

6-Bit Bi-directional Level Shifter for SD 3.0-SDR104 Compliant Memory Card Application

Features

- → Supports up to 208 MHz clock rate
- → Supports 1.2V to 1.8V host side interface voltage
- → Voltage translation supports SDR104, SDR50, DDR50, SDR25, SDR12, High-Speed and Default-Speed modes and comply SD 3.0 specification
- → Automatic enable and disable through VSD supply pin
- → Built-in 100mA Low dropout voltage regulator to supply the voltage of memory card I/Os
- → Integrated pull-up and pull-down resistors
- → Integrated EMI filters for digital I/Os
- → On card side, supports 8 kV ESD protection(IEC 61000-4-2, level 4)
- → Level shifting buffers keep ESD stress away from the host
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen- and Antimony-Free. "Green" Device (Note 3)
- → For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- → Packaging (Pb-free & Green):
 - □ 20-ball (WLCSP), pitch 0.4 mm

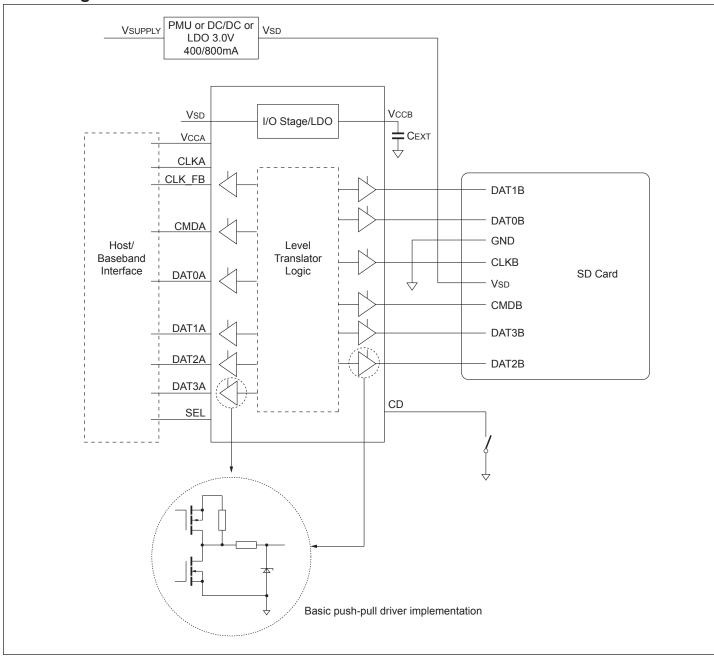
Description

The device is an SD 3.0-compliant bidirectional dual voltage level translator without direction pin control. It can translate the memory card voltage to 1.8V or 3.0V signal levels from 1.2V to 1.8V of host side and supports SD 3.0 SDR104(208Mhz), SDR50(100Mhz), DDR50(50Mhz), SDR25(50Mhz), SDR12(25Mhz) and SD 2.0 High-Speed (50 MHz) and Default-Speed (25 MHz) modes.

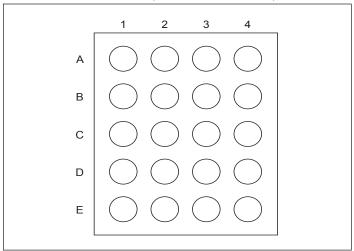
To supply the memory card I/Os, the device has an integrated voltage selectable regulator and an auto-enable/disable function that connects to the VSD supply pin. The device also has built-in EMI filters and ESD protections.

Applications

- → Smart phones
- → Mobile handsets
- → Digital cameras
- → Tablet PCs
- → Laptop computers
- → SD, MMC or microSD card readers


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.


Block Diagram

Pin Configuration (Top-Side View)

