

A Product Line of Diodes Incorporated

10Gbps, 2-Port, USB 3.1 Mux/Demux ReDriver[™]

Description

PI3EQX10612 is a low-power, high-performance 10Gbps 2-Port USB 3.1 Gen-2/Gen-1 Mux/DeMux ReDriver.

The Two-Port Mux/Demux ReDriver

The ReDriver provides programmable equalization, swing, and flat gain to optimize performance over a variety of physical mediums by reducing intersymbol interference. The ReDriver supports two 100 Ω differential CML data I/Os between the Protocol ASIC to a switch fabric, overcable, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver. A low-level input-signal detection and output-squelch function is provided for each channel. Each channel operates fully independently. The channels' input-signal level determines whether the output is active.

The ReDriver also includes an adaptive power management feature to maximize battery life for power-sensitive consumer devices.

Features

ReDriver

- → 10Gbps Serial Link with Linear Equalizer
- ➔ Full Compliancy to USB 3.1 Gen-2 and Gen-1 Super-Speed Standard
- → 1-to-2 DeMux from Host Tx to Device Rx
- → 2-to-1 Mux from Device Tx to Host Rx
- ➔ Adjustable-Output Linear Swing, Flat Gain and Equalization via I2C or Pin Control
- → 100Ω Differential CML I/Os
- ➔ Automatic Receiver Detect
- → Auto "Slumber" Mode for Adaptive Power Management
- → Supply Voltage 3.3V
- → Temperature Range: -40°C to 70°C
- → Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- → Halogen and Antimony Free. "Green" Device (Note 3)
- → Packaging (Pb-free & Green):
 - 40-contact, ZLC40 (TQFN)

Applications

- → Notebooks
- ➔ Mobile Phones
- → Tablets
- ➔ Docking Station

See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Notes:

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

Block Diagram

A Product Line of Diodes Incorporated

Pin Configuration

Pin Descriptions

Pin #	Pin Name	I/O	Description
Thermal PAD, 8, 15, 18, 37	GND	Ground	Ground pin. Thermal pad.
2, 40	ADDR0, ADDR1	I	Input pins to indicate I2C address:
_,		-	Refer to I2C Slave Address table.
3	I2C_EN	Ι	Input pin to enable I2C mode
5,4	SS_TX+, SS_TX-,		Input terminals.
22,23	RX_CON1+, RX_CON1-,	Ι	Selectable input termination between 50Ω to
29,28	RX_CON2+, RX_CON2-		VDD, 75k Ω to VbiasRX, or 75k Ω to GND.
6,25,30	VDD	Power	Dedicated 3.3V power supply.
7	RXDET_EN	Ι	ReDriver loading detection enable pin. 1 = ReDriver loading detection enabled (default setting in application) 0 = ReDriver loading detection disabled
11,10 26,27 33,32	SS_RX+,SS_RX-, TX_CON1+,TX_CON1-, TX_CON2+, TX_CON2-	0	Output terminals. Selectable output termination between 50Ω to VbiasTx, $6k\Omega$ to VbiasTx, $75k\Omega$ to VbiasTx, and $75k\Omega$ to GND.
12,13,16,31	SW_AP FG_AP EQ1_AP, EQ0_AP	Ι	SW/FG/EQ setup for USB channels with receiver terminal is connected to AP side.
17,19,20,24	SW_CON FG_CON EQ1_CON, EQ0_CON	Ι	SW/FG/EQ setup for USB channels with receiver terminal is connected to connector side.
35	EN	Ι	Active-high enable input pin (with internal weak pull high). EN=GND — disabled/low power state EN=VDD — enabled/active state
36	SEL	Ι	Input pin to select USB channel.
38	SCL	Ι	I2C communication clk signal.
39	SDA	I/O	I2C communication data signal.
1,9,14,21,34	NC		No connection.

