

DMN61D8L/LVT

Product Summary

BV _{DSS}	R _{DS(ON)} Max	I _D Max T _A = +25°C, SOT23
60V	1.8Ω @ V _{GS} = 5V	470~ 4
000	2.4Ω @ V _{GS} = 3V	470mA

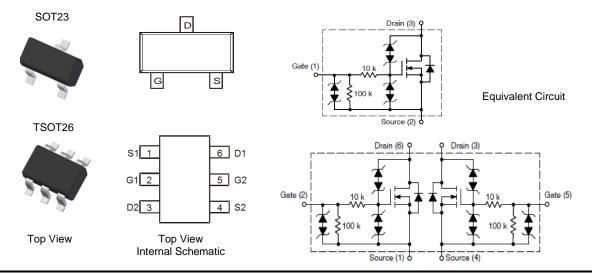
Description and Applications

DMN61D8L/LVT provides a single component solution for switching inductive loads such as relays, solenoids, and small DC motors in automotive applications, without the need of a freewheeling diode. DMN61D8L/LVT accepts logic level inputs, thus allowing it to be driven by logic gates, inverters, and microcontrollers. It is ideally suited for doors, windows, and antenna relay coils.

60V N-CHANNEL ENHANCEMENT MODE MOSFET

Features and Benefits

- Provides a more reliable and robust interface between sensitive logic and DC relay coils
- Replaces 3 to 4 discrete components enabling PCB footprint to be reduced
- Internal active clamp removes the need for external zener diode
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- Qualified to AEC-Q101 Standards for High Reliability
- The Automotive-Compliant Parts are Available Under Separate Datasheets (DMN61D8LQ and DMN61D8LVTQ)


Mechanical Data

Case: SOT23

- Case Material: Molded Plastic, "Green" Molding Compound; UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals: Finish Matte Tin Annealed over Alloy 42 Leadframe. (Lead-Free Plating). Solderable per MIL-STD-202, Method 208 (e3)
- Terminals Connections: See Diagram
- Weight: 0.008 grams (Approximate)

Case: TSOT26

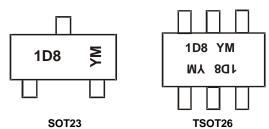
- Case Material: Molded Plastic, "Green" Molding Compound; UL Flammability Classification Rating 94V-0
- Moisture Sensitivity: Level 1 per J-STD-020
- Terminals Connections: See Diagram
- Terminals: Finish Matte Tin Annealed over Copper Leadframe. Solderable per MIL-STD-202, Method 208 @3
- Weight: 0.013 grams (Approximate)

Ordering Information (Note 4)

Part Number	Case	Packaging			
DMN61D8L-7	SOT23	3,000/Tape & Reel			
DMN61D8L-13	SOT23	10,000/Tape & Reel			
DMN61D8LVT-7 TSOT26 3,000/Tape & Reel					
DMN61D8LVT-13 TSOT26 10,000/Tape & Reel					
Notes: 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.					

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.


3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + CI) and <1000ppm antimony compounds.

4. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/.

1 of 9

Marking Information

 $\begin{array}{l} 1D8 = Product \ Type \ Marking \ Code \\ YM = Date \ Code \ Marking \\ Y \ or \ \overline{Y} = Year \ (ex: \ F= 2018) \\ M = Month \ (ex: \ 9 = September) \end{array}$

Date Code Key

Year	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
Code	В	С	D	E	F	G	Н		J	K	L	М	N
Mon	th	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Cod	le	1	2	3	4	5	6	7	8	9	0	Ν	D

Maximum Ratings (@T_A = +25°C, unless otherwise specified.)