Pin Description

	D' N	Т	Description	
Pin#	Pin Name	Type	Description	
A1	DAT2A	I/O	Data 2 input or output on host side	
A2	V _{CCA}	Pwr	Supply voltage from host side	
A3	V_{SD}	Pwr	Supply voltage	
A4	DAT2B	I/O	Data 2 input or output on memory card side	
B1	DAT3A	I/O	Data 3 input or output on host side	
B2	CD	О	High voltage output (refer to V _{CCA})	
В3	V_{CCB}	Pwr	Internal supply decoupling ($V_{\rm LDO}$)	
B4	DAT3B	I/O	Data 3 input or output on memory card side	
C1	CMDA	I/O	Command input or output on host side	
C2	GND	Pwr	Supply ground	
C3	GND	Pwr	Supply ground	
C4	CMDB	I/O	Command input or output on memory card side	
D1	DAT0A	I/O Data 0 input or output on host side		
D2	CLKA	I	Clock signal input on host side	
D3	CLKB	О	Clock signal output on memory card side	
D4	DAT0B	I/O	Data 0 input or output on memory card side	
E1	DAT1A	I/O	Data 1 input or output on host side	
E2	CLK_FB	О	Clock feedback output on host side	
Е3	SEL	I	Card side I/O voltage level select	
E4	DAT1B	I/O	Data 1 input or output on memory card side	

Note:

- 1. The pin names relate particularly to SD memory cards, but also apply to microSD and MMC memory cards.
- 2. I = input, O = output, I/O = input and output, S = power supply

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

, 1	0
Storage Temperature	55°C to +150°C
Junction Temperature	125°C max
Supply Voltage to Ground Potential	0.5V to +4.6V
Host Side Input Voltage	0.5V to +2.2V
Card Side Input Voltage	0.5V to +4.6V
Power Dissipation Continuous	1000mW
I/O Latch-up Current	100mA to +100mA
ESD, HBM	2000V to +2000V

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Limiting Values

Symbol	Parameter	Conditions	Conditions		Max.	Units
V _{CC}	0 1 1	4	On pin V _{SD}	-0.5	+4.6	V
	Supply voltage	4ms transient	On pin V _{CCA}	-0.5	+2.2	V
VI	Input voltage 4ms transient at I) pins, port A max. = 2.2V	-0.5	+4.6	V
P _{tot}	Total power dissipation	$T_{amb} = -40$ °C to +85 °C			1000	mW
T_{stg}	Storage temperature			-55	150	°C
	Electrostatic discharge voltage V_{SD} and	IEC 61000-4-2,	Contact discharge	-8	8	kV
			Air discharge	-15	15	kV
V _{ESD}		level 4, all memory card-side pins, V _{SD} and CD to	Human Body Model (HBM) JEDEC JESD22-A114F; all pins	-2000	2000	V
		ground ⁽¹⁾	Charge Device Model (CDM) JEDEC JESD22-C101E; all pins	-500	500	V
I _{Iu(IO)}	Input/output latch-up current	JESD 78B: -0.5 x V _C	_{CC} < V _I < 1.5 x V _{CC} ; T _j < 125 °C	-100	100	mA

Note: 1. All system level tests are performed with the application-specific capacitors connected to the supply pins V_{SUPPLY}, V_{LDO} and V_{CCA}.

Recommended Operating Conditions

Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
3.7	C11	On pin V _{SD}	2.9(1)		3.6	V
VCC	V _{CC} Supply voltage	On pin V _{CCA}	1.1		2.0	V
3.7	T	Host side	-0.3 ⁽²⁾		$V_{CCA} + 0.3$	V
V_{I}	Input voltage	Memory card side	-0.3		$V_{O(LDO)} + 0.3$	V
C _{ext}	External capacitance	Recommended capacitor at pin V _{CCB}		2.2		μF
ESR	Equivalent series resistance	At pin V _{LDO}	0		50	$m\Omega$
C _{ext}	External capacitance	Recommended capacitor at pin V _{SD}		0.1		μF
		Recommended capacitor at pin V _{CCA}		0.1		μF

Note:

2. The voltage must not exceed 3.6 V.

^{1.} By minimum value the device is still fully functional, but the voltage on pin VLDO might drop below the recommended memory card supply voltage.

Integrated Resistors

Tamb = 25°C; unless otherwise specified.

Symbol	Parameter	Conditions		Тур.	Max.	Units
D -	Pull-down resistance	R3; tolerance ±30 %	70	100	130	Ω
R _{pd}	Pull-down resistance	R5	200	350	500	kΩ
D	D. 11	All data lines and CMDx	21	30	39	kΩ
R _{pu}	Pull-up resistance	R4	70	100	130	kΩ
R _s Sen	C	Host side; R1; tolerance ±30 %	(1)	22.5		Ω
	Series resistance	Card side; R2; tolerance ±30 %	(1)	15		Ω

