PERICOM[®]

PI3HDMI101-B

1:1 Active HDMI[™] ReDriver[™] with Optimized Equalization & I2C Buffer and RxTerm detection circuitry

Features

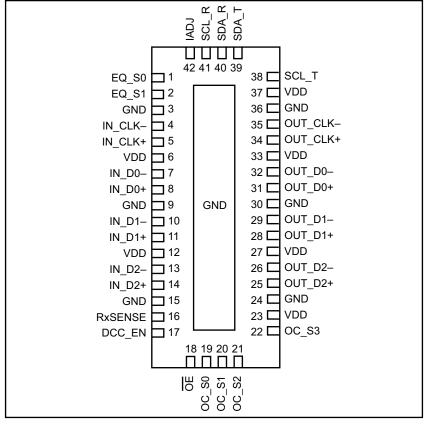
- → Supply voltage, $VDD = 3.3V \pm 5\%$
- → Support for both DVI and HDMITM signals
- → Supports both AC-coupled and DC-coupled inputs
- → Supports DeepColor[™]
- → High Performance, up to 2.5 Gbps per channel
- → 5V Tolerance on I²C path
- ➔ Integrated 50-ohm (±10%) termination resistors at each high speed signal input
- → Integrated Rx termination detection circuit
- → Configurable output swing control (400mV, 500mV, 600mV, 750mV, 1000mV)
- → Configurable Pre-Emphasis levels (0dB, 1.5dB, 3.5dB, & 6.0dB, 9.0dB)
- → Configurable De-Emphasis (0dB, -3.5dB, -6.0dB, -9.5dB)
- → Optimized Equalization
- → Single default setting will support all cable lengths
- → 8kV Contact ESD protection on all input data/clock channels per IEC61000-4-2
- ➔ Hot insertion support on output high speed pins & SCL/SDA pins only
- → Propagation delay ≤ 1 ns
- → High Impedance Outputs when disabled
- → Packaging (Pb-free & Green): 42-contact TQFN (ZH42)

Description

Pericom Semiconductor's PI3HDMI101-B 1:1 active ReDriver[™] circuit is targeted for high-resolution video networks that are based on DVI/HDMI[™] standards and TMDS signal processing. The PI3HDMI101-B is an active ReDriver with Hi-Z outputs. The device receives differential signals from selected video components and drives the video display unit. This solution also provides a unique advanced pre-emphasis technique to increase rise and fall times which are reduced during transmission across long distances.

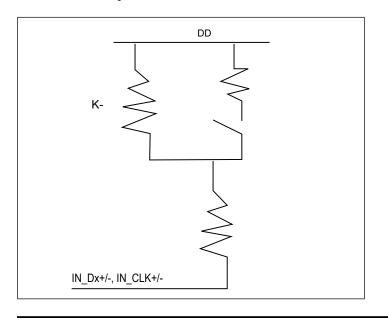
Each complete HDMI/DVI channel also has slower speed, side band signals, that are required to be switched. Pericom's solution provides a complete solution by integrating the side band buffer together with the high speed buffer in a single solution. Using Equalization at the input of each of the high speed channels, Pericom can successfully eliminate deterministic jitter caused by long cables from the source to the sink. The elimination of the deterministic jitter allows the user to use much longer cables (up to 25 meters).

The maximum DVI/HDMI Bandwidth of 2.5 Gbps provides 36bit DeepColor[™] support, which is offered by HDMI revision 1.3. The PI3HDMI101-B also provides enhanced robust ESD/EOS protection of 8kV, which is required by many consumer video networks today.