Maximum Ratings

Storage Temperature	-65 to 150	ം
Supply Voltage	-0.5 to 3.8	V
Voltage of 3.3V IO pins (SCL, SDA, RXDET_EN, ADDR0/1, SEL, EN, SW_AP,FG_AP,EQ1_AP, EQ0_AP,SW_CON,FG_CON,EQ1_CON,EQ0_CON)	-0.5 to VDD+0.5	V
Voltage of SS_TX+/-,SS_RX+/-,TX_CON1/2 +/-, RX_CON1/2 +/-	-0.5 to VDD+0.5	V
Sink Current from SDA	10	mA
Continuous Input Current to SS_TX+/-, RX_CON1/2 +/-	± 30	mA
ESD (HBM)	2	KV

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operation Conditions

Symbol	Parameter	Min.	Max.	Units
V _{DD}	Supply Voltage	3.0	3.6	V
V _{IO}	Voltage of IO pins (SCL, SDA, RXDET_EN, ADDR0/1, SEL, EN, SW_AP,FG_AP, EQ1_AP, EQ0_AP,SW_CON,FG_CON, EQ1_CON,EQ0_CON)	0	3.6	V
V _{TXRX}	Voltage of SS_TX+/-,SS_RX+/-,TX_CON1/2 +/-, RX_CON1/2 +/-	0	3.6	V
V _{NOISE}	Supply Noise up to 50MHz	_	100	mVpp
T _A	Operating Temperature	-40	70	°C

ReDriver AC/DC Electrical Characteristics

Power Consumption (VDD)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{PD}	Typical Pin Power-Down Current	EN=0	_	26	100	μΑ
I _{DDQ_PD}	I2C Power-Down Current	EN=1 I2C Byte4<7:4>=1111			340	μΑ
USB 3.1 Gen	2 Mode					
I _{U0}	Current in USB U0 Mode	EN=1, USB U0 mode		80	112	mA
I _{U1}	Current in USB U1 Mode	EN=1, USB U1 mode	—	16	20	mA
I _{U2/U3}	Current in USB U2/U3 Mode	EN=1, USB U2/U3 mode	—	0.5	0.6	mA
I _{RXDET}	Current RXDET Mode	EN=1, RXDET mode	—	0.5	0.6	mA
Four-Level C	ontrol Pins (FG_AP, FG_CON, EQ	1_AP, EQ0_AP, EQ1_CON,E	Q0_CON, SW_	AP, SW_CON)	
V _{IH}	DC-Input Logic High		$0.92 \times VDD$	VDD		V
V _{IF}	DC-Input Logic "Float"		$0.59 \times VDD$	$0.67 \times VDD$	$0.75 \times VDD$	V
V _{IR}	DC-Input Logic with Rext to GND		$0.25 \times VDD$	$0.33 \times VDD$	$0.41 \times VDD$	V
V _{IL}	DC-Input Logic Low			GND	$0.08 \times \text{VDD}$	V
I _{IH}	Input-High Current		_		50	μA
I _{IL}	Input-Low Current		-75			μA
Rext	External Resistance Connects to GND (±5%)		64.6	68	71.4	kΩ
Two-Level C	ontrol Pins (EN, SEL, ADDR0/1, R	XDET_EN)				
V _{IH}	DC-Input Logic High		2.0			V
V _{IL}	DC-Input Logic Low				0.8	V
I _{IH}	Input-High Current				25	μA
I _{IL}	Input-Low Current		-25			μA
I2C Interface	Pins (SCL, SDA)					
V _{IH}	DC-Input Logic High		1.1			V
V _{IL}	DC-Input Logic Low		—	—	0.4	V

USB Differential Channel

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
USB Differential	Input					
C _{RXPARASITIC}	Parasitic Capacitor for RX	_		_	1.0	pF
R _{RX-DIFF-DC}	DC Differential Input Impedance		72		120	Ω
R _{RX-SINGLE-DC}	DC Single-ended Input Impedance	DC impedance limits are required to guarantee RxDet. Measured with respect to GND over a voltage of 500mV max.	18		30	Ω
Z _{RX-HIZ-DC-PD}	DC Input CM Input Impedance for V>0 During Reset or Power Down	(Vcm=0 to 500mV)	25		_	kΩ
CAC COUPLING	AC-Coupling Capacitance		75		265	nF
V _{RX-CM-AC-P}	Common-Mode Peak Voltage	AV up to 5GHz			150	mVpeak
V _{RX-CM-DC-Active-} Idle-Delta-P	Common-Mode Peak Voltage	Between U0 and U1, Ac up to 5GHz	_	_	200	mVpeak
USB Differential	Output					
V _{TX-DIFF-PP}	Output Differential p-p Voltage Swing	Differential Swing V _{TX-D+} -V _{TX-D-}			1.2	Vppd
R _{TX-DIFF-DC}	DC Differential TX Impedance		72		120	Ω
V _{TX-RCV-DET}	Amount of Voltage Change Allowed During RxDet				600	mV