Static Characteristics

At recommended operating conditions; $T_{amb} = 40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$; voltages are referenced to GND (ground = 0 V); $C_{ext} = 2.2 \,\mu\text{F}$ at pin V_{CCB}; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Typ. (2)	Max.	Units
Automatic	Enable Feature: V _{SD}			,	,	
V _{SDen}	Device enable voltage level	V _{CCA} ≥ 1.0V, V _{SD} rising edge	2.05	2.25	2.45	V
V _{SDdisable}	Device disable voltage level	$V_{CCA} \ge 1.0V$, V_{SD} rising edge	2.0	2.2	2.4	V
ΔV_{SDen}	V _{SDen} hysteresis voltage			50		mV
Supply Vo	ltage Regulator for Card-side I/O Pi	n: V _{CCB}				
3 7		$SEL = LOW; 3.0V \le V_{SD} \le 3.6V; I_{O} < 100mA$	V _{SD} -0.2	V _{SD} -0.1	V _{SD}	V
$V_{O(LDO)}$	Regulator/switch output voltage	$SEL = HIGH; V_{SD} \ge 2.9V; I_O < 100mA$	1.7	1.8	1.95	V
I _{O(LDO)}	Regulator/switch output current				100	mA
Host-side	Input Signals: CMDA and DAT0A to	DAT3A, CLKA; $1.1V \le V_{CCA} \le 2.0V$	7			1
V_{IH}	High level input voltage		0.75 x V _{CCA}		V _{CCA} + 0.3	V
V_{IL}	Low level input voltage		-0.3		0.25 x V _{CCA}	V
Host-side	Control Signals; 1.1V ≤ V _{CCA} ≤ 2.0V	- SEL				
V_{IH}	High level input voltage		0.75 x V _{CCA}		V _{CCA} + 0.3	V
$ m V_{IL}$	Low level input voltage		-0.3		0.25 x V _{CCA}	V
Host-side	Output Signals: CLK_FB, CMDA an	nd DAT0A to DAT3A; 1.1V ≤ V _{CCA} ≤	2.0V			
X 7	High level output voltage for CLK_FB	$I_O = 2mA$; $V_I = V_{IH}$ (card side)	0.8 x V _{CCA}			V
V _{OH}	High level output voltage for CMDA, DATxA	$IO = 2\mu A; V_I = V_{IH}$ (card side)	0.8 x V _{CCA}			V

^{1.} Guaranteed by design.

Static Characteristics Cont.

Symbol	Parameter	Conditions		Min.	Typ. (2)	Max.	Units
V _{OL}	Low level output voltage	$I_O = 2mA$; $V_I = V_{IL}$ (card side)				0.15 x V _{CCA}	V
Card-side	Input Signals: CMDB and DAT0B to	DAT3B					
17	IT:-h local: word on the co	SEL = LOW (3.0V)	card interface)	0.625 x V _{O(LDO)}		V _{O(LDO)} + 0.3	V
V_{IH}	High level input voltage	SEL = HIGH (1.8V	card interface)	0.625 x V _{O(LDO)}		V _{O(LDO)} + 0.3	V
***		SEL = LOW (3.0V)	card interface)	-0.3		0.3 x V _{O(LDO)}	V
V_{IL}	Low level input voltage	SEL = HIGH (1.8V	card interface)	-0.3		0.3 x V _{O(LDO)}	V
Card-side	Output Signal — CMDB and DAT0B	to DAT3B, CLKB					
	High level output voltage for CLKB		IH (host side); card interface)	0.85 x V _{O(LDO)}		V _{O(LDO)} + 0.3	V
V _{OH}	only	I _O = 2mA; V _I = V _{IH} (host side); SEL = HIGH (1.8V card interface)		0.85 x V _{O(LDO)}		2.0	V
	High level output voltage for CMDB, DATxB	$I_O = 2\mu A; V_I = V_I$ SEL = HIGH (1.8V		0.85 x V _{O(LDO)}		2.0	V
3.7		$I_O = -4mA$; $V_I = V$ SEL = LOW (2.9V		-0.3		0.125 x V _{O(LDO)}	V
V_{OL}	Low level output voltage	$I_O = -2mA$; $V_I = V$ SEL = HIGH (1.8V	V _{I card L} (host side); V interface)	-0.3		0.125 x V _{O(LDO)}	V
Card-side	Output Signal — Bus Signal Equivale	ent Capacitance					
		$V_{I} = 0V; f_{i} = 1$	Host side	(3)	7		pF
C _{ch}	Channel capacitance	$MHz; V_{SD} = 3.0V; V_{CCA} = 1.8V$	Card side		15		pF
Current C	onsumption						
		$V_{SD} \ge V_{SDen}$	SEL = LOW (3.0V card interface)			100	μΑ
I _{CC(stat)}	Static supply current	/ . 1 \ . 11	SEL = HIGH (1.8V card interface)			100	μΑ
I _{CC(stb)}	Standby supply current	VSD ≤ VSDen and (Inactive mode); A = HIGH	d VCCA ≥ 1.0V All host side inputs			7	μΑ