Characteristic			Symbol	Value	Unit
Drain-Source Voltage			V _{DSS}	60	V
Gate-Source Voltage			V _{GSS}	±12	V
Continuous Drain Current (Note 6) SOT23	Steady State	T _A = +25°C T _A = +70°C	ID	470 370	mA
Continuous Drain Current (Note 6) TSOT26	Steady State	T _A = +25°C T _A = +70°C	ID	630 500	mA
Maximum Continuous Body Diode Forward Current (Note 6)			I _S	0.5	А
Single Pulse Drain-to-Source Avalanche Energy (for relay coils/inductive loads of 80Ω or higher) (TJ initial = +85°C)			Ez	200	mJ
Peak Power Dissipation, Drain-to-Source (non-repetitive current square pulse 1.0ms duration) (T _J initial = +85°C)			Ррк	20	W
Load Dump Pulse, Drain-to-Source, $R_{SOURCE} = 0.5\Omega$, t = 300ms) (for relay coils/inductive loads of 80 Ω or higher) (T _J Initial = +85°C)			E _{LD1}	60	V
Inductive Switching Transient 1, Drain-to-Source (Waveform: $R_{SOURCE} = 10\Omega$, t = 2.0ms) (for relay coils/inductive loads of 80 Ω or higher) (T _J Initial = +85°C)			E _{LD2}	100	V
Inductive Switching Transient 2, Drain-to-Source (Waveform: $R_{SOURCE} = 4.0\Omega$, t = 50µs) (for relay coils/inductive loads of 80Ω or higher) (T _J Initial = +85°C)			ELD3	300	V
Reverse Battery, 10 Minutes (Drain-to-Source) (for relay coils/inductive loads of 80Ω or higher)			Rev-Bat	-14	V
Dual Voltage Jump Start, 10 Minutes (Drain-to-Sou	rce)		Dual-Volt	28	V
ESD Human Body Model (HBM)			ESD	4,000	V

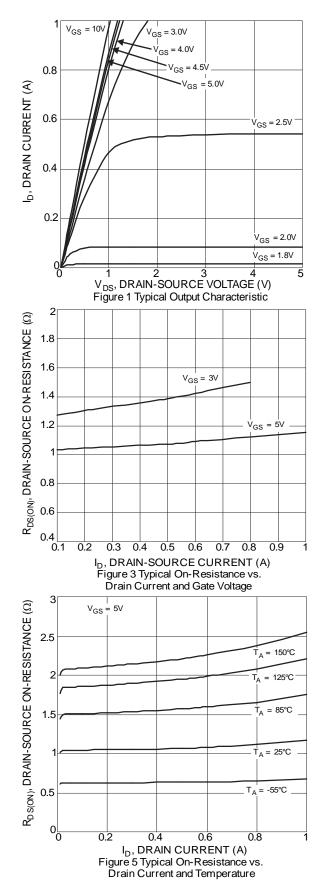
Thermal Characteristics (SOT23) (@T_A = +25°C, unless otherwise specified.)

Characteristic		Symbol	Value	Unit
Total Power Dissipation (Note 5)	PD	390	mW	
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	R _{0JA}	321	°C/W
Total Power Dissipation (Note 6)		PD	610	mW
Thermal Resistance, Junction to Ambient (Note 6)	Steady State	R _{0JA}	208	°C/W
Operating and Storage Temperature Range		$T_{J,}T_{STG}$	-55 to +150	°C

Thermal Characteristics (TSOT26) (@T_A = +25°C, unless otherwise specified.)

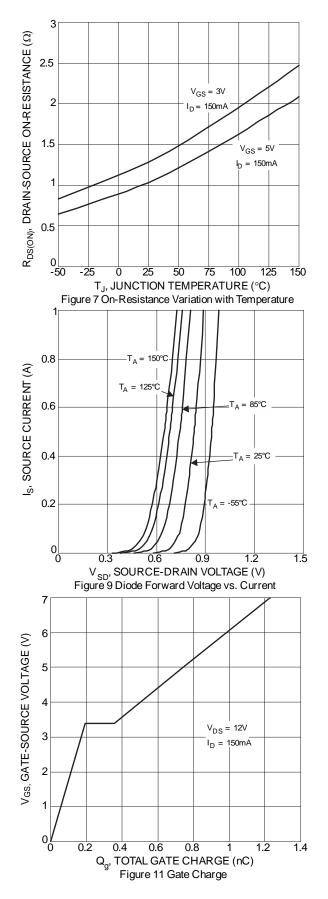
Characteristic	Symbol	Value	Unit	
Total Power Dissipation (Note 5)		PD	820	mW
Thermal Resistance, Junction to Ambient (Note 5)	Steady State	R_{\thetaJA}	154	°C/W
Total Power Dissipation (Note 6)		PD	1090	mW
Thermal Resistance, Junction to Ambient (Note 6)	Steady State	R_{\thetaJA}	116	°C/W
Operating and Storage Temperature Range		T _{J,} T _{STG}	-55 to +150	°C