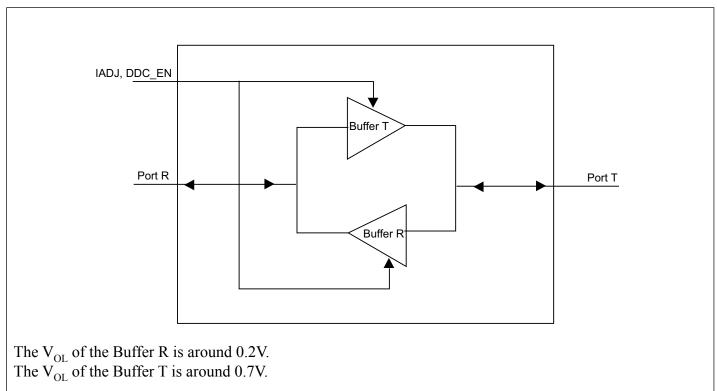

The Optimized Equalization provides the user a single optimal setting that can provide HDMI compliance for all cable lengths: 1 meter to 20 meters and color depths of 8bit/ch, or 12bit/ch.

Pericom also offers the ability to fine tune the equalization settings in situations where cable length is known. For example, if 25 meter cable length is required, Pericom's solution can be adjusted to 16dB EQ to accept 25 meter cable length.

Using Pericom's patent-pending Rx termination detection circuit, PI3HDMI101-B can automatically disable its own input 50-Ohm termination when no 50-Ohm termination is detected in the HDMI Rx chipset. If a switch is used between the PI3HDMI101-B and the HDMI Rx, our part can detect the 50-Ohm termination in the switch to determine if our input should be off or on.



Pin Configuration

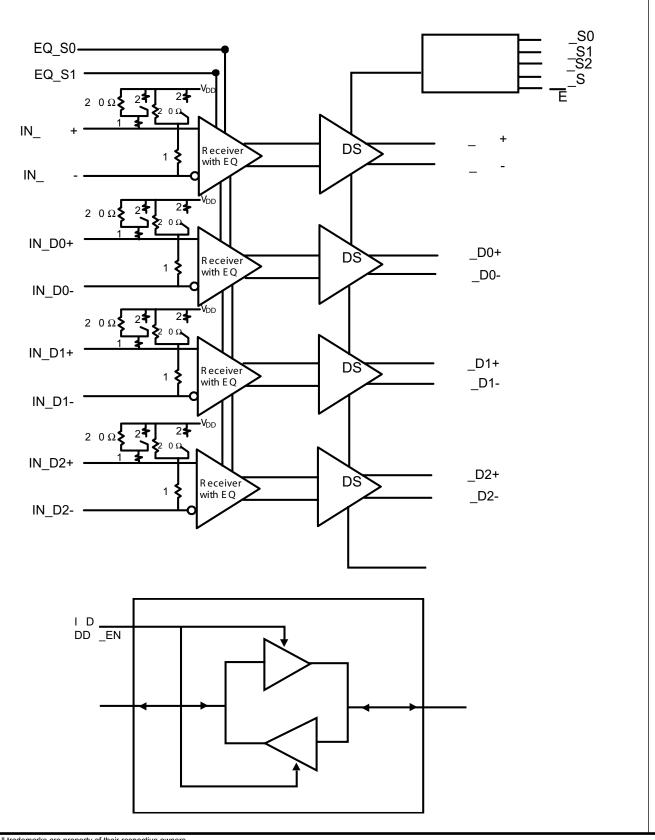

TMDS Receiver Block

Each high speed data and clock input has integrated equalization that can eliminate deterministic jitter caused by input cables. All activity can be configured using pin strapping. The Rx block is designed to receive all relevant signals directly from the HDMI[™] connector without any additional circuitry, 3 High speed TMDS data, 1 pixel clock, and DDC signals. TMDS channels have the following termination scheme for Rx Sense support. The switching between 50-Ohm termination vs. 250K-Ohm termination is done automatically. The PI3HDMI101-B monitors the 50-Ohm termination in the Rx chipset behind our part, and when this 50-Ohm termination is not present, we disable our 50-Ohm termination at our input.

