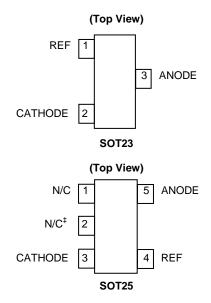


TLV431Q

AUTOMOTIVE-COMPLIANT 1.24V SHUNT REGULATOR

Description

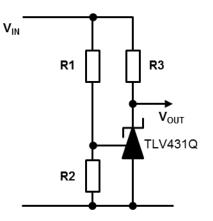

The TLV431Q is a three-terminal adjustable shunt regulator offering excellent temperature stability and output current handling capability up to 20mA. The output voltage may be set to any chosen voltage between 1.24 and 18 volts by selection of two external divider resistors.

The TLV431Q can be used as a replacement for Zener diodes in many applications requiring an improvement in Zener performance.

The TLV431Q is available in 3 tolerance bands with initial tolerances of 1%, 0.5%, and 0.2% for the A, B and T bands respectively.

The TLV431Q is qualified to AEC-Q100 Grade 1 and is automotivecompliant supporting PPAP documentation.

Pin Assignments



‡ Pin should be left floating or connected to anode

Features

- Low Voltage Operation, V_{REF} = 1.24V
- Temperature Range -40 to +125°C
- Reference Voltage Tolerance at +25°C
 - 0.2% TLV431TQ
 - 0.5% TLV431BQ
 - 1% TLV431AQ
- Typical V_{REF} Deviation across Full Temperature Range (Note 1)
- 4mV (0°C to +70°C)
- 6mV (-40°C to +85°C)
- 11mV (-40°C to +125°C)
- 80µA Minimum Cathode Current
- 0.25Ω Typical Output Impedance
- Adjustable Output Voltage V_{REF} to 18V
- Totally Lead-Free & Fully RoHS Compliant (Notes 2 & 3)
- Halogen and Antimony Free. "Green" Device (Note 4)
- Qualified to AEC-Q100 Grade 1
- PPAP Capable (Note 5)

Typical Application Circuit

Adjustable High Accuracy Shunt Reference

- Notes:
- The V_{REF} deviation is defined as the differences between the maximum and minimum values obtained over the specified temperature range.
 No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 3. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and
- Lead-free. 4. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 5. Automotive products are AEC-Q100 qualified and are PPAP capable. Refer to https://www.diodes.com/quality/.

Absolute Maximum Ratings (Note 6)

Symbol	Parameter	Rating	Unit
V _{KA}	Cathode Voltage	20	V
I _{KA}	Continuous Cathode Current	-20 to +20	mA
I _{REF}	Reference Input Current Range	-0.05 to +3	mA
V _{IN}	Input Supply Voltage (Relative to Ground)	-0.03 to +18	V
TJ	Operating Junction Temperature	-40 to +150	°C
Ts	Storage Temperature	-65 to +150	°C
ESD Susceptibility	·		
HBM	Human Body Model	4	kV
MM	Machine Model	400	V
CDM	Charged Device Model	1	kV

Notes: 6. a) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended period may affect device reliability.

Semiconductor devices are ESD sensitive and may be damaged by exposure to ESD events. Suitable ESD precautions should be taken when handling and transporting these devices.

b) Ratings apply to ambient temperature at +25°C.

Recommended Operating Conditions (@T_A = +25°C, unless otherwise specified.)

Symbol	Parameter	Min	Max	Unit
V _{KA}	Cathode Voltage	V _{REF}	18	V
IKA	Cathode Current	0.1	15	mA
T _A	Operating Ambient Temperature Range	-40	+125	°C

Package Thermal Data

Package	θ _{JA}	P _{DIS} T _A = +25°C, T _J = +150°C
SOT23	380°C/W	330mW
SOT25	250°C/W	500mW

Electrical Characteristics (@T_A = +25°C, I_K = 10mA, unless otherwise specified.)

