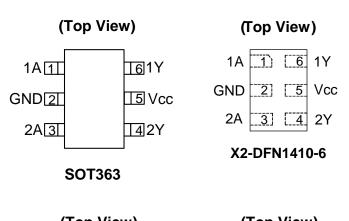


74AUP2G07

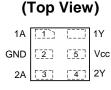
Description

The Advanced Ultra Low Power (AUP) CMOS logic family is designed for low power and extended battery life in portable applications.


The 74AUP2G07 is composed of two buffers with open drain outputs designed for operation over a power supply range of 0.8V to 3.6V. The device is fully specified for partial power down applications using I_{OFF} . The I_{OFF} circuitry disables the output preventing damaging current backflow when the device is powered down. The gates perform the positive Boolean function:

 $\mathsf{Y}=\mathsf{A}$

Features


- Advanced Ultra Low Power (AUP) CMOS
- Supply Voltage Range from 0.8V to 3.6V
- -4mA Output Drive at 3.0V
- Low Static Power Consumption
- I_{CC} < 0.9μA
- Low Dynamic Power Consumption
- C_{PD} = 1.2pF Typical at 3.6V
- Schmitt Trigger Action at All Inputs Make the Circuit Tolerant for Slower Input Rise and Fall Time. The Hysteresis is Typically 250mV at V_{CC} = 3.0V
- IOFF Supports Partial-Power-Down Mode Operation
- ESD Protection per JESD 22
 - Exceeds 200-V Machine Model (A115)
 - Exceeds 2000-V Human Body Model (A114)
 - Exceeds 1000-V Charged Device Model (C101)
- Latch-Up Exceeds 100mA per JESD 78, Class I
- Leadless Packages per JESD30E
 - DFN1410 denoted as X2-DFN1410-6
 - DFN1010 denoted as X2-DFN1010-6
 - DFN0910 denoted as X2-DFN0910-6
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

Pin Assignments

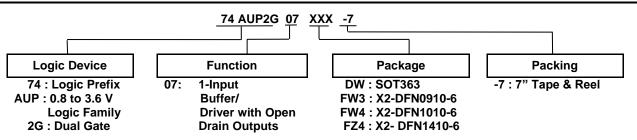
DUAL BUFFERS WITH OPEN DRAIN OUTPUTS

(Top view)									
1A	1	6	1Y						
GND	2	5	Vcc						
2A	3	4	2Y						
X2-	DFN	1010	-6						

X2-DFN0910-6

Applications

- Suited for Battery and Low Power Needs
- Wide array of products such as:
 - PCs, Networking, Notebooks, Netbooks, PDAs
 - Tablet Computers, E-readers
 - Computer Peripherals, Hard Drives, CD/DVD ROM
 - TV, DVD, DVR, Set-Top Box
 - Cell Phones, Personal Navigation / GPS
 - MP3 players, Cameras, Video Recorders

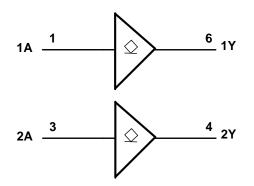

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.

- See http://www.diodes.com/quality/lead_free.html for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <000ppm chlorine (<1500ppm total Br + Cl) and
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Ordering Information

Part Number	Package Package		Package	7" Tape and Reel		
Fart Number	Code	(Notes 4 & 5)	Size	Quantity	Part Number Suffix	
74AUP2G07DW-7	DW	SOT363	2.0mm X 2.0mm X 1.1mm 0.65 mm lead pitch	3000/Tape & Reel	-7	
74AUP2G07FW3-7	FW3	X2-DFN0910-6	0.9mm X 1.0mm X 0.35mm 0.35 mm pad pitch	5000/Tape & Reel	-7	
74AUP2G07FW4-7	FW4	X2-DFN1010-6	1.0mm X 1.0mm X 0.4mm 0.35 mm pad pitch	5000/Tape & Reel	-7	
74AUP2G07FZ4-7	FZ4	X2-DFN1410-6	1.4mm X 1.0mm X 0.4mm 0.5 mm pad pitch	5000/Tape & Reel	-7	


Notes: 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

5. The taping orientation is located on our website at http://www.diodes.com/datasheets/ap02007.pdf.

Pin Descriptions

Pin Name	Pin NO	Function				
1A	1	Data Input				
GND	2	Ground				
2A	3	Data Input				
2Y	4	Data Output				
V _{CC}	5	Supply Voltage				
1Y	6	Data Output				