I²C Buffer

Functional Truth Tables

IADJ	External Pull-Up Range
Н	1K-Ohm to 2K-Ohm (HDMI spec)
L	> 3K-Ohm (4.7K-Ohm typically)


DDC_EN	Port T / Port R (if no external pull-up resistor
L	Hi-Z (I ² C buffer disable)
Н	(I²C buffer enable)

Pin Description

Pin #	Pin Name	I/O	Description
5	IN_CLK+		
8	IN_D0+	T	TMDC Desitive inputs
11	IN_D1+	I	TMDS Positive inputs
14	IN_D2+		
4	IN_CLK-		
7	IN_D0-	I	TMDS Negative inputs
10	IN_D1-	1	
13	IN_D2-		
3, 9, 15, 24, 30, 36	GND	Р	Ground
18	ŌĒ	Ι	Output Enable, Active LOW
41	SCL_R	I/O	DDC Clock , Source Side
40	SDA_R	I/O	DDC Data, Source Side
6, 12, 16, 23, 27, 33, 37	V _{DD}	Р	3.3V Power Supply
34	OUT_CLK+		
31	OUT_D0+		TMDC
28	OUT_D1+	0	TMDS positive outputs
25	OUT_D2+		
35	OUT_CLK-		
32	OUT_D0-	0	TMDS pagative outputs
29	OUT_D1-	0	TMDS negative outputs
26	OUT_D2-		
1	EQ_S0	I	Equalizer controls, both pins with internal pull-ups
2	EQ_S1	1	Equanzer controls, both pins with internal pun-ups
19	OC_S0		
20	OC_S1	I	Output buffer controls
21	OC_\$2	1	Note: All 4 pins have internal pull-ups
22	OC_\$3		
17	DDC_EN	Ι	I ² C path enable
38	SCL_T	I/O	DDC Clock, Sink side
39	SDA_T	I/O	DDC Data, Sink side
42	IADJ	Ι	High/Low Voltage Selection, depends on I ² C external pull-up range

Complete high speed input Rx block is as follows:⁽¹⁾

All trademarks are property of their respective owners.

Truth Table

ŌĒ	Function
0	Active
1	All TMDS outputs are Hi-Z

Truth Table 1

OC_\$3 ⁽²⁾	OC_\$2 ⁽²⁾	OC_\$1 ⁽²⁾	OC_\$0 ⁽²⁾	Vswing(mv)	Pre/de-emphasis
1	1	1	1	500	0dB
1	1	1	0	600	0dB
1	1	0	1	750	0dB
1	1	0	0	1000	0dB
1	0	1	1	500	0dB
1	0	1	0	500	1.5dB
1	0	0	1	500	3.5dB
1	0	0	0	500	6dB
0	1	1	1	400	0dB
0	1	1	0	400	3.5dB
0	1	0	1	400	6dB
0	1	0	0	400	9dB
0	0	1	1	1000	0dB
0	0	1	0	666	-3.5dB
0	0	0	1	500	-6dB
0	0	0	0	333	-9dB

EQ Setting Value Logic Table

EQ_\$1 ⁽²⁾	EQ_S0 ⁽²⁾	Gain (dB)
1	1	Optimized Equalization (Default Setting)
1	0	8
0	1	3
0 Notos	0	15

Notes:

1. External pull-ups are required along SCL/SDA path

2. Internal 100K-Ohm pull-ups

All trademarks are property of their respective owners.

Note:

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	-0.5V to +4.0V
DC Input Voltage	0.5V to V _{DD}
DC Output Current	
Power Dissipation	