Symbol	Parameter	Cond	itions	Min	Тур	Max	Unit
		V _{KA} = V _{REF} , T _A = +25°C	TLV431AQ	1.228	1.24	1.252	
			TLV431BQ	1.234	1.24	1.246	
		TA = +25°C	TLV431TQ	1.2375	1.24	1.2425	
			TLV431AQ	1.221	_	1.259	
		$V_{KA} = V_{REF},$ $T_A = 0 \text{ to } +70^{\circ}\text{C}$	TLV431BQ	1.227		1.253	
V _{REF}	Reference Voltage	$T_{A} = 0.00 + 70.0$	TLV431TQ	1.230		1.250	V
V REF	Reference voltage	Vka = Vref,	TLV431AQ	1.215		1.265	v
		$V_{RA} = V_{REF},$ T _A = -40 to +85°C	TLV431BQ	1.224	—	1.259	
		TA = -40 10 +03 C	TLV431TQ	1.228	—	1.252	
		Vka = Vref,	TLV431AQ	1.209	—	1.271	
		$V_{KA} = V_{REF},$ T _A = -40 to +125°C	TLV431BQ	1.221		1.265	
		$T_{\rm A} = -4010 + 125{\rm C}$	TLV431TQ	1.224	_	1.255	
	Deviation of Reference	Vka = Vref	$T_{A} = 0 \text{ to } +70^{\circ}\text{C}$	_	4	12	mV
V _{REF(DEV)} (Note 7)	Voltage Over Full Temperature Range		T _A = -40 to +85°C	—	6	20	
			T _A = -40 to +125°C	_	11	31	
<u>ΔV_{REF}</u>	$\frac{\Delta V_{REF}}{\Delta V_{REF}}$ Ratio of Change in Reference Voltage to	V_{KA} for V_{REF} to	6V	—	-1.5	-2.7	mV/V
ΔV_{KA}	the Change in Cathode Voltage		18V	—	-1.5	-2.7	
I _{REF}	Reference Input Current	$R_1 = 10k\Omega$, $R_2 = OC$		—	0.15	0.5	μA
		Full $R_1 = 10k\Omega,$ $R_2 = OC$	T _A = 0 to +70°C	—	0.05	0.3	
I _{REF(DEV)} (Note 7)	I _{REF} Deviation Over Full Temperature Range		T _A = -40 to +85°C	_	0.1	0.4	μA
(NOLE 7)	Temperature Range		T _A = -40 to +125°C	_	0.15	0.5	
		V _{KA} = V _{REF}	$T_{A} = 0 \text{ to } +70^{\circ}\text{C}$	_	55	80	
1.4.444	Minimum Cathode Current for Regulation		T _A = -40 to +85°C	_	55	80	μA
			T _A = -40 to +125°C	_	55	100	
I _{K(OFF)}	Off-State Current	$V_{KA} = 18V, V_{REF} = 0V$		—	0.001	0.1	μA
Z _{KA} (Note 8)	Dynamic Output Impedance	$V_{KA} = V_{REF}$, f = <1kHz I _K = 0.1 to 15mA		_	0.25	0.4	Ω

Notes: 7. The deviation parameters V_{REF(DEV)} and I_{REF(DEV)} are defined as the differences between the maximum and minimum values across the specified temperature range. The average full-range temperature coefficient of the reference input voltage, dV_{REF}/dT, is defined as:

$$\left|\frac{dV_{REF}}{dT}\right|\binom{ppm}{{}^{\circ}C} = \frac{\left(\frac{V_{REF(DEV)}}{V_{REF}(T_{A}=25^{\circ}C}\right) \times 10^{6}}{\Delta T_{A}}$$

