

ZXTN19055DZ 55V, SOT89, NPN medium power transistor

Summary

 $BV_{CEX} > 150V$

 $BV_{CEO} > 55V$

 $I_{C(cont)} = 6A$

V_{CE(sat)} < 60mV @ 1A

 $R_{CE(sat)} = 28m\Omega$

 $P_D = 2.1W$

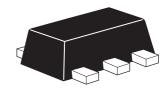
Packaged in the SOT89 outline this low saturation 55V NPN transistor offers extremely low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.

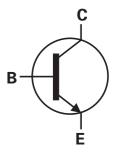
Feature

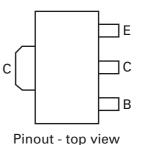
- Extremely low equivalent on-resistance of 28m Ω
- · 6 Amps continuous current
- · Up to 10 amps peak current
- · Very low saturation voltages
- Excellent h_{FF} characteristics up to 10 amps
- 150V Forward blocking voltage

Applications

- · Emergency lighting circuits
- · Motor driving (including DC fans)
- Solenoid, relay and actuator drivers
- · DC modules
- Backlight inverters


Ordering information


Device	Reel size (inches)	Tape width (mm)	Quantity per reel
ZXTN19055DZTA	7	12	1000


Device marking

© Zetex Semiconductors plc 2006

S75

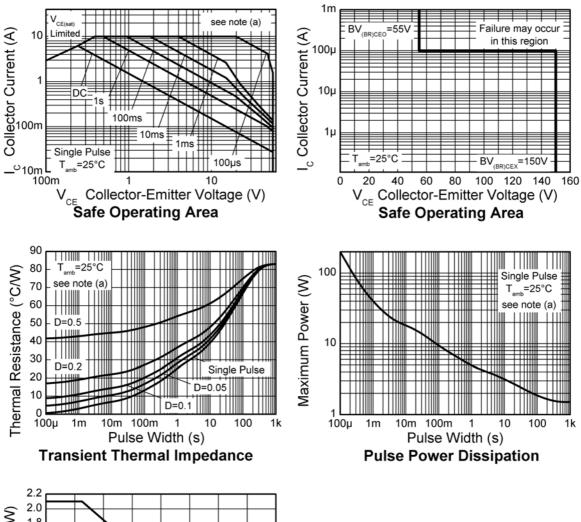
Issue 1 - June 2006 1 www.zetex.com

ZXTN19055DZ

Absolute maximum ratings

Parameter	Symbol	Limit	Unit
Collector-base voltage	V _{CBO}	150	V
Collector-emitter voltage (forward blocking voltage)	V _{CEX}	150	V
Collector-emitter voltage (base open)	V _{CEO}	55	V
Emitter-base voltage	V _{EBO}	7	V
Continuous collector current ^(b)	I _C	6	Α
Peak pulse current	I _{CM}	10	Α
Power dissipation at T _{amb} =25°C ^(a)	P _D	1.5	W
Linear derating factor		12	mW/°C
Power dissipation at T _{amb} =25°C ^(b)	P_{D}	2.1	W
Linear derating factor		16.8	mW/°C
Operating and storage temperature range	T _j , T _{stg}	-55 to +150	°C

Thermal resistance


Parameter	Symbol	Limit	Unit
Junction to ambient ^(a)	$R_{\Theta JA}$	83	°C/W
Junction to ambient ^(b)	$R_{\Theta JA}$	59	°C/W

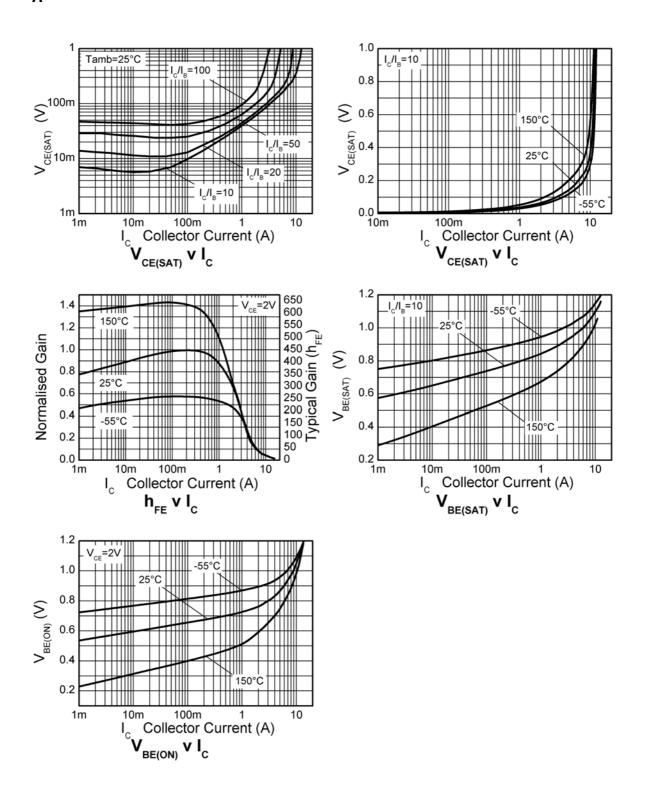
NOTES:

⁽a) For a device surface mounted on 25mm x 25mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

⁽b) For a device surface mounted on 50mm x 50mm x 1.6mm FR4 PCB with high coverage of single sided 1oz copper, in still air conditions.

