

3 VIN

2 VOUT

1 GND

500mA LOW NOISE LDO REGULATOR

l vout

GND

VIN

(Top View)

SOIC-8

2

VIN 2

VOUT 3

BYP 4

Laptop, Notebook, and Palmtop Computer

CD-ROM, CD-R/RW, DVD Driver

(Top View)

SOT-223

8 GND

6 GND

5 GND

7 GND

Pin Assignments (Top View)

Ο

Applications

Portable Electronic

PC Peripheral

TO-252-2 (3)

Description

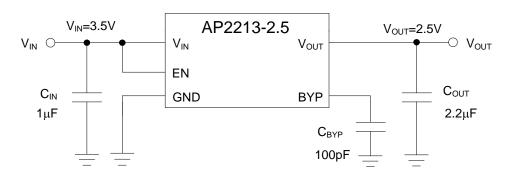
The AP2213 is a 500mA output current fixed voltage regulator which provides low noise, very low dropout voltage (typically 350mV at 500mA), very low standby current (1µA maximum), and excellent power supply ripple rejection (PSRR 75dB at 100Hz). This device is used in battery-powered applications, such as handsets and PDAs; and in noise sensitive applications, such as RF electronics.

The AP2213 features individual logic compatible enable/shutdown control inputs, a low power shutdown mode for extended battery life, over-current protection, over-temperature protection, and reversed current protection.

The AP2213 has 2.5V, 3.0V, and 3.3V versions.

The AP2213 is available in the TO-252-2 (3), SOIC-8, and SOT-223 packages.

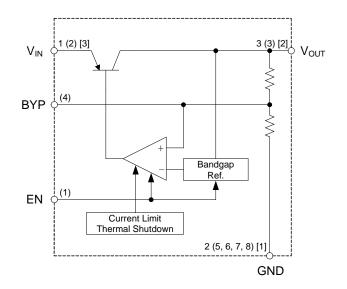
Features


- Up to 500mA Output Current
- Low Standby Current
- Low Dropout Voltage: V_{DROP} = 350mV at 500mA
- High Output Accuracy: ±1%
- Good Ripple Rejection Ability: 75dB at 100Hz and I_{OUT} = 100µA
- Tight Load and Line Regulation
- Low Temperature Coefficient
- Over Current Protection
- Thermal Protection
- Reversed Current Protection
- Logic-Controlled Enable
- Moisture Sensitivity: Level 3 per J-STD-020
- Terminals: Finish—Matte Tin Plated Leads, Solderable per MIL-STD-202, Method 208 (3)
- Weight:
 - TO252-2 (3): 0.312 grams (Approximate)
 - SOT-223: 0.116 grams (Approximate)
 - SOIC-8: 0.077 grams (Approximate)
- Lead-Free Packages: TO-252-2 (3), SOT-223, SOIC-8
 - Totally Lead-Free; RoHS Compliant (Notes 1 & 2)
- Lead-Free Packages, Available in "Green" Molding Compound: TO-252-2 (3), SOT-223, SOIC-8
 - Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
 - Halogen- and Antimony-Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

- Notes:
- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
 - 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 - 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Typical Applications Circuit (Note 4)



Notes: 4. Dropout voltage is 350mV when T_A = +25°C. In order to obtain a normal output voltage, V_{OUT}+0.35V is the minimum input voltage which will result in a low PSRR, imposing a bad influence on system. Therefore, the recommended input voltage is V_{OUT}+1V to 18V. For AP2213-2.5 version, its input voltage can be set from 3.5V(V_{OUT}+1V) to 18V.

Pin Descriptions

	Pin Number		Din Nome	Function	
TO-252-2 (3)	SOIC-8	SOT-223	Pin Name	Function	
3	3	2	VOUT	Regulated output voltage	
2	5, 6, 7, 8	1	GND	Ground	
1	2	3	VIN	Input Voltage	
_	1	—	EN	Enable input: CMOS or TTL compatible input. Logic high = enable, logic low = shutdown	
_	4	_	BYP	Bypass capacitor for low noise operation	