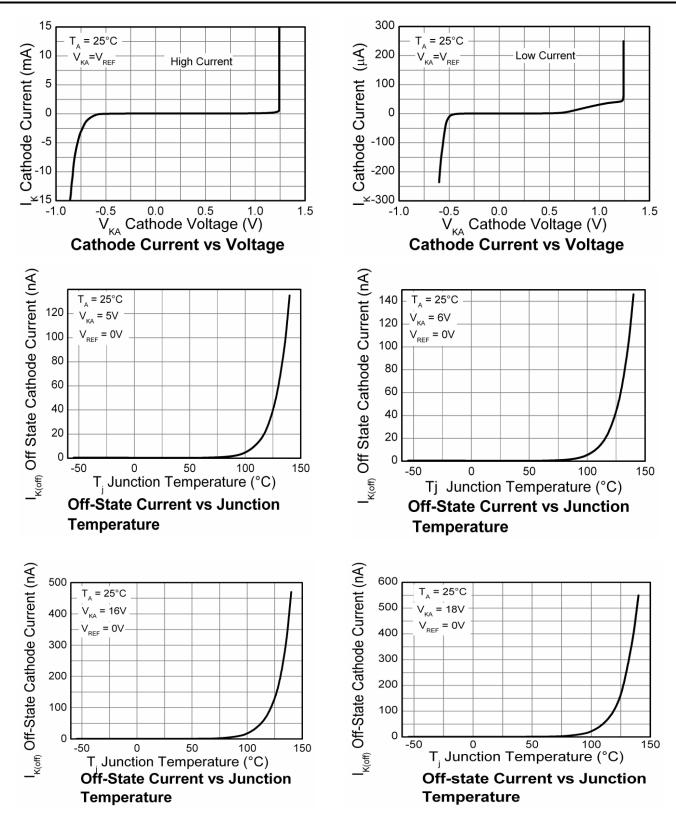
where ΔT_A is the rated operating free-air temperature range of the device.

dV_{REF}/dT can be positive or negative, depending on whether minimum V_{REF} or maximum V_{REF}, respectively, occurs at the lower temperature.

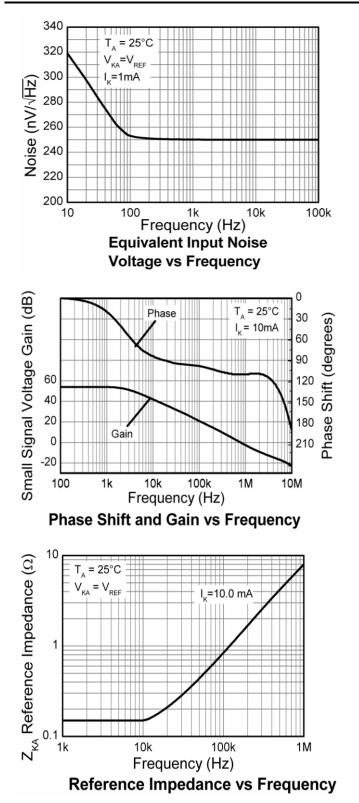
8. The dynamic impedance is defined as:

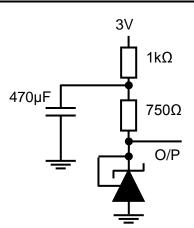
$$|Z_{KA}| = \frac{\Delta V_{KA}}{\Delta L}$$

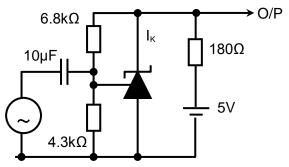
 $|Z_{KA}| = \Delta_{I_{KA}}$ When the device is operating with two external resistors (see Typical Application Circuit Figure 1), the total dynamic impedance of the circuit is increased by a factor of $(1 + R^{1}/R^{2})$.