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Units	
V _{DD}	Supply Voltage	3.135	3.3	3.465	V	
T _A	Operating free-air temperature	0		70	°C	
TMDS Di	fferential Pins				·	
V _{ID}	Receiver peak-to-peak differential input voltage	150		1560	mVp-p	
V _{IC}	Input common mode voltage	2		V _{DD} + 0.01	V	
V _{DD}	TMDS output termination voltage	3.135	3.3	3.465	V	
R _T	Termination resistance	45	50	55	Ohm	
	Signaling rate	0		2.5	Gbps	
Control P	ins (OC_Sx, EQ_Sx, OE, DDC_EN)		·		·	
V _{IH}	LVTTL High-level input voltage	2		V _{DD}		
V _{IL}	LVTTL Low-level input voltage	GND		0.8	V	
DDC Pins (SCL_R, SCL_T, SDA_R, SDA_T)	÷		·		
V _{I(DDC)}	Input voltage	GND		5.5	V	
I ² C Pins (S	SCL_T, SDA_T)		·			
V _{IH}	High-level input voltage	0.7 x V _{DD}		5.5	V	
V _{IL}	Low-level input voltage	-0.5		0.3 x V _{DD}	V	
V _{ICL}	Low-level input voltage contention (1)	-0.5		0.4	V	
I ² C Pins (SO	CL_R, SDA_R)			·	·	
V _{IH}	High-level input voltage	0.7 x V _{DD}		5.5	V	
V _{IL}	Low-level input voltage	-0.5		0.3 x V _{DD}	V	

Notes:

1. V_{IL} specification is for the first low level seen by the SCL/SDA lines. V_{ICL} is for the second and subsequent low levels seen by the SCL_T/SDA_T lines.

TMDS Compliance Test Results

Item	HDMI 1.3 Spec	Pericom Product Spec
Operating Conditions		
Termination Supply Voltage, V_{DD}	$3.3V \le 5\%$	3.30 ± 5%
Terminal Resistance	50-Ohm ± 10%	45 to 55-Ohm
Source DC Characteristics at TP1		
Single-ended high level output voltage, VH	$V_{DD} \pm 10 mV$	V _{DD} ±10mV
Single-ended low level output voltage, VL	(V_{DD} - 600mV) \leq VL \leq (V_{DD} - 400mV)	(V_{DD} - 600mV) \leq VL \leq (V_{DD} - 400mV)
Single-ended output swing voltage, Vswing	$400 \text{mV} \le \text{Vswing} \le 600 \text{mV}$	$400 \text{mV} \le \text{Vswing} \le 600 \text{mV}$
Single-ended standby (off) output voltage, Voff	$V_{DD} \pm 10 mV$	$V_{DD} \pm 10 mV$
Transmitter AC Characteristics at TP1		
$D_{1}^{1} = t_{1}^{1} = \sqrt{D_{1}} \frac{1}{2} 1$	$75ps \le Risetime/Falltime \le 0.4$ Tbit	240
Risetime/Falltime (20%-80%)	(75ps \leq tr/tf \leq 242ps) @ 1.65 Gbps	240ps
Inter Dain Clease at Transmitten Composton more	0.15 Tbit	(One may
Intra-Pair Skew at Transmitter Connector, max	(90.9ps @ 1.65 Gbps)	60ps max
	0.2 Tpixel	100
Inter-Pair Skew at Transmitter Connector, max	(1.2ns @ 1.65 Gbps)	100ps max
	0.25 Tbit	22
Clock Jitter, max	(151.5ps @ 1.65 Gbps)	82ps max
Sink Operating DC Characteristics at TP2		
Input Differential Voltage Level, Vdiff	$150 \le Vdiff \le 1200mV$	$150 \text{mV} \le \text{V}_{\text{DIFF}} \le 1200 \text{mV}$
	$(V_{DD} - 300 \text{mV}) \le \text{Vicm} \le (V_{DD} - 37.5 \text{mV})$	(V_{DD} - 300mV) \leq Vicm \leq (V_{DD} - 37.5mV)
Input Common Mode Voltage Level, V $_{\rm ICM}$	Or	Or
	V _{DD} ±10%	V _{DD} ±10%
Sink DC Characteristics When Source Dis	abled or Disconnected at TP2	
Differential Voltage Level	$V_{DD} \pm 10 mV$	V _{DD} ±10mV

13-0005

PI3HDMI101-B 1:1 Active HDMITM ReDriver[™] with Optimized Equalization & I2C Buffer and RxTerm detection circuitry