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)


Characteristic	Symbol	Min	Тур	Max	Unit	Test Condition	
OFF CHARACTERISTICS (Note 7)			•			•	
Drain-Source Breakdown Voltage	BV _{DSS}	60	_	_	V	$V_{GS} = 0V, I_D = 10mA$	
Zero Gate Voltage Drain Current	IDSS	_	_	50 0.5	μA	$V_{DS} = 60V, V_{GS} = 0V$ $V_{DS} = 12V, V_{GS} = 0V$	
Gate-Source Leakage	I _{GSS}	_	_	±90 ±60	μA	$V_{GS} = \pm 5V, V_{DS} = 0V$ $V_{GS} = \pm 3V, V_{DS} = 0V$	
ON CHARACTERISTICS (Note 7)							
Gate Threshold Voltage	V _{GS(TH)}	1.3	_	2.0	V	$V_{DS} = V_{GS}, I_D = 1mA$	
Static Drain-Source On-Resistance	Deserve		1.1	1.8	Ω	$V_{GS} = 5V, I_D = 0.15A$	
Static Drain-Source On-Resistance	R _{DS(ON)}		1.4	2.4	12	$V_{GS} = 3V, I_D = 0.15A$	
Forward Transfer Admittance	Y _{fs}	80	_	_	ms	V _{DS} =12V, I _D = 0.15A	
Diode Forward Voltage	V _{SD}	_	_	1.2	V	V _{GS} = 0V, I _S = 0.15A	
DYNAMIC CHARACTERISTICS (Note 8)							
Input Capacitance	C _{iss}	_	12.9		pF		
Output Capacitance	C _{oss}	_	17		pF	V _{DS} = 12V, V _{GS} = 0V f = 1.0MHz	
Reverse Transfer Capacitance	C _{rss}	_	0.84	_	pF	1 - 1.000112	
Total Gate Charge	Qg	_	0.74	_	nC		
Gate-Source Charge	Q _{gs}	_	0.19	_	nC	V _{GS} = 5V, V _{DS} = 12V, I _D =150mA	
Gate-Drain Charge	Q _{gd}	_	0.16	_	nC	$I_D = 150 \text{mA}$	
Turn-On Delay Time	t _{D(ON)}		131		ns		
Turn-On Rise Time	t _R		301		ns		
Turn-Off Delay Time	t _{D(OFF)}		582	_	ns	$V_{DD} = 12V, V_{GS} = 5V$	
Turn-Off Fall Time	t _F	_	440	_	ns		


5. Device mounted on FR-4 PCB, with minimum recommended pad layout. Notes:

Device mounted on 1" x 1" FR-4 PCB with high coverage 2oz. copper, single sided.
Short duration pulse test used to minimize self-heating effect.
Guaranteed by design. Not subject to product testing.