^{1.} Guaranteed by design and characterization.
2. Typical values are measured at T_{amb} = 25°C.
3. EMI filter line capacitance per data channel from I/O driver to pin; C_{ch} is guaranteed by design.

Dynamic Characteristics

Voltage Regulator

 $(T_{amb} = 25^{\circ}C; unless otherwise specified.)$

Symbol	Parameter Parameter	Conditions	Min.	Тур.	Max.	Units	
Voltage Regu	Oltage Regulator Output Pin: V _{CCB}						
t _{startup(LDO)}	Regulator start-up time	$V_{CCA} = 1.8V; V_{SD} = 3.0V; C_{ext} = 2.2\mu F;$ see Figure 2			400	μs	
$t_{f(o)}$	Output fall time	$V_{O(LDO)} = 3.0V$ to 1.8V; SEL = LOW to HIGH; see Figure 1			1	ms	
$t_{r(o)}$	Output rise time	$V_{O(LDO)} = 1.8V$ to 3.0V; SEL = HIGH to LOW; see Figure 5			100	μs	

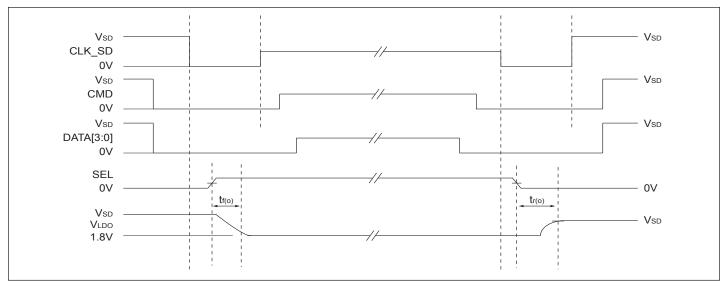


Figure 1. Regulator Mode Change Timing

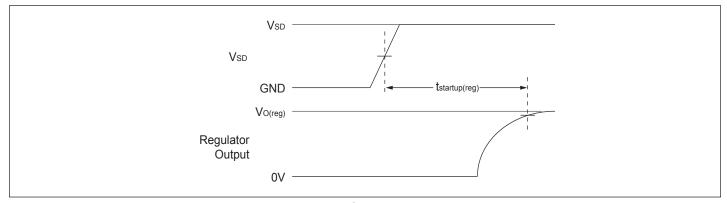


Figure 2. Regulator Start-up Time

Level Translator Dynamic Characteristics

At recommended operating conditions; V_{CCA} = 1.2V; T_{amb} = 25°C; unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Host Side T	ransition Times			·		
t _r	Rise time	SEL = HIGH (1.8V card interface);	(1)	0.4	1.0	ns
t _f	Fall time	$V_{CCA} = 1.8V$	(1)	0.4	1.0	ns
t _r	Rise time	SEL = HIGH (1.8V card interface);	(1)	0.4	1.0	ns
$t_{\rm f}$	Fall time	$V_{CCA} = 1.2V$	(1)	0.4	1.0	ns
Card Side T	ransition Times					
t _r	Rise time	SEL = HIGH (1.8V card interface);	$0.4^{(2)}$	0.88	1.32	ns
t _f	Fall time	$-40^{\circ}\text{C} \le \text{T}_{amb} \le +85^{\circ}\text{C}$	0.4 ⁽²⁾	0.88	1.32	ns
Card Input	Transition Times					
t _r	Rise time	SEL = HIGH (1.8 V card interface);	$0.2^{(3)}$	0.5	0.96	ns
t _f	Fall time	$-40^{\circ}\text{C} \le \text{T}_{amb} \le +85^{\circ}\text{C}$	$0.2^{(3)}$	0.45	0.96	ns
Host to Car	d Propagation Delay — DAT	TxA to DATxB, CMDA to CMDB, CLKA to	CLKB			
t _{pd}	Propagation delay	SEL = HIGH (1.8V card interface); $V_{CCA} = 1.2V$		3.0	5.5	ns
Host to Car	d Propagation Delay — CLF	KA to CLK_FB				
t _{pd}	Propagation delay	SEL = HIGH (1.8V card interface); $V_{CCA} = 1.2V$		5.5	10	ns
Card to Ho	st Propagation Delay — DA	TxB to DATxA, CMDB to CMDA				
t _{pd}	Propagation delay	SEL = HIGH (1.8V card interface); $V_{CCA} = 1.2V$		2.5	4.5	ns