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
I _{CC}	Supply Current	$\begin{split} V_{IH} = V_{DD}, V_{IL} = V_{DD} - 0.4V, \\ R_T = 50 \text{-Ohm}, V_{DD} = 3.3V \end{split}$		120		mA
P _D	Power Dissipation	Data Inputs = 1.65 Gbps HDMI data pattern CLK Inputs = 165 MHz clock		400		mW
I _{CCQ}	Standby Current	$OC_Sx = Low, x = 0,1,2,3$ $\overline{OE} = HIGH, V_{DD} = 3.3V, RxSense = LOW$		8		mA
TMDS Di	fferential Pins					
V _{OH}	Single-ended high-level output voltage		V _{DD} - 10		V _{DD} + 10	
V _{OL}	Single-ended low-level output voltage		V _{DD} - 600		V _{DD} - 400	mV
Vswing	Single-ended output swing voltage	$V_{\rm DD} = 3.3 V P_{\rm T} = 50 \ {\rm Ohm}$	400		600	
V _{OD(O)}	Overshoot of output differential volt- age	V _{DD} = 3.3V, R _T = 50-Ohm Pre-emphasis/De-emphasis = 0dB		6%	15%	2x
V _{OD(U)}	Undershoot of output differential voltage			12%	25%	V _{swing}
$\Delta V_{OC(SS)}$	Change in steady-state common-mode output voltage between logic states			0.5	5	mV
I _(OS)	Short circuit output current				12	mA
V _{ODE(SS)}	Steady state output differential voltage	OC_Sx = GND, Data Inputs = 250	560		840	
V _{ODE(PP)}	Peak-to-peak output differential voltage	Mbps HDMI data pattern, 25 MHz pixel clock	800		1200	mVp-p
V _{I(open)}	Single-ended input voltage under high impedance input or open input	$I_{I} = 10 \mu A$	V _{DD} - 10		V _{DD} + 10	mV
R _{INT}	Input termination resistance	$V_{IN} = 2.9V$	45	50	55	ohm
Control P	ins (OE, DDC_EN, IADJ)					
I _{IH}	High-level digital input current	$V_{IH} = 2V \text{ or } V_{DD}$	-10		10	μA
I _{IL}	Low-level digital input current	$V_{I} = GND \text{ or } 0.8 \text{ V}$	-10		10	μA
I ² C Pins (So	CL_T, SDA_T) (T Port)					
T-1	Input leakage current	V _I = 5.5 V	-50		50	
I _{ikg}		$V_{I} = V_{DD}$	-20		20	μA
I _{OH}	High-level output current	V _O = 3.6 V	-10		10	μA
I _{IL}	Low-level input current	$V_{IL} = GND$	-40		40	μA
V _{OL}	Low-level output voltage	$I_{OL} = 2.5 \text{ mA}$ $IADJ = H$	0.65		0.9	V

. _ -.

(Table Continued)

Electrical Characteristics (Cont..)

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
C	Input/output capacitance	$V_I = 5.0 V \text{ or } 0 V$, Freq = 100kHz			25	pF
C _{IO}		$V_I = 3.0 V \text{ or } 0 V$, Freq = 100kHz			10	
V _{OH(TTL)} ¹	TTL High-level output voltage	I _{OH} = -8 mA	2.4			V
V _{OL(TTL)} ¹	TTL Low-level output voltage	$I_{OL} = 8 mA$			0.4	V

Note:

1. Voh/Vol of external driver at the R and T ports.

I ² C Pir	I ² C Pins (SCL_R, SDA_R) (R Port)						
T		$V_I = 5.5 V$	-50	50	μΑ		
I _{ikg}	Input leakage current	$V_I = V_{DD}$	-20	20			
I _{OH}	High-level output current	$V_{O} = 3.6 V$	-10	10	μA		
I _{IL}	Low-level input current	$V_{IL} = GND$	-10	10	μΑ		
VOL	Low-level output voltage	$I_{OL} = 4 \text{ mA}, I_{ADJ} = H$		0.2	V		
CI	T	$V_I = 5.0 V \text{ or } 0 V$, Freq = 100kHz		25	L.F.		
	Input capacitance	$V_I = 3.0 V \text{ or } 0 V$, Freq = 100kHz		10	— pF		