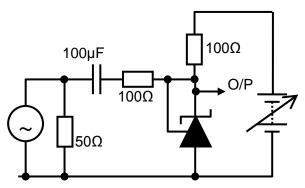
Typical Characteristics



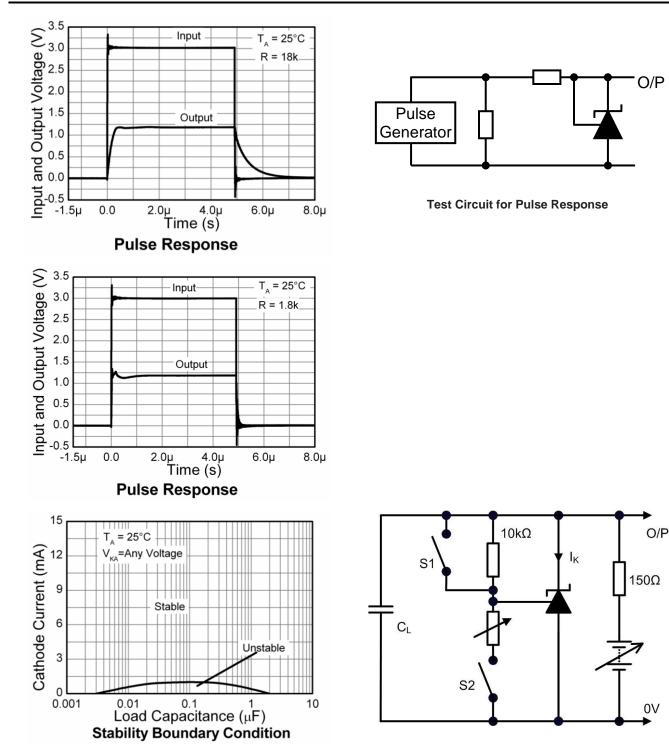

Typical Characteristics (Cont.)



Typical Characteristics (Cont.)



Test Circuit for Input Noise Voltage


Test Circuit for Phase Shift and Gain

Test Circuit for Reference Impedance

Typical Characteristics (Cont.)

Application Notes

In a conventional shunt regulator application (Figure 1), an external series resistor (R3) is connected between the supply voltage, V_{IN} , and the TLV431Q. The 0.5% and 0.2% tolerance versions allow the creation of a high accuracy adjustable shunt reference.

R3 determines the current that flows through the load (I_L) and the TLV431Q (I_K). The TLV431Q will adjust how much current it sinks or "shunts" to maintain a voltage equal to V_{REF} across its feedback pin. Since load current and supply voltage may vary, R3 should be small enough to supply at least the minimum acceptable I_{KMIN} to the TLV431Q even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and I_L is at its minimum, R3 should be large enough so that the current flowing through the TLV431Q is less than 15mA.

R₃ is determined by the supply voltage, (V_{IN}), the load and operating current, (I_L and I_K), and the TLV431Q's reverse breakdown voltage, V_{KA}.

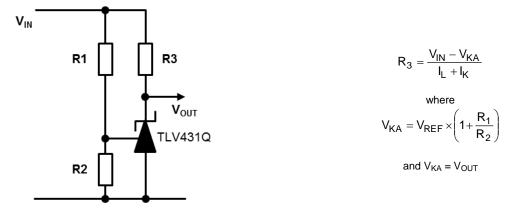


Figure 1. Adjustable Low Voltage Reference

The values of R1 and R2 should be large enough so that the current flowing through them is much smaller than the current through R3 yet not too large so that the voltage drop across them caused by I_{REF} affects the reference accuracy.

Printed Circuit Board Layout Considerations

The TLV431Q in the SOT25 package has the die attached to pin 2, which results in an electrical contact between pin 2 and pin 5. Therefore, pin 2 of the SOT25 package must be left floating or connected to pin 5.

Other Applications of the TLV431Q

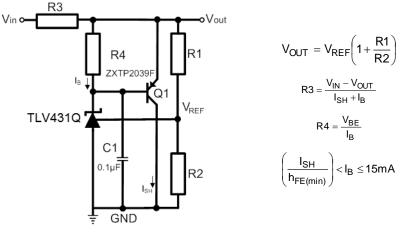


Figure 2. High Current Shunt Regulator

It may at times be required to shunt-regulate more current than the 15mA that the TLV431Q is capable of.

Figure 2 shows how this can be done using transistor Q1 to amplify the TLV431Q's current. Care needs to be taken that the power dissipation and/or SOA requirements of the transistor is not exceeded.