PI3EQX10612

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{ac coupling}	AC-Coupling Capacitance		75		265	nF
T _{TX-EYE(10Gbps)}	Transmitter eye, Include all Jitter	At the silicon pad, 10Gbps	0.646	_		UI
T _{TX-EYE} (5Gbps)	Transmitter eye, Include all jitter	At the silicon pad, 5Gbps	0.625	_		UI
T _{TX-DI-DD} (10Gbps)	Transmitter Deterministic Jitter	At the silicon pad, 10Gbps	_		0.17	UI
T _{TX-DI-DD(5Gbps)}	Transmitter Deterministic Jitter	At the silicon pad, 5Gbps			0.205	UI
CTYPARASITIC	Parasitic Capacitor for TX				1.1	pF
R _{TX-DC-CM}	Common Mode DC Output		10		20	
IN De em	Impedance	—	18	—	30	Ω
V _{TX-DC-CM}	Instantaneous-Allowed DC					
	Common-Mode Voltage at the	$ V_{} + V_{} /2$	0		2.2	V
	Connector Side of the	$ \mathbf{v}_{TX-D+} + \mathbf{v}_{TX-D-} /2$	0		2.2	v
	AC-Coupling Capacitors					
V _{TX-C}	Common-Mode Voltage	$ V_{TX-D+}+V_{TX-D-} /2$	VDD-2		VDD	V
V _{TX-CM-AC-PP-}	Active-Mode TX AC Common-	$V_{TX-D+}+V_{TX-D-}$ for both			100	mVnn
Active	Mode Voltage	time and amplitude			100	штрр
V _{TV} CV DC	Common-Mode Delta Voltage					
Activa Idla Dalta	$ Avg_{uo}(V_{TEX-D+} + V_{TX-D-})/2 -$	Between U0 to U1		—	200	mV-peak
Active_Idle-Delta	$Avg_{u1}(V_{TX-D+} + V_{TX-D-})/2 $					
		Between Tx+ and Tx- in				
		idle mode.				
	Idle-Mode AC Common-Mode	Use the HPF to remove DC			10	mVppd
V _{TX-Idle-Diff-AC-pp}	Delta Voltage $ V_{TY,D} - V_{TY,D} $	components.				
		=1/LPF.				
		No AC and DC signals are				
		applied to Rx terminals.				
		Between Tx+ and Tx- in				
		idle mode.				
**	Idle-Mode DC Common-Mode	Use the LPF to remove DC			10	mV
V _{TX-Idle-Diff-DC}	Delta Voltage $ V_{TX-D+}-V_{TX-D_{-}} $	components.		—	10	
		=1/HPF.				
		No AC and DC signals are				
		applied to RX terminals.		6.40		
		EQ<3:0>=0000		6.42		
C	Peaking Gain (Compensation at	EQ<3:0>=0101		9.5		dB
G _p	SGHz, Relative to 100MHz,	EQ<3:0>=1010		11.//		
	100mV_{p-p} Sine wave input)	EQ<3:0>=1111	2	15.54	. 2	1D
		Variation around typical	-3	2.07	+3	dВ
		FG<1:0>=00		-2.07		
C	Flat Gain (100MHz,	FG<1:0>=01 FG<1:0>=10		-0.24		dB
G _F	EQ<3:0>=0000, SW<1:0>=01)	FG<1.0>-10 FG<1.0>-11		+0.02		
		Variation around typical	3	+1.//	13	dB
	1dB Compression Point Output	V a flation around typical $SW < 1.0 > -00$	-5	900	+3	uD
$V_{SW_{100M}}$	Swing (at 100MHz)	SW<1:0>=00 SW<1:0>=01	—	1000		mVppd
	-1dB Compression Point Output	SW<1:0>=01		600		
V _{SW_5G}	Swing (at 5GHz)	SW<1:0>=00 SW<1:0>=01	—	750	—	mVppd
DD _{NEYT} Note3	Differential Near-End Crosstalk	100MHz to 5GHz		-45		dB
DD _{EEVT} Note3	Differential Far-End Crosstalk	100MHz to 5GHz		-45		dB
TEAT		100MHz to 5GHz				
		FG<1:0>=11.				
		EQ<3:0>=0000	—	0.6	—	
		SW<1:0>=01				
V _{NOISE-INPUT}	Input-Referred Noise ⁽²⁾	100MHz to 5GHz.				mV _{RMS}
		FG<1:0>=11.		~ -		
		EO<3:0>=1111.	—	0.5	—	
		SW<1:0>=01				