Switching Characteristics (over recommended operating conditions unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
TMDS D	Differential Pins					``
tpd	Propagation delay	V _{DD} = 3.3V, R_T = 50-Ohm, pre-emphasis/de-emphasis = 0dB			2000	
t _r	Differential output signal rise time (20% - 80%)		75		240	
t _f	Differential output signal fall time (20% - 80%)		75		240	
t _{sk(p)}	Pulse skew			10	50	
t _{sk(D)}	Intra-pair differential skew			23	50	
t _{sk(0)}	Inter-pair differential skew ⁽²⁾	_			100	ps
t _{jit(pp)}	Peak-to-peak output jitter from TMDS clock channel	pre-emphasis/de-emphasis = 0dB, Data Inputs = 1.65 Gbps HDMI data pattern CLK input = 165 MHz clock		15	30	
t _{jit(pp)}	Peak-to-peak output jitter from TMDS data channel			18	50	
t _{DE}	De-emphasis duration	de-emphasis = -3.5dB, Data Inputs = 250 Mbps HDMI data pattern, CLK output = 25 MHz clock		240		

(Table Continued)

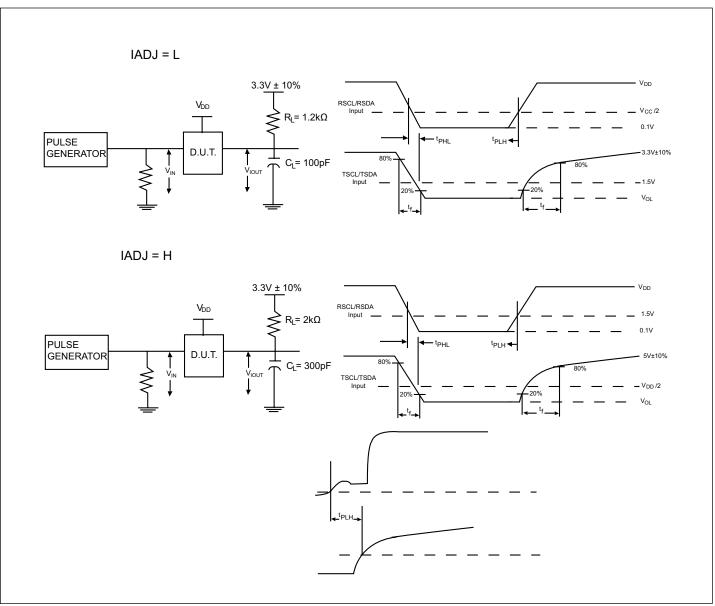
All trademarks are property of their respective owners.

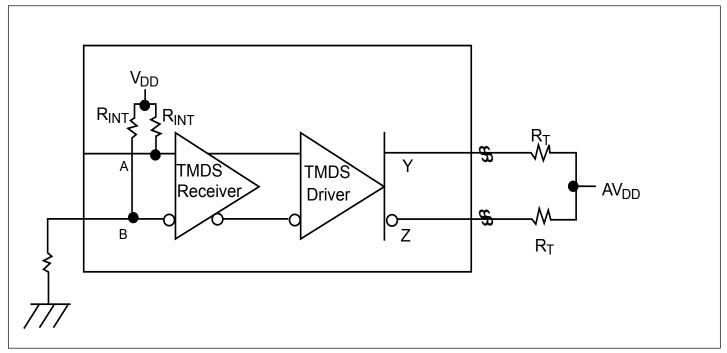
13-0005

Switching Characteristics (Cont..)