Logic Diagram

Function Table

Inputs	Output
nA	nY
Н	Z
L	L

Symbol	Parameter	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	kV
ESD CDM	Charged Device Model ESD Protection	1	kV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage Range	-0.5 to +4.6	V
VI	Input Voltage Range	-0.5 to +4.6	V
Vo	Voltage applied to Output in High or Low State	-0.5 to +4.6	V
I _{IK}	Input Clamp Current VI < 0	-50	mA
I _{OK}	Output Clamp Current (V _O < 0)	-50	mA
lo	Continuous Output Current (V _O = 0 to V _{CC})	±20	mA
lcc	Continuous Current Through V _{CC}	50	mA
IGND	Continuous Current Through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings (Notes 6 & 7) (@T_A = +25°C, unless otherwise specified.)

Notes: 6. Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

7. Forcing the maximum allowed voltage could cause a condition exceeding the maximum current or conversely forcing the maximum current could cause a condition exceeding the maximum voltage. The ratings of both current and voltage must be maintained within the controlled range.

Recommended Operating Conditions (Note 8) (@T_A = +25°C, unless otherwise specified.)

Symbol	Pa	arameter	Min	Max	Unit	
V _{CC}	Operating Voltage	_	0.8	3.6	V	
VI	Input Voltage		0	3.6	V	
Vo	Output Voltage		0	3.6	V	
		$V_{CC} = 0.8V$	—	20	μA	
		$V_{CC} = 1.1V$	—	1.1		
		$V_{CC} = 1.4V$	—	1.7		
IOL	Low-Level Output Current	V _{CC} = 1.65V	—	1.9	mA	
		$V_{CC} = 2.3V$		3.1		
		$V_{CC} = 3.0V$	_	4		
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate	$V_{CC} = 0.8V$ to 3.6V	—	200	ns/V	
TA	Operating Free-Air Temperature	_	-40	+125	°C	

Note: 8. Unused inputs should be held at V_{CC} or Ground.

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Test Conditions	Vcc	T _A = -	+25°C	T _A = -40	to +85°C	Unit	
Symbol	Farameter	Test conditions	VCC	Min	Max	Min	Max	Unit	
		—	0.8V to 1.65V	0.80 X V _{CC}	—	0.80 X V _{CC}	_		
VIH	High-Level Input	_	1.65V to 1.95V	0.65 X V _{CC}	—	0.65 X V _{CC}	_	V	
۷IH	Vill Voltage VIL Low-Level Input voltage Voltage Low-Level Output Voltage	_	2.3V to 2.7V	1.6	—	1.6		v	
		_	3.0V to 3.6V	2.0	_	2.0			
		—	0.8V to 1.65V	—	0.30 X V _{CC}	—	0.30 X V _{CC}		
Vu		_	1.65V to 1.95V	—	$0.35 \text{ X} \text{ V}_{\text{CC}}$	_	0.35 X V_{CC}	V	
VIL	voltage		2.3V to 2.7V	_	0.7	_	0.7	v	
		_	3.0V to 3.6V		0.9	_	$\begin{array}{c c c c c c c c } & \mathbf{Max} & \mathbf{V_{CC}} & & & & \\ \hline \mathbf{V_{CC}} & & & & & \\ \hline \mathbf{V_{CC}} & & & & & \\ \hline \mathbf{V_{CC}} & & & & & \\ \hline 0.2 & & & & & \\ \hline 0.3 & \mathbf{V_{CC}} & & & \\ \hline 0.35 & \mathbf{V_{CC}} & & & & \\ \hline 0.35 & \mathbf{V_{CC}} & & & \\ \hline 0.37 & & & & \\ \hline 0.35 & & & & \\ \hline 0.33 & & & & \\ \hline 0.33 & & & & \\ \hline 0.33 & & & & \\ \hline 0.45 & & & & \\ \hline 0.33 & & & & \\ \hline 0.45 & & & & \\ \hline 0.33 & & & & \\ \hline 0.45 & & & & \\ \hline 0.33 & & & & \\ \hline 0.45 $		
		I _{OL} = 20μΑ	0.8V to 3.6V	—	0.1	—	0.1		
		I _{OL} = 1.1mA	1.1V	—	0.3 X V _{CC}	—	0.3 X V _{CC}		
		I _{OL} = 1.7mA	1.4V	—	0.31	—	0.37		
V	Low-Level Output	I _{OL} = 1.9mA	1.65V	—	0.31	—	0.35	V	
VOL	Voltage	I _{OL} = 2.3mA	2.3V	—	0.31	—	0.33	v	
		I _{OL} = 3.1mA	2.3V	_	0.44	_	0.45		
		I _{OL} = 2.7mA	3V	—	0.31	—	0.33		
	Vol Low-Level Output Voltage Iı Input Current Ioz Z State Leakage Current IoFF Power Down Leakage Current	I _{OL} = 4mA	3V	—	0.44	—	0.45		
lı lı	Input Current	A or B Input, $V_I = GND$ to 3.6V	0V to 3.6V	—	±0.1	—	±0.5	μA	
l _{oz}		$V_0 = 3.6V, V_i = 3.6V$	3.6V	—	±0.1	—	±0.5	μA	
IOFF		V_{I} or $V_{O} = 0V$ to 3.6V	0V	—	±0.2	—	±0.6	μA	
Δl _{OFF}	Delta Power Down Leakage Current	V_1 or $V_0 = 0V$ to 3.6V	0V to 0.2V	—	±0.2	—	±0.6	μA	
I _{CC}	Supply Current	$V_I = GND \text{ or } V_{CC}, I_O = 0$	0.8V to 3.6V	—	0.5	—	0.9	μA	
Δlcc	Additional Supply Current	One input at V_{CC} -0.6V Other inputs at V_{CC} or GND	3.3V	—	40	—	50	μA	

Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Tost Conditions	V	T _A = -40°C	to +125°C	Unit
Symbol	Farameter	Test conditions	VCC	Min	to +125°C Max — — — 0.25 X V _{CC} 0.30 X V _{CC} 0.7 0.9 0.11 0.33 X V _{CC} 0.41 0.39 0.36 0.50 \pm 0.75 \pm 0.75 \pm 2.5 1.4 75	Unit
		—	0.8V to 1.65V	0.80 X V _{CC}	—	
	High-Level Input Voltage	—	1.65V to 1.95V	0.70 X V _{CC}	—	V
VIH		_	Min Max $0.8V$ to $1.65V$ $0.80 \times V_{CC}$ $1.65V$ to $1.95V$ $0.70 \times V_{CC}$ $2.3V$ to $2.7V$ 1.6 $2.3V$ to $2.7V$ 1.6 $0.8V$ to $1.65V$ $ 0.25 \times V_{CC}$ $0.8V$ to $1.95V$ $0.30 \times V_{CC}$ $0.8V$ to $1.95V$ $0.30 \times V_{CC}$ $0.8V$ to $1.95V$ $0.30 \times V_{CC}$ $0.8V$ to $2.7V$ 0.7 $0.30 \times V_{CC}$ 0.31 mA $1.4V$ 0.31 mA $1.4V$ 0.36 mA $2.3V$ 0.50 mA $2.3V$ 0.50 mA $3.6V$	v		
			3.0V to 3.6V	2.0		
		_	0.8V to 1.65V	—	0.25 X V_{CC}	
V.		—	1.65V to 1.95V	—	0.30 X V _{CC}	V
۷IL	Vol Low-Level Output Voltage I Input Current Ioz Z State Leakage Current Voltage IOFF Power Down Leakage Current DolfF Delta Power Down Leakage Icc Supply Current Aloo Additional Supply Current	—	2.3V to 2.7V	—	0.7	v
		—	3.0V to 3.6V	—	0.9	
		I _{OL} = 20μA	0.8V to 3.6V	—	0.11	
		I _{OL} = 1.1mA	1.1V	—	0.33 X V _{CC}	
		I _{OL} = 1.7mA	1.4V	_	0.41	
		I _{OL} = 1.9mA	1.65V	_	0.39	V
VOL	Low-Level Output Voltage	I _{OL} = 2.3mA	2.21/	—	0.36	
		I _{OL} = 3.1mA	2.3V	_	0.50	
		I _{OL} = 2.7mA	0)/	_	0.36	
		$I_{OL} = 4mA$	3V	_	Min Max Unit $X V_{CC}$ $X V_{CC}$ V $X V_{CC}$ V 1.6 V 2.0 V - 0.25 X V_{CC} V - 0.30 X V_{CC} V - 0.7 V - 0.9 V - 0.11 V - 0.33 X V_{CC} V - 0.36 V - 0.36 V - 0.50 V - 1.75 μ A - ± 0.75 μ A - ± 1.75 μ A - ± 1.4 μ A	
l _l	Input Current	A or B Input, V _I = GND to 3.6V	0V to 3.6V	_	± 0.75	μA
loz		$V_0 = 3.6V, V_i = 3.6V$	3.6V	_	± 0.75	μA
I _{OFF}	Power Down Leakage Current	V_1 or $V_0 = 0V$ to 3.6V	0V	_	± 0.75	μA
Δl _{OFF}		$V_{\rm I}$ or $V_{\rm O} = 0$ V to 3.6V	0V to 0.2V	_	± 2.5	μA
Icc	Supply Current	$V_{I} = GND \text{ or } V_{CC}, I_{O} = 0$	0.8V to 3.6V	_	1.4	μA
ΔI _{CC}	Additional Supply Current	Input at V _{CC} -0.6V Other inputs at V _{CC} or GND	3.3V	_	75	μA