Application Notes (Cont.)

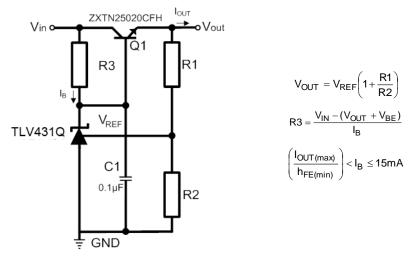


Figure 3. Basic Series Regulator

A very effective and simple series regulator can be implemented as shown in Figure 3 above. This may be preferable if the load requires more current than can be provided by the TLV431Q alone and there is a need to conserve power when the load is not being powered. This circuit also uses one component less than the shunt circuit shown in Figure 3 above.

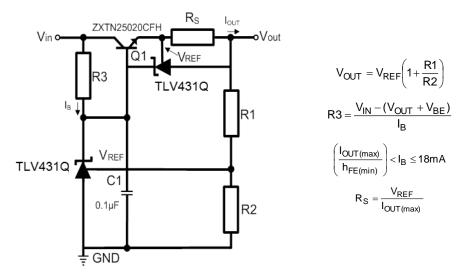


Figure 4. Series Regulator with Current Limit

Figure 4 adds current limit to the series regulator in Figure 3 using a second TLV431Q. For currents below the limit, the circuit works normally supplying the required load current at the design voltage. However, should attempts be made to exceed the design current set by the second TLV431Q, the device begins to shunt current away from the base of Q1. This begins to reduce the output voltage and thus ensuring that the output current is clamped at the design value. Subject only to Q1's ability to withstand the resulting power dissipation, the circuit can withstand either a brief or indefinite short circuit.

Application Notes (Cont.)

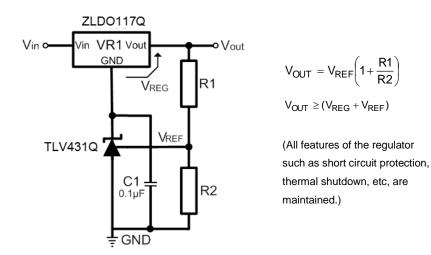


Figure 5. Increasing Output Voltage of a Fixed Linear Regulator

One of the useful applications of the TLV431Q is in using it to improve the accuracy and/or extend the range and flexibility of fixed voltage regulators. In the circuit in Figure 5 above both the output voltage and its accuracy are entirely determined by the TLV431Q, R1 and R2. However, the rest of the features of the regulator (up to 1A output current, output current limiting and thermal shutdown) are all still available.

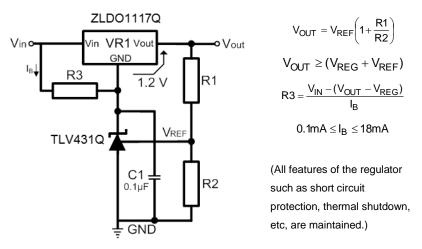
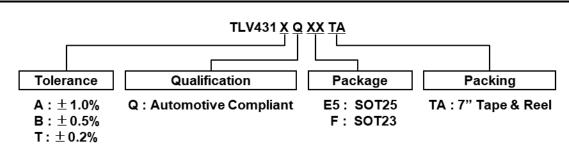
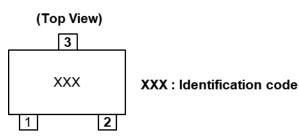



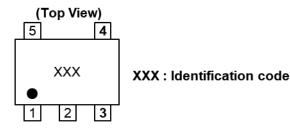
Figure 6. Adjustable Linear Voltage Regulator

Figure 6 is similar to Figure 5 with adjustability added. Note the addition of R3, This is added to provide sufficient bias current for the TLV431Q.