PI3EQX10612

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
v		100MHz to 5GHz, FG<1:0>=11, EQ<3:0>=0000, SW<1:0>=01	_	0.8	_	mV _{RMS}
V _{NOISE-OUTPUT}	Output-Referred Noise	100MHz to 5GHz, FG<1:0>=11, EQ<3:0>=1111, SW<1:0>=01		1		mV _{RMS}
C11	In much Dickness I and	10 MHz to 4.1 GHz differential	_	-13.0	_	dB
511	Input-Keturn Loss	1 GHz to 4.1 GHz common mode		-5.0	_	dB
	O to the Data set in the set	10 MHz to 4.1 GHz differential		-15		dB
522	Output-Return Loss	1 GHz to 4.1 GHz common mode		-6.0		dB
Signal and Freque	uency Detectors					
V _{TH_UPM}	Unplug-Mode Detector Threshold	Threshold of LFPS when the input impedance of the ReDriver is $67k\Omega$ to VbiasRx only. Used in the unplug mode.	200	_	800	mVppd
V _{TH_DSM}	Deep-Slumber Mode Detector Threshold	LFPS signal threshold in deep-slumber mode	100	_	600	mVppd
V _{TH_AM}	Active-Mode Detector Threshold	Signal threshold in active and slumber mode	65	_	175	mVppd
F _{TH}	LFPS Frequency Detector	Detect the frequency of the input CLK pattern	100	_	400	MHz
T _{ON UPM}	Turn-on of Unplug Mode	TX pin to PX pin latency			3	ms
T _{ON DSM}	Turn-on of Deep Slumber Mode	when input signal is I EPS			5	μs
T _{ON SM}	Turn-on of Slumber Mode	when input signal is LFFS			20	ns

Note:

1. Measured using a vector-network analyzer (VNA) with -15dBm power level applied to the adjacent input. The VNA detects the signal at the output of the victim channel. All other inputs and outputs are terminated with 50Ω .

2. Guaranteed by design and characterization.

3. Subtract the Channel Gain from the Total Gain to get the Actual Crosstalk.

PI3EQX10612

I²C AC Electrical Characteristics

Symbol	l Parameter		d Mode C	Fast M	lode I ² C	Fast Mod	e Plus I ² C	Unit
Symbol	1 ai ametei	Min	Max	Min	Max	Min	Max	Oint
f _{SCL}	SCL Clock Frequency	0	100	0	400	0	1000	kHz
t _{BUF}	Bus Free Time Between a STOP and START Condition	4.7		1.3		0.5		μs
t _{HD;STA}	Hold Time (Repeated) START Condition	4.0		0.6		0.26		μs
t _{SU;STA}	Setup Time for a Repeated START Condition	4.7		0.6	_	0.26	_	μs
t _{SU;STO}	Setup Time for STOP Condition	4.0	—	0.6	—	0.26		μs
t _{VD;ACK} ^[1]	Data Valid Acknowledge Time		3.45		0.9		0.45	μs
t _{HD;DAT} ^[2]	Data Hold Time	0		0		0		ns
t _{VD;DAT}	Data Valid Time		3.45		0.9		0.45	ns
t _{SU;DAT}	Data Setup Time	250	_	100	_	50		ns
t _{LOW}	LOW Period of the SCL Clock	4.7		1.3	_	0.5		μs
t _{HIGH}	HIGH Period of the SCL Clock	4.0	_	0.6	_	0.26	_	μs
t _f	Fall Time of Both SDA and SCL Signals		300		300		120	ns
t _r	Rise Time of Both SDA and SCL Signals		1000		300		120	ns
t _{SP}	Pulse Width of Spikes that must be Suppressed by the Input Filter		50		50	_	50	ns

Notes:

1. A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement $t_{SETDAT} \ge 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr_max + $t_{SETDAT} = 1000 + 250 = 1250$ ns (according to the standard-mode l²C bus specification) before the SCL line is released.

2. Cb equals the total capacitance of one BUS line in pF. If mixed with high-speed devices, faster fall times are allowed according to the I²C specification.