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Units
t _{SX}	Select to switch output				10	
t _{en}	Enable time				200	ns
t _{dis}	Disable time				10]
I ² C PINS	(SCL_R, SDA_R, SCL_T, SDA_T)					
t _{PLH}	Propagation delay time, low-to-high-level output SCL_T/SDA_T to SCL_R/SDA_R	$IADJ = V_{DD}$ $C_{LOAD} = 300 \text{ pF}$			500	
t _{PHL}	Propagation delay time, high-to-low-level output SCL_T/SDA_T to SCL_R/SDA_R	Tbuffer : Rpu = $2K$, Vpu = $3.0V$			136	
t _{PLH}	Propagation delay time, low-to-high-level output SCL_T/SDA_T to SCL_R/SDA_R	Rbuffer : Rpu = 1.2K, Vpu = 3.3V or			450	
t _{PHL}	Propagation delay time, high-to-low-level output SCL_T/SDA_T to SCL_R/SDA_R	$ \begin{array}{l} \text{Rpu} = 1.8\text{K}, \text{Vpu} = 5\text{V} \\ \text{IADJ} = \text{GND} \\ \text{C}_{\text{LOAD}} = 100 \text{ pF} \end{array} \end{array} $			136	ns
t _r	SCL_T/SDA_T Output signal rise time	See Fig. A			999	
t _f	SCL_T/SDA_T Output signal fall time				90]
t _r	SCL_R/SDA_R Output signal rise time				999	999
t _f	SCL_R/SDA_R Output signal fall time				90]

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{set}	Enable to start condition			6	10	
t _{hold}	Enable after stop condition			6	10	ns




Figure A. I²C Timing Test Circuit and Definition

13-0005

TMDS output oscillation elimination

The TMDS inputs do not incorporate a squelch circuit. Therefore, we recommend the input to be externally biased to prevent output oscillation. One pin will be pulled high to VDD with the other grounded through a 1.5K-Ohm resistor as shown.

TMDS Input Fail-Safe Recommendation

Recommended Power Supply Decoupling Circuit

Figure 1 is the recommended power supply decoupling circuit configuration. It is recommended to put 0.1μ F decoupling capacitors on each VDD pins of our part, there are four 0.1μ F decoupling capacitors are put in Figure 1 with an assumption of only four VDD pins on our part, if there is more or less VDD pins on our Pericom parts, the number of 0.1μ F decoupling capacitors should be adjusted according to the actual number of VDD pins. On top of 0.1μ F decoupling capacitors on each VDD pins, it is recommended to put a 10μ F decoupling capacitor near our part's VDD, it is for stabilizing the power supply for our part. Ferrite bead is also recommended for isolating the power supply for our part and other power supplies in other parts of the circuit. But, it is optional and depends on the power supply conditions of other circuits.

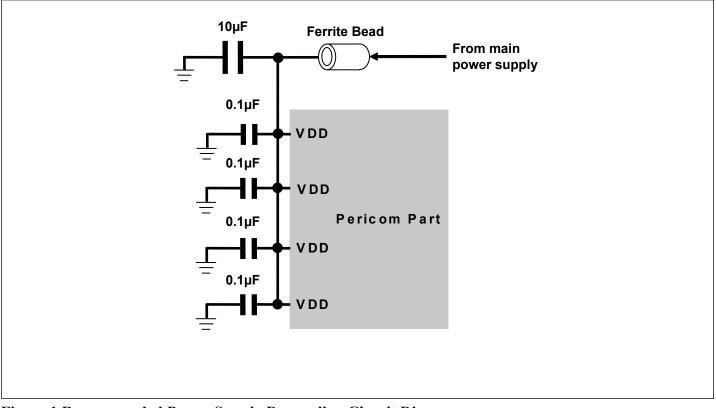


Figure 1 Recommended Power Supply Decoupling Circuit Diagram

Requirements on the Decoupling Capacitors

There is no special requirement on the material of the capacitors. Ceramic capacitors are generally being used with typically materials of X5R or X7R.