Operating Characteristics (@T_A = +25°C, unless otherwise specified.)

	Parameter	Test Conditions	V _{cc}	Тур	Unit
			0.8V	0.5	
			1.2V ± 0.1V	0.6	
0	Rower Dissinction Consultance	f = 1MHz	1.5V ± 0.1V	0.7	~~
C _{pd}	Power Dissipation Capacitance	No Load	1.8V ± 0.15V	0.7	pF
			$2.5V \pm 0.2V$	1.0	
			3.3V ± 0.3V	1.2	
CI	Input Capacitance	$V_I = V_{CC} \text{ or } GND$	0V or 3.3V	2.0	pF
Co	Output Capacitance	$V_0 = V_{CC} \text{ or } GND$	0V	2.0	pF

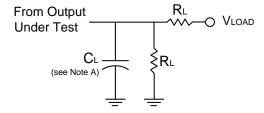
Switching Characteristics

C _L = 5pF see Figure 1											
Parameter From Input	From	то	V	٦	T _A = +25°C			T _A = -40°C to +85°C		T _A = -40°C to +125°C	
	OUTPUT	Vcc	Min	Тур	Max	Min	Max	Min	Max	Unit	
			0.8V		12.8	—	_		_		
		A Y	1.2V ± 0.1V	2.6	5.8	11.3	2.3	12.5	2.3	15.9	- ns
t .	۸		1.5V ± 0.1V	1.8	3.6	6.4	1.6	7.4	1.6	8.2	
t _{pd}	A		1.8V ± 0.15V	1.5	2.9	5	1.4	5.9	1.4	6.5	
			$2.5V \pm 0.2V$	1.2	2.4	3.9	1.1	4.5	1.1	5	
			3.3V ± 0.3V	0.9	3	3.5	0.8	3.9	0.8	4.3	

$C_L = 10 pF$ see Figure 1

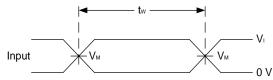
Parameter	From	-	Vcc	T _A = +25°C		T _A = -40°C to +85°C		T _A = -40°C to +125°C		Unit	
Farailleter	Input		VCC	Min	Тур	Max	Min	Max	Min	Max	Unit
			0.8V	_	14.5	_	_	_	_	_	
			1.2V ± 0.1V	3.1	7	13.4	2.9	15.1	2.9	19.2	
• .	А	~	1.5V ± 0.1V	2.3	4.8	7.5	2.1	8.7	2.1	10.5	
t _{pd}	A		1.8V ± 0.15V	2	3.8	4.8	1.8	7	1.8	7.7	ns
			2.5V ± 0.2V	1.6	3.1	4.6	1.5	5.4	1.5	6	
			3.3V ± 0.3V	1.2	4.3	4.9	1.1	5.4	1.1	5.9	

