Qualification Status

Product Status: In Production - Qual.

15.3 Errata Summary

This table defines the errata applicability to available devices.

Items	Part Number	Silicon Revision	Fix Status	
[1] AHB Bus Matrix issue Refer to 15.1		Rev B	Fixed in Rev C	
[2] Deep Standby Mode current consumption issue	Refer to 15.1	Rev B, Rev C	Next silicon is not planned.	

15.4 Errata Detail

15.4.1 AHB Bus Matrix issue

■PROBLEM DEFINITION

The AHB Bus Matrix logic has two master interfaces (CPU and DSTC) and four slave interfaces (RAM, FLASH, AHB and APB). When two master interfaces (CPU and DSTC) access the same slave interface at the same time, and when the CPU is in wait cycle, an unnecessary access occurs during the wait cycle and the expected access occurs again after the unnecessary access.

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

CPU and DSTC access the same slave interface at the same time.

■SCOPE OF IMPACT

DSTC cannot be used.

■WORKAROUND

DSTC must not use.

Document Number: 002-00233 Rev. *D Page 106 of 109

■FIX STATUS

This issue is fixed in Rev C.

15.4.2 Deep Standby Mode current consumption issue

■PROBLEM DEFINITION

The current consumption does not decrease in Deep Standby Mode (Deep Standby RTC Mode and Deep Standby Stop Mode)

■PARAMETERS AFFECTED

N/A

■TRIGGER CONDITION(S)

MCU is in Deep Standby Mode and both MAINXC bits in SPSR and SUBXC bits in SUBOSC_CTL has not been cleared with 0b00 since power-on.

■SCOPE OF IMPACT

The current consumption does not decrease.

■WORKAROUND

Clear both MAINXC bits in SPSR and SUBXC bits in SUBOSC_CTL with 0b00.

Please note:

- Output pins become unstable state in a moment right after clearing these register bits with 0b00.
- You can set these register bits to any value after they are cleared with 0b00.

■FIX STATUS

The user uses the workaround to prevent this issue. The next silicon fixing this issue is not planned.

Document History

Document Title: S6E1C Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller

Document Number: 002-00233

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	4896074	TEKA	08/31/2015	New Spec.
*A	4955136	TEKA	10/9/2015	AC/DC characteristics updated. Typo fixed in "List of Pin Functions".
*B	5158709	YUKT	03/04/2016	Added the frequency value of "Ta = - 10°C to + 105°C" on "11.4.3 Built-in CR Oscillation Characteristics".
				Added the remark of "VCC < 0.2V" on "11.4.7 Power-on Reset Timing".
				Added the measure condition of ICC on "11.3.1 Current Rating".
				Changed the package outlines to cypress format on "13. Package Dimensions".
				Changed the package codes to cypress codes on "3. Pin Assignment" and "12. Ordering Information".
*C	5220682	MBGR	09/07/2016	Consolidated the C Series of Cypress MCUs into one data sheet. Minor updates to grammar. Made table footnotes consectutive. Corrected navigational aids (cross reference link colors). Added front matter to data sheet to match Cypress corporate style. Added tables to differentiate parts in 2 Product Lineup and 2.1 Package Dependent Features. Removed full multiplexed signal names from 4 Pin Assignment drawings. Added hyperlinks to 5 List of Pin Functions.
				10 Pin Status in Each CPU State: Changed several instances of pullup register to pull up resistor.
				Expanded 12 Ordering Information.
				Fixed typo in Memory Map. Updated logo. Removed WLCSP information.
				Updated 11.4.7 Power-on Reset Timing.
				Added 15 Erratta.
				Added 13 Acronyms.
	5453786	YSKA	04/13/2017	Updated "15 Errata"(Page 106)
				Updated the schematic for "11.4.7 Power-on Reset Timing"(Page 56)
				Updated "14. Package Dimensions" (Page 99-105)
*D				Modify expressions of channel numbers for USB, I ² S (Page 1)
				Added the Baud rate spec in "11.4.9 CSIO/SPI/UART Timing".(Page 58, 60,
				62, 64) Modify typo about Main oscillation (Page 41)
				Modified Real-Time Clock(RTC) in "3. Product Features in Detail"
				Deleted "second, or day of the week" in the Interrupt function. (Page 8)
				Added WLCSP package information(Page 1, 6, 6, 17, 19, 96, 97, 105)
				Deleted I ² C slave related description(Page 4, 6, 38, 41, 76, 97)

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended of for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other usupport devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

单击下面可查看定价,库存,交付和生命周期等信息

>>CYPRESS(赛普拉斯)