Layout and Decoupling CapacitorPlacement Consideration

- i. Each 0.1μ F decoupling capacitor should be placed as close as possible to each V_{DD} pin.
- ii. V_{DD} and GND planes should be used to provide a low impedance path for power and ground.
- iii. Via holes should be placed to connect to V_{DD} and GND planes directly.
- iv. Trace should be as wide as possible
- v. Trace should be as short as possible.
- vi. The placement of decoupling capacitor and the way of routing trace should consider the power flowing criteria.
- vii. 10µF capacitor should also be placed closed to our part and should be placed in the middle location of 0.1µF capacitors.
- viii. Avoid the large current circuit placed close to our part; especially when it is shared the same V_{DD} and GND planes. Since large current flowing on our V_{DD} or GND planes will generate a potential variation on the V_{DD} or GND of our part.

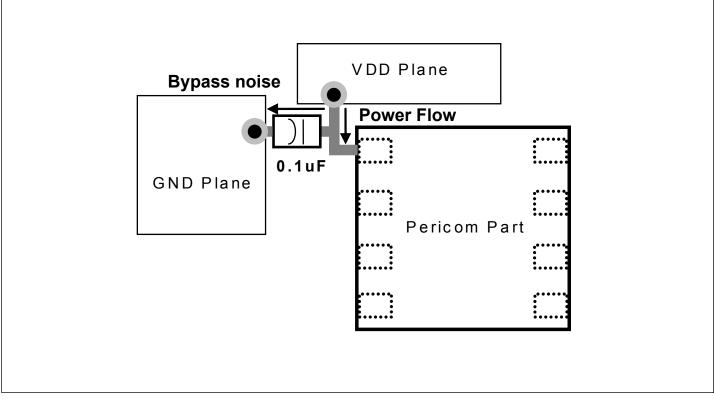
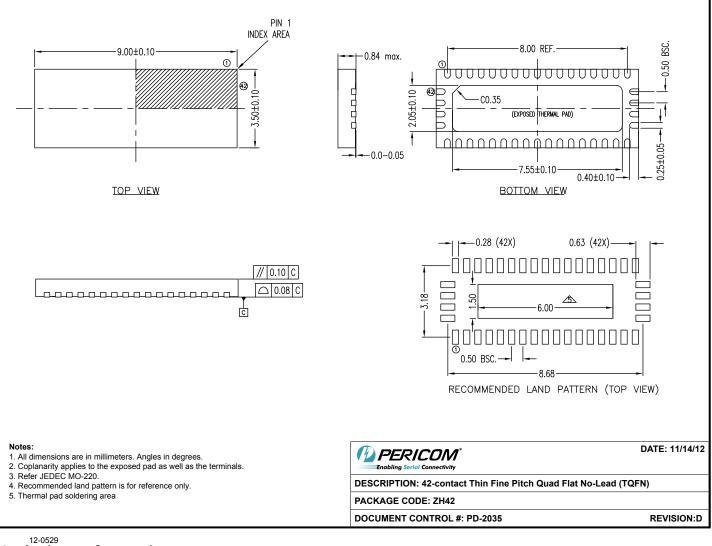


Figure 2 Layout and Decoupling Capacitor Placement Diagram

Application Information


Supply Voltage

All V_{DD} pins are recommended to have a 0.01µF capacitor tied from V_{DD} to GND to filter supply noise

TMDS inputs

Standard TMDS terminations have already been integrated into Pericom's PI3HDM101-A device. Therefore, external terminations are not required. Any unused port must be left floating and not tied to GND.

Package Mechanical: 42-pin, Low Profile Quad Flat Package (ZH42)

Ordering Information

Ordering Code	Package Code	Package Description
PI3HDMI101-BZHE	ZH	42-pin, Pb-free & Green TQFN

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

13-0005

- E = Pb-free and Green
- Adding an X Suffix = Tape/Reel
- HDMI & DeepColor are trademarks of Silicon Image

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com

16

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))