DMN61D8L/LVT

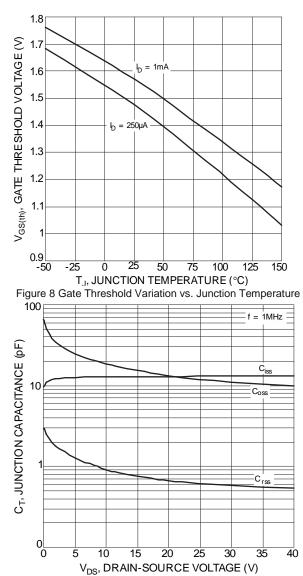
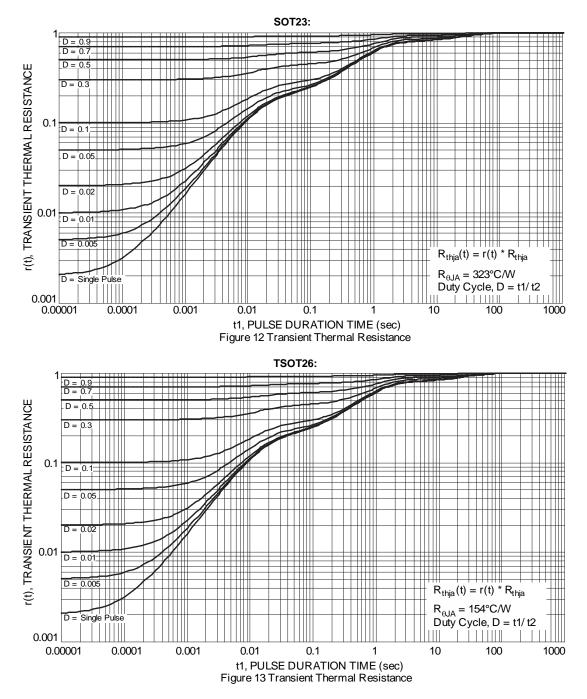
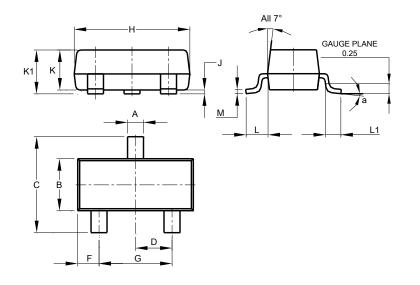
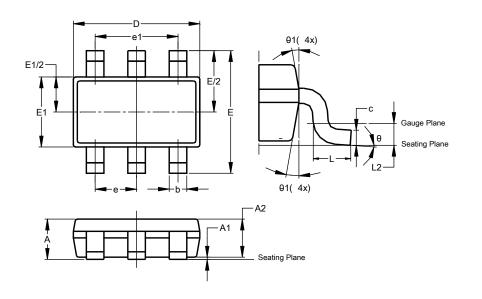



Figure 10 Typical Junction Capacitance



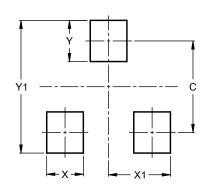
Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

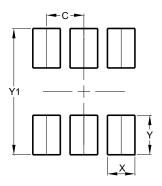
SOT23

	SO	T23	
Dim	Min	Max	Тур
Α	0.37	0.51	0.40
в	1.20	1.40	1.30
c	2.30	2.50	2.40
D	0.89	1.03	0.915
F	0.45	0.60	0.535
G	1.78	2.05	1.83
н	2.80	3.00	2.90
J	0.013	0.10	0.05
K	0.890	1.00	0.975
K1	0.903	1.10	1.025
L	0.45	0.61	0.55
L1	0.25	0.55	0.40
Μ	0.085	0.150	0.110
а	0°	8°	
All	Dimens	ions in	mm

TSOT26


	TS	OT26			
Dim	Min	Max	Тур		
Α	-	1.00	-		
A1	0.010	0.100	-		
A2	0.840	0.900	-		
D	2.800	3.000	2.900		
Е	2.800 BSC				
E1	1.500	1.700	1.600		
q	0.300	0.450	-		
С	0.120	0.200	-		
e	0.950 BSC				
e1	1	.900 BS	C		
L	0.30	0.50	-		
L2	0	.250 BS	C		
θ	0°	8°	4°		
θ1	4°	12°	-		
A	II Dimen	sions in	mm		

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

SOT23

Dimensions	Value (in mm)
С	2.0
Х	0.8
X1	1.35
Y	0.9
Y1	2.9

TSOT26

Dimensions	Value (in mm)
С	0.950
Х	0.700
Y	1.000
Y1	3.199

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达尔科技)