Definition of Timing for Full-Speed Mode Devices on the I²C Bus

I²C Slave Address

I2C_EN	ADDR1	ADDR0	RedriverI2C Slave Address
VDD	GND	GND	A0h
VDD	GND	VDD	A2h
VDD	VDD	GND	A4h
VDD	VDD	VDD	A6h
GND	Х	Х	Pin Mode

I²C Data Transfer

*Registers of ReDriver can be Read/Written in Bulk Mode only

ReDriver Detailed Description

ReDrive	er Register	Table					
Registe	er Assignn	nent					
BYTE	0 (Revisio	n and Vendor ID Registe	r)				
Bit	Туре	Power-up Condition	Control Affected	Comment			
7	RO	0					
6	RO	0		D // 0000			
5	RO	0	Revision ID	Rev# = 0000			
4	RO	0					
3	RO	0					
2	RO	0		D 1 0011			
1	RO	1	Vendor ID	Pericom ID = 0011			
0	RO	1					
BYTE	1 (Device	Type/ Device ID Registe	r)				
Bit	Туре	Power-up Condition	Control Affected	Comment			
7	RO	0					
6	RO	0		Device Type			
5	RO	0	Device Type	0000 = Passive MUX			
4	RO	1		0001 = Active MUX			
3	RO	0					
2	RO	0		D 1 10 0001			
1	RO	0	Device ID	Device $ID = 0001$			
0	RO	1					
BYTE	2 (Byte co	unt Register 32 Bytes)					
Bit		Power-up Condition	Control Affected	Comment			
7	RO	0					
6	RO	0					
5	RO	1					
4	RO	0					
3	RO	0	Register Byte count	12C byte count = 32 bytes			
2	RO	0					
1	RO	0					
0	RO	0					
BYTE	3 (Channe	Assignment and Receiv	er Detection Enable Control)				
Bit	Туре	Power-up Condition	Control Affected	Comment			
7	R/W	0		Reserved			
6	R/W	1	CONF<2>				
5	R/W	0	CONF<1>	Channel Assignment			
4	R/W	1	CONF<0>				
3	R/W	0		Reserved			
			RXDET EN#	Far-end receiver detection enable/disable			
2	R/W	0 if RXDET_EN pin=1;		0 = Enable			
		I II KADEI_EN pin=0		1 = Disable			
1	R/W	1		Reserved			
0	R/W	0		Reserved			
BYTE	4 (Power I	Down Control)					
Bit	Туре	Power-up Condition	Control Affected	Comment			
7	R/W	0	PD_CON_Rx1	2011			
6	R/W	0	PD_CON_Tx1	CONx power override			
5	R/W	0	PD_CON_Tx2	U – Normal operation			
4	R/W	0	PD_CON_Rx2	1 - rorce the CONX to power-down state			
3	R/W	0		Reserved			
2	R/W	0	_	Reserved			
1	R/W	0	_	Reserved			
0	R/W	0	_	Reserved			
L			•	1			