$C_L = 15 pF$ see Figure 1

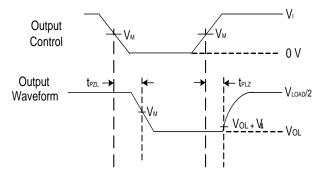

Parameter From Input	From	то	- V _{cc}	T _A = +25°C		T _A = -40°C to +85°C		T _A = -40°C to +125°C		Unit	
	Input	OUTPUT	V CC	Min	Тур	Max	Min	Мах	Min	Max	Onic
			0.8V		16.2		_	_	—	_	
			1.2V ± 0.1V	3.5	8.2	14.3	3.3	17.4	3.3	22.5	
4	۸	A Y	1.5V ± 0.1V	2.6	6.2	8.6	2.4	10.5	2.4	13.7	20
t _{pd}	A		1.8V ± 0.15V	2.3	5	6.7	2.1	8	2.1	9.8	ns
			2.5V ± 0.2V	2.1	3.9	5.1	1.8	6.1	1.8	6.8	
			3.3V ± 0.3V	1.6	5.6	6.4	1.4	7.1	1.4	7.8	

$C_L = 30 pF$ see Figure 1

Parameter	From TO Input OUTPUT	rom TO)	T _A = +25°C		T _A = -40°C to +85°C		T _A = -40°C to +125°C		Unit	
Input		OUTPUT	Vcc	Min	Min TYP Min	Min	Max	Min	Max	Onit	
		A Y	0.8V	_	19.8		_	_	_	_	
			1.2V ± 0.1V	4.8	9.8	18.4	4.4	18.4	4.4	25.8	
+ .			1.5V ± 0.1V	3.6	8.2	13.9	3.2	13.9	3.2	18	ns
t _{pd}	A		1.8V ± 0.15V	3.2	7.8	12.2	2.9	12.2	2.9	15.2	115
			2.5V ± 0.2V	2.4	7.5	9.9	2.6	9.9	2.6	11.4	
			3.3V ± 0.3V	1.8	9.2	10.6	2.1	11.6	2.1	12.8	



Parameter Measurement Information

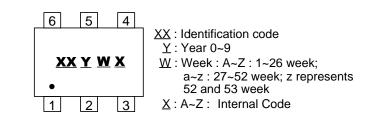


TEST	Condition
t _{PLZ} (See Notes D & E)	Vload Vload
t _{PZL} (See Notes D & F)	viuau

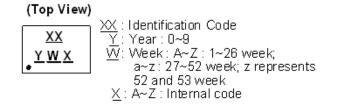
N	Inp	outs	V	V	6	Р	MA
V _{cc}	VI	t _r /t _f	V _M	V _{LOAD}	CL	RL	V۵
0.8V	Vcc	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.1V
1.2V±0.1V	V _{CC}	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.1V
1.5V±0.1V	V _{CC}	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.15V
1.8V±0.15V	Vcc	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.15V
2.5V±0.2V	Vcc	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.15V
3.3V±0.3V	V _{CC}	≤3ns	V _{CC} /2	2 X V _{CC}	5, 10, 15, 30pF	5 kΩ	0.3V

Voltage Waveform Pulse Duration

Voltage Waveform Propagation Delay Times

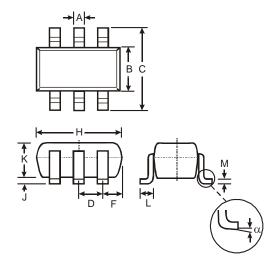

Figure 1 Load Circuit and Voltage Waveforms

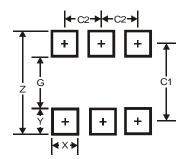
- Notes: A. Includes test lead and test apparatus capacitance.
 - B. All pulses are supplied at pulse repetition rate \leq 10MHz.
 - C. The inputs are measured one at a time with one transition per measurement.
 - D. For the open drain device t_{PLZ} and t_{PZL} are the same as t_{PD} .
 - E. t_{PZL} is measured at V_M.
 - D. t_{PLZ} is measured at V_{OL} +V_{ $\!\Delta\!}.$