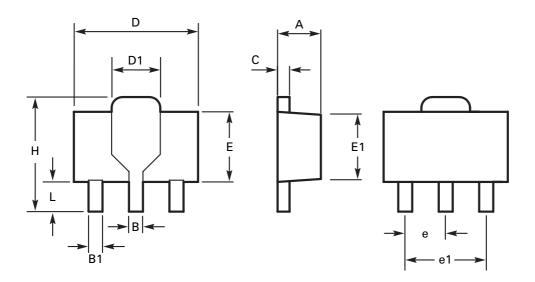
Characteristics

Max Power Dissipation (W) 1.8 1.6 see note (b) 1.4 1.2 1.0 0.8 see note (a) 0.6 0.4 0.2 0.0 0 20 80 100 120 140 Temperature (°C) **Derating Curve**


Electrical characteristics (at $T_{amb} = 25$ °C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Collector-base breakdown voltage	BV _{CBO}	150	200		٧	I _C = 100mA
Collector-emitter breakdown	BV _{CEX}	150	200		V	I_C = 100mA, R_{BE} < 1k Ω or
voltage (forward blocking)						-1V < V _{BE} < +0.25V
Collector-emitter breakdown voltage (base open)	BV _{CEO}	55	75		>	I _C = 10mA ^(*)
Emitter-base breakdown voltage	BV _{EBO}	7	8.1		V	IE = 100mA
Collector-base cut-off current	I _{CBO}		<1	50	nA	V _{CB} = 120V
				20	μΑ	$V_{CB} = 120V, T_{amb} = 100^{\circ}C$
Collector-emitter cut-off current	I _{CEX}		<1	100	nA	V_{CE} = 120V; R_{BE} < 1k Ω or -1V < V_{BE} < 0.25V
Emitter cut-off current	I _{EBO}		<1	50	nA	V _{EB} = 5.6V
Collector-emitter saturation	V _{CE(sat)}		25	40	mV	$I_C = 0.5A$, $I_B = 50mA^{(*)}$
voltage			45	70	mV	$I_C = 1A$, $I_B = 50 \text{mA}^{(*)}$
			40	60	mV	$I_C = 1A$, $I_B = 100 \text{mA}^{(*)}$
			200	350	mV	$I_C = 2A$, $I_B = 20mA^{(*)}$
			110	140	mV	$I_C = 2A$, $I_B = 40 \text{mA}^{(*)}$
			140	200	mV	$I_C = 4A$, $I_B = 200 \text{mA}^{(*)}$
			170	250	mV	$I_C = 6A$, $I_B = 600 \text{mA}^{(*)}$
Base-emitter saturation	V _{BE(sat)}		800	900	mV	$I_C = 2A$, $I_B = 20mA^{(*)}$
voltage			1000	1150	mV	$I_C = 6A$, $I_B = 600 \text{mA}^{(*)}$
Base-emitter turn-on voltage	V _{BE(on)}		760	900	mV	$I_C = 2A$, $V_{CE} = 2V^{(*)}$
			900	1050	mV	$I_C = 6A$, $V_{CE} = 2V^{(*)}$
Static forward current transfer ratio	h _{FE}	250	400	700		$I_C = 10 \text{mA}, V_{CE} = 2V^{(*)}$
Tatio		250	400			$I_C = 1A, V_{CE} = 2V^{(*)}$
		180	300			$I_C = 2A$, $V_{CE} = 2V^{(*)}$
		30	50			$I_C = 6A$, $V_{CE} = 2V^{(*)}$
			20			$I_C = 10A$, $V_{CE} = 2V^{(*)}$
Transition frequency	f _T	140	200		MHz	I _C = 100mA, V _{CE} =10 V f = 50MHz
Output capacitance	C _{OBO}		21.2	30	pF	V _{CB} = 10V, f = 1MHz
Delay time	t _d		13.8			V _{CC} = 10V,
Rise time	t _r		21.9			I _C = 1A,
Storage time	t _s		546			$I_{B1} = I_{B2} = 100 \text{mA}$
Fall time	t _f		106			

NOTES:


(*) Measured under pulsed conditions. Pulse width \leq 300 μ s; duty cycle \leq 2%.

Typical characteristics

ZXTN19055DZ

Package outline - SOT89

DIM	Millimeters		Inches		DIM	Millimeters		Inches	
	Min	Max	Min	Max		Min	Max	Min	Max
Α	1.40	1.60	0.550	0.630	E1	2.13	2.29	0.084	0.090
В	0.44	0.56	0.017	0.022	е	1.50 BSC		0.059 BSC	
B1	0.36	0.48	0.014	0.019	e1	3.00 BSC		0.118 BSC	
С	0.35	0.44	0.014	0.019	Н	3.94	4.25	0.155	0.167
D	4.40	4.60	0.173	0.181	L	0.89	1.20	0.155	0.167
E	2.29	2.60	0.090	0.102		-	-	-	-

Note: Controlling dimensions are in millimeters. Approximate dimensions are provided in inches

Americas Asia Pacific Corporate Headquarters Zetex GmbH Zetex Inc Zetex (Asia Ltd) Zetex Semiconductors plc Streitfeldstraße 19 700 Veterans Memorial Highway 3701-04 Metroplaza Tower 1 Zetex Technology Park, Chadderton D-81673 München Hauppauge, NY 11788 Hing Fong Road, Kwai Fong Oldham, OL9 9LL Germany Hong Kong United Kingdom Telefon: (49) 89 45 49 49 0 Telephone: (1) 631 360 2222 Telephone: (852) 26100 611 Telephone: (44) 161 622 4444 Fax: (49) 89 45 49 49 49 Fax: (1) 631 360 8222 Fax: (852) 24250 494 Fax: (44) 161 622 4446 europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com hq@zetex.com

For international sales offices visit www.zetex.com/offices

 ${\sf Zetex}\ products\ are\ distributed\ worldwide.\ For\ details,\ see\ {\it www.zetex.com/salesnetwork}$

This publication is issued to provide outline information only which (unless agreed by the company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contact or be regarded as a representation relating to the products or services concerned. The company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

Issue 1 - June 2006 6 www.zetex.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))