БУТЕ	5 (Equalization	ation, Flat Gain and -1dB	Linear Swing Setting of CON_Rx2)
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	EQ_CON<3>	
6	R/W	0	EO CON<2>	
5	R/W	0	EO CON<1>	- CON_Rx2 setting configuration
4	R/W	0	EO CON < 0 >	
3	R/W	0	FG CON < 1 >	Equalizer
2	R/W	1	FG CON<0>	– Flat Gain
1	R/W	0	SW CON<1>	- Swing
0	R/W	1	SW_CON<0>	-
BVTE	6 (Equalize	ation Flat Gain and -1dI	3 Linear Swing Setting of AP Tx2)	
Bit		Power-up Condition	Control Affected	Comment
7	R/W		FO AP<3>	
6		0	$EQ_AI < 3 >$	-
5		0	$EQ_AI < 2 >$	CON_Tx2 setting configuration
3		0	EQ_AF<1>	_
4	K/W D/W	0	EQ_AP<0>	– Equalizer
3	K/W	0	FG_AP<1>	- Flat Gain
<u> </u>	K/W	1	FU_AP<0>	- Swing
1	R/W	0	SW_AP<1>	-
0	R/W		SW_AP<0>	
BYTE	7 (Equalization	ation, Flat Gain, and -Idl	3 Linear Swing Setting of AP_Tx1)	
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	EQ_AP<3>	
6	R/W	0	EQ_AP<2>	CON Tx1 setting configuration
5	R/W	0	EQ_AP<1>	
4	R/W	0	EQ_AP<0>	Faualizer
3	R/W	0	FG_AP<1>	- Flat Gain
2	R/W	1	FG_AP<0>	Swing
1	R/W	0	SW_AP<1>	Swing
0	R/W	1	SW_AP<0>	
BYTE	8 (Equalization	ation, Flat Gain, and -1dI	B Linear Swing Setting of CON_Rx1	()
Bit	Туре	Power-up Condition	Control Affected	Comment
7	R/W	0	EQ_CON<3>	
6				
-	R/W	0	EQ_CON<2>	CON By1 setting configuration
5	R/W R/W	0 0	EQ_CON<2> EQ_CON<1>	CON_Rx1 setting configuration
5 4	R/W R/W R/W	0 0 0	EQ_CON<2> EQ_CON<1> EQ_CON<0>	CON_Rx1 setting configuration
5 4 3	R/W R/W R/W	0 0 0 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1>	CON_Rx1 setting configuration Equalizer
5 4 3 2	R/W R/W R/W R/W R/W	0 0 0 1	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<1>	CON_Rx1 setting configuration Equalizer Flat Gain
5 4 3 2 1	R/W R/W R/W R/W R/W R/W	0 0 0 1 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1>	CON_Rx1 setting configuration Equalizer Flat Gain Swing
$ \begin{array}{r} 5\\ 4\\ 3\\ 2\\ 1\\ 0 \end{array} $	R/W R/W R/W R/W R/W R/W R/W	0 0 0 1 0 1	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0>	CON_Rx1 setting configuration Equalizer Flat Gain Swing
5 4 3 2 1 0 BYTE	R/W R/W R/W R/W R/W R/W 9-11 (Rese	0 0 0 1 0 1 erved)	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1>	CON_Rx1 setting configuration Equalizer Flat Gain Swing
5 4 3 2 1 0 BYTE BYTE	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh	0 0 0 1 0 1 erved) nold, Feature Enable/ Disa	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0>	CON_Rx1 setting configuration Equalizer Flat Gain Swing
5 4 3 2 1 0 BYTE BYTE Bit	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type	0 0 0 1 0 1 erved) old, Feature Enable/ Disa Power-up Condition	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment
5 4 3 2 1 0 BYTE BYTE Bit 7	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W	0 0 0 1 0 1 erved) rold, Feature Enable/ Disa Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold
5 4 3 2 1 0 BYTE BYTE Bit 7	R/W R/W R/W R/W R/W P-11 (Rese 12 (Thresh Type R/W R/W	0 0 0 1 0 1 erved) 1 old, Feature Enable/ Disc Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> Able, and Timing Setting) Control Affected IDET_VTH<1>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting
5 4 3 2 1 0 BYTE BYTE Bit 7	R/W R/W R/W R/W R/W Partial (Reservation of the second of the sec	0 0 0 1 0 1 erved) old, Feature Enable/ Disc Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd
5 4 3 2 1 0 BYTE BYTE Bit 7 6	R/W R/W R/W R/W R/W Partial (Reserved) 12 (Thresh Type R/W R/W	0 0 0 1 0 1 erved) old, Feature Enable/ Disc Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default)
5 4 3 2 1 0 BYTE BYTE Bit 7 6	R/W R/W R/W R/W R/W P-11 (Rese 12 (Thresh Type R/W R/W	0 0 0 1 0 1 erved) nold, Feature Enable/ Disa Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd
5 4 3 2 1 0 BYTE BYTE Bit 7 6	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W	0 0 0 1 0 1 erved) 1 erved) 1 old, Feature Enable/ Disa Power-up Condition 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0>	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd
5 4 3 2 1 0 BYTE BYTE Bit 7 6 5	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W	0 0 0 1 0 1 erved) 1 old, Feature Enable/ Disa Power-up Condition 0 1	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd —
5 4 3 2 1 0 BYTE BYTE Bit 7 6 5 4	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W R/W	0 0 0 1 0 1 erved) old, Feature Enable/ Disa rold, Feature Enable/ Disa Power-up Condition 0 1 1	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd —
5 4 3 2 1 0 BYTE BYTE Bit 7 6 5 4 3	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W	0 0 0 1 0 1 erved) nold, Feature Enable/ Disa Power-up Condition 0 1 1 1 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd — — —
5 4 3 2 1 0 BYTE Bit 7 6 5 4 3 2	R/W R/W R/W R/W R/W R/W Ill (Rese Ill (Thresh Type R/W	0 0 0 1 0 1 erved) 1 old, Feature Enable/ Disc Power-up Condition 0 1 1 1 0 0 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<1> Reserved Reserved Reserved Reserved Reserved Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd — — —
5 4 3 2 1 0 BYTE Bit 7 6 5 4 3 2 1	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W R/W R/W	0 0 0 1 0 1 erved) old, Feature Enable/ Disc Power-up Condition 0 1 1 1 0 0 0	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<1> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> Control Affected IDET_VTH<1> IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd — — — —
5 4 3 2 1 0 BYTE Bit 7 6 5 4 3 2 1 0	R/W R/W R/W R/W R/W 9-11 (Rese 12 (Thresh Type R/W R/W R/W R/W R/W R/W R/W R/W	0 0 0 1 0 1 erved) old, Feature Enable/ Disa Power-up Condition 0 1 1 1 0 0 0 0 1	EQ_CON<2> EQ_CON<1> EQ_CON<0> FG_CON<0> SW_CON<1> SW_CON<1> SW_CON<0> able, and Timing Setting) Control Affected IDET_VTH<1> IDET_VTH<1> IDET_VTH<0> Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved	CON_Rx1 setting configuration Equalizer Flat Gain Swing Comment High-speed channel signal detector threshold setting 00 50mVppd 01 65mVppd (Default) 10 80mVppd 11 95mVppd — — — — —