Marking Information

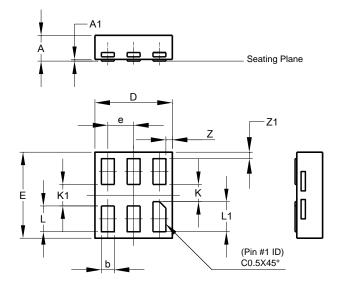
(1) SOT363

Ī	Part Number	Package	Identification Code
	74AUP2G07DW-7	SOT363	SP


(2) X2-DFN1410-6, X2-DFN1010-6, X2-DFN0910-6

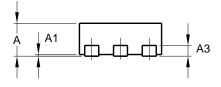

Part Number	Package	Identification Code
74AUP2G07FZ4	X2-DFN1410-6	RP
74AUP2G07FW4	X2-DFN1010-6	SP
74AUP2G07FW3	X2-DFN0910-6	MP

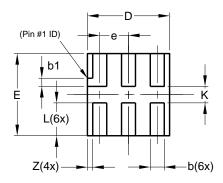
SOT363 Package Outline Dimensions and Suggested Pad Layout


SOT363					
Dim	Min	Max	Тур		
Α	0.10	0.30	0.25		
В	1.15	1.35	1.30		
С	2.00	2.20	2.10		
D	0.65 Typ				
F	0.40	0.45	0.425		
Н	1.80	2.20	2.15		
J	0	0.10	0.05		
Κ	0.90	1.00	1.00		
L	0.25	0.40	0.30		
М	0.10	0.22	0.11		
α	0°	8°	-		
All	Dimen	sions i	n mm		

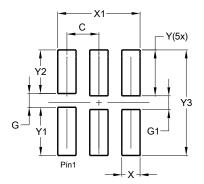
Dimensions	Value (in mm)
Z	2.5
G	1.3
Х	0.42
Y	0.6
C1	1.9
C2	0.65

X2-DFN0910-6 Package Outline Dimensions and Suggested Pad Layout

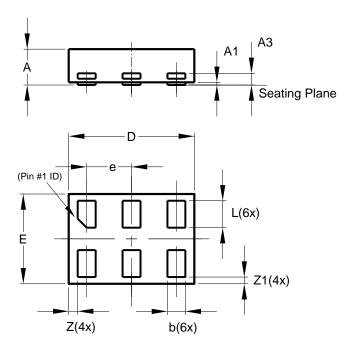

	× X1	
Y2 G		
Y2		
<u>.</u>		

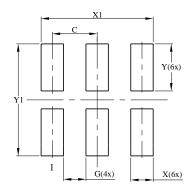

>	(2-DFN	0910-6	
Dim	Min	Max	Тур
Α	-	0.35	0.30
A1	0	0.03	0.02
b	0.10	0.20	0.15
D	0.85	0.95	0.90
E	0.95	1.05	1.00
е	-	-	0.30
K	0.20	-	-
K1	0.25	-	-
L	0.25	0.35	0.30
L1	0.30	0.40	0.35
Z	-	-	0.075
Z1	-	-	0.075
All D	imensi	ons in r	nm

Dimensions	Value (in mm)
G	0.100
G1	0.050
G2	0.150
Х	0.150
X1	0.750
Y	0.525
Y1	0.475
Y2	1.150



X2-DFN1010-6 Package Outline Dimensions and Suggested Pad Layout


	X2-DFN1010-6					
Dim	Min	Max	Тур			
Α	_	0.40	0.39			
A1	0.00	0.05	0.02			
A3			0.13			
b	0.14	0.20	0.17			
b1	0.05	0.15	0.10			
D	0.95	1.05	1.00			
ш	0.95	1.05	1.00			
e			0.35			
L	0.35	0.45	0.40			
κ	0.15					
Z			0.065			
All	Dimen	sions i	in mm			


Dimensions	Value (in mm)
С	0.350
G	0.150
G1	0.150
Х	0.200
X1	0.900
Y	0.500
Y1	0.525
Y2	0.475
Y3	1.150

X2-DFN1410-6 Package Outline Dimensions and Suggested Pad Layout

X2-DFN1410-6				
Dim	Min	Max	Тур	
Α		0.40	0.39	
A1	0.00	0.05	0.02	
A3		_	0.13	
b	0.15	0.25	0.20	
D	1.35	1.45	1.40	
Е	0.95	1.05	1.00	
е	_		0.50	
L	0.25	0.35	0.30	
Z		_	0.10	
Z1	0.045	0.105	0.075	
All Dimensions in mm				

Dimensions	Value (in mm)	
С	0.500	
G	0.250	
Х	0.250	
X1	1.250	
Y	0.525	
Y1	1.250	

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))