Ordering Information



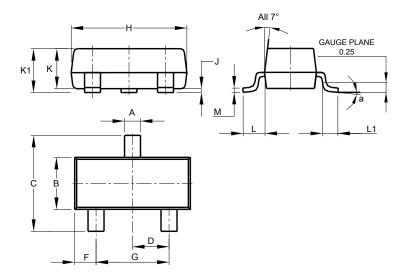
Tol.	Part Number	Package (Note 9)	Identification Code	Reel Size	Tape Width	Quanity per Reel	Compliance/Qualification (Note 10)
1%	TLV431AQE5TA	SOT25	V1A	7", 180mm	8mm	3,000	Automotive
170	TLV431AQFTA	SOT23	V1A	7", 180mm	8mm	3,000	Automotive
0.5%	TLV431BQE5TA	SOT25	V1B	7", 180mm	8mm	3,000	Automotive
0.5%	TLV431BQFTA	SOT23	V1B	7", 180mm	8mm	3,000	Automotive
0.2%	TLV431TQFTA	SOT23	V1T	7", 180mm	8mm	3,000	Automotive


Notes: 9. For packaging details, go to our website at https://www.diodes.com/design/support/packaging/diodes-packaging/. 10. TLV431Q has been qualified to AEC-Q100 grade 1 and is classified as "Automotive-Compliant" which supports PPAP documentation. See TLV431 for commercial variants.

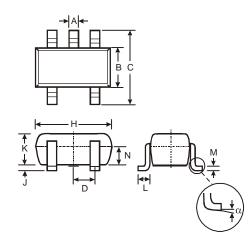
Marking Information

(1) SOT23

(2) SOT25



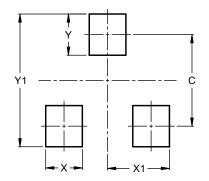
Package Outline Dimensions


Please see http://www.diodes.com/package-outlines.html for the latest version.

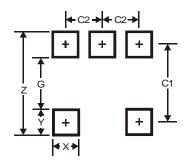
(1) Package Type: SOT23

	SOT23					
Dim	Min	Max	Тур			
Α	0.37	0.51	0.40			
В	1.20	1.40	1.30			
C	2.30	2.50	2.40			
D	0.89	1.03	0.915			
F	0.45	0.60	0.535			
G	1.78	2.05	1.83			
н	2.80	3.00	2.90			
J	0.013	0.10	0.05			
К	0.890	1.00	0.975			
K1	0.903	1.10	1.025			
L	0.45	0.61	0.55			
L1	0.25	0.55	0.40			
М	0.085	0.150	0.110			
а	0°	8°				
All	All Dimensions in mm					

(2) Package Type: SOT25


SOT25				
Dim	Min	Max	Тур	
Α	0.35	0.50	0.38	
в	1.50	1.70	1.60	
С	2.70	3.00	2.80	
D	D -		0.95	
H 2.90		3.10	3.00	
J	0.013	0.10	0.05	
Κ	1.00	1.30	1.10	
L 0.35		0.55	0.40	
M 0.10		0.20	0.15	
N 0.70		0.80	0.75	
α	0°	8°	-	
All Dimensions in mm				

Suggested Pad Layout


Please see http://www.diodes.com/package-outlines.html for the latest version.

(1) Package Type: SOT23

Dimensions	Value (in mm)
С	2.0
Х	0.8
X1	1.35
Y	0.9
Y1	2.9

(2) Package Type: SOT25

Dimensions	Value
Z	3.20
G	1.60
Х	0.55
Y	0.80
C1	2.40
C2	0.95

Note: The suggested land pattern dimensions have been provided for reference only, as actual pad layouts may vary depending on application. These dimensions may be modified based on user equipment capability or fabrication criteria. A more robust pattern may be desired for wave soldering and is calculated by adding 0.2 mm to the 'Z' dimension. For further information, please reference document IPC-7351A, Naming Convention for Standard SMT Land Patterns, and for International grid details, please see document IEC, Publication 97.

Note: For high voltage applications, the appropriate industry sector guidelines should be considered with regards to creepage and clearance distances between device Terminals and PCB tracking.

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2018, Diodes Incorporated

www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))