Note:

1. Transition between V_{OL} = 0.35 * V_{CCA} and V_{OH} = 0.65 * V_{CCA}

2. Transition between V_{OL} = 0.45V and V_{OH} = 1.4V

3. Guaranteed by design; transition between V_{IL} = 0.58V and V_{IH} = 1.27V with C_{trace} = 3.5 pF and C_{card+CRADLE} = 12pF, trace length = 11mm

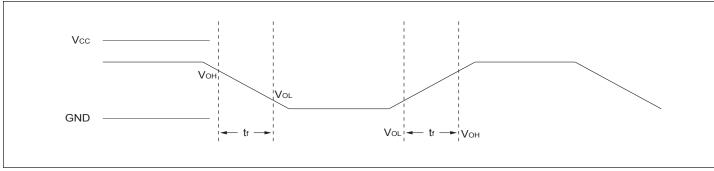


Figure 3. Output Rise and Fall Times

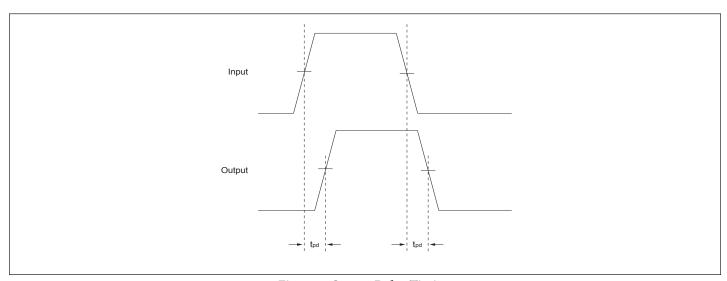
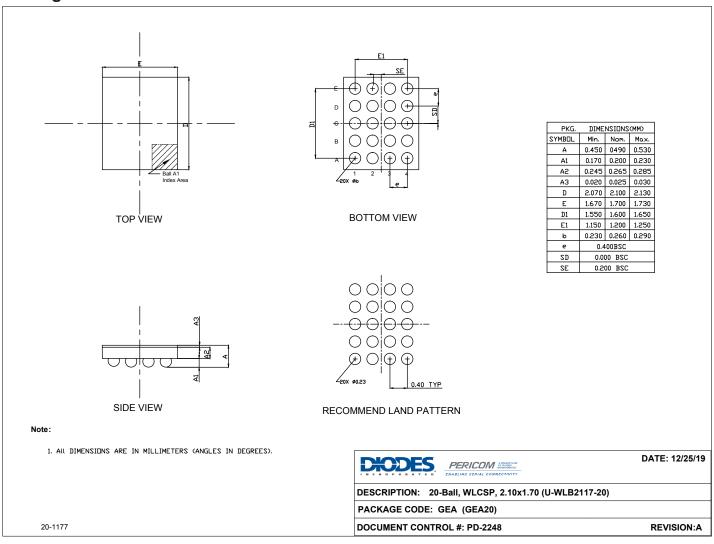


Figure 4. Output Delay Timing


Part Marking

Top mark not available at this time. To obtain advance information regarding the top mark, please contact your local sales representative.

Package Mechanical: 20-WLCSP

For latest package information:

 $See \ http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.$

Ordering Information

Ordering Number	Package Code	Package Description
PI4ULS3V4857GEAEX	GEA	20-Ball, 2.10x1.70 (WLCSP) (U-WLB2117-20)

Notes:

- $1.\ No\ purposely\ added\ lead.\ Fully\ EU\ Directive\ 2002/95/EC\ (RoHS),\ 2011/65/EU\ (RoHS\ 2)\ \&\ 2015/863/EU\ (RoHS\ 3)\ compliant.$
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
- 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))