Equalization Setting (dB):

EO1pin	EO0pin	EO3	EO2	EO1	EO0	@ 2.5GHz	@ 3GHz	@ 4GHz	@ 5GHz	@ 6GHz	Note
0	F	0	0	0	0	3.57	4.22	5.44	6.42	7.27	Default
0	1	0	0	0	1	3.83	4.56	5.93	7.04	8.00	
0	0	0	0	1	0	4.13	4.93	6.47	7.71	8.76	
0	R	0	0	1	1	4.41	5.29	6.95	8.29	9.42	_
R	1	0	1	0	0	4.98	5.89	7.61	8.99	10.14	_
R	F	0	1	0	1	5.25	6.23	8.05	9.50	10.70	_
R	R	0	1	1	0	5.55	6.59	8.51	10.04	11.28	_
R	0	0	1	1	1	5.82	6.92	8.93	10.51	11.78	_
F	0	1	0	0	0	6.39	7.44	9.39	10.93	12.16	_
F	R	1	0	0	1	6.63	7.74	9.76	11.34	12.60	_
F	F	1	0	1	0	6.90	8.05	10.14	11.77	13.05	_
F	1	1	0	1	1	7.14	8.34	10.49	12.15	13.44	_
1	R	1	1	0	0	7.51	8.71	10.87	12.53	13.81	_
1	0	1	1	0	1	7.74	8.97	11.18	12.87	14.15	_
1	1	1	1	1	0	7.98	9.25	11.51	13.23	14.51	
1	F	1	1	1	1	8.20	9.51	11.81	13.54	14.82	

Flat Gain Setting:

FGpin is the selection pin for the DC gain

FGpin	FG<1:0>	Flat Gain Setting (dB)
R	00	-2.07
F	01	-0.24 (Default)
0	10	0.62
1	11	1.77

Swing -1dB Compression Point Output Swing Setting:

SWpin is the selection pin for SW

SWpin	SW<1:0>	Swing Setting
0	00	900 mVppd
1	01	1000 mVppd (Default)
F	10	1100 mVppd
R	11	1200 mVppd

ReDriver Connection in Pin Mode

EN	SEL	ReDriver Status
0	Х	Inactive
1	1	TX_CON1/RX_CON1 Active
1	0	TX_CON2/RX_CON2 Active

ReDriver Connection in I2C Mode

EN	BYTE3 CONF<2:0>	ReDriver Status
0	Х	Inactive
1	100	TX_CON1/RX_CON1 Active
1	101 (default)	TX_CON2/RX_CON2 Active

Application Diagram

Part Marking

Top mark not available at this time. To obtain advanced information regarding the top mark, contact your local sales representative.

Packaging Mechanical

For latest package information:

See http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/.

Ordering Information

Ordering Number	Package Code	Package Description
PI3EQX10612ZLCEX	ZLC	40-Pin, 3mm × 6mm (TQFN)

Notes:

1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.

3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

4. E = Pb-free and Green

5. X suffix = Tape/Reel

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

A. Life support devices or systems are devices or systems which:

1. are intended to implant into the body, or

2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.

B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))