Functional Block Diagram

A (B) [C] A for TO-252-2 (3) B for SOIC-8 C for SOT-223

Symbol	Parameter	Ra	Rating		
V _{IN}	Supply Input Voltage	2	20	V	
V _{EN}	Enable Input Voltage	2	20	V	
PD	Power Dissipation	Internally Limited (Thermal Protection)	W	
T _{LEAD}	Lead Temperature (Soldering, 10s)	+2	260	°C	
TJ	Junction Temperature	+1	+150		
T _{STG}	Storage Temperature	-65 to	-65 to +150		
	ESD (Machine Model)	3	00		
ESD	ESD (Human Body Model)	60	6000		
	ESD (Charge Device Model)	20	000		
		TO-252-2 (3)	90		
θ_{JA}	Thermal Resistance (No Heatsink)	SOIC-8	160	°C/W	
		SOT-223	108]	

Absolute Maximum Ratings (Note 5)

Notes: 5. Stresses greater than those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods can affect device reliability.

Recommended Operating Conditions

Symbol	mbol Parameter		Мах	Unit
V _{IN}	Supply Input Voltage	2.5	18	V
V _{EN}	Enable Input Voltage	0	18	V
TJ	Operating Junction Temperature	-40	+125	٦°

octrical Characteristics (a), 251/1 40004 C 4005 C 2005 V 200V T 1250

AP2213-2.5 Electrical Characteristics ($@V_{IN} = 3.5V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}$ C, **Bold** typeface applies over -40°C $\le T_J \le +125^{\circ}$ C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Mariatian fame Ocasifiad M	-1	_	1	
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from Specified V _{OUT}	-2		2	%
$\Delta V_{OUT} / \Delta T$	Output Voltage Temperature		—	120	—	µV/°C
(ΔVουτ/Vουτ)/ΔΤ	Coefficient (Note 7)	-	_	48	_	ppm/°C
N	Line Desulation		_	1.5	4.5	
VRLINE	Line Regulation	V _{IN} = 3.5V to 13.2V	_	_	12	mV
	Load Degulation (Nate 9)		_	1	7	
V _{RLOAD}	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 500mA	_		17	mV
		1 100.14	_	15	50	
		I _{OUT} = 100μA	—		70	
		L 50m A	_	110	150	
		I _{OUT} = 50mA	_		230	- mV
		1. 100m 4	—	140	250	
N		I _{OUT} = 100mA	—		300	
Vdrop	Dropout Voltage (Note 9)	450-04	_	165	275	
		I _{OUT} = 150mA	—		350	
		I _{OUT} = 300mA	—	250	400	
			—	_	500	
		L 500m A	—	350	600	
		I _{OUT} = 500mA	_	_	700	
1	Otan dhu Qurrant	V _{EN} ≤ 0.4V (Shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤0.18V (Shutdown)	—		5	μA
		V _{EN} ≥ 2.0V, I _{OUT} = 100µA	_	100	150	
		$v_{\rm EN} \ge 2.00$, $i_{\rm OUT} = 100\mu A$	_		180	
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	—	350	600	μA
		$v_{\rm EN} \ge 2.0$ V, $I_{\rm OUT} = 50$ mA	_		800	
			_	1.3	1.9	
I _{GND}	Ground Pin Current (Note 10)	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_		2.5	
			_	4	10	mA
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_		15	
			_	11	20	
		V _{EN} ≥ 2.0V, I _{OUT} = 500mA	_	_	28	

Notes:

AP2213-2.5 Electrical Characteristics (cont.) ($@V_{IN} = 3.5V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}$ C, **Bold** typeface applies over -40°C $\le T_J \le +125^{\circ}$ C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100µA	_	75	_	dB	
I _{LIMIT}	Current Limit	V _{OUT} = 0V	-	700	1000	mA	
e _{no}	Output Noise	$I_{OUT} = 50$ mA, $C_{OUT} = 2.2\mu$ F, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}	
			_	_	0.4		
VIL	Enable Input Logic-Low Voltage	Regulator Shutdown	_	_	0.18	V	
VIH	Enable Input Logic-High Voltage	Enable Input Logic-High Voltage Regulator Enabled		_	_	V	
		$V_{IL} \leq 0.4V$	_	0.01	1		
Ι _{ΙL}	Enable Input Logic-Low Current	V _{IL} ≤ 0.18V	_	_	2	μA	
		V _{IH} ≥2.0V	_	5	20		
lін	Enable Input Logic-High Current	$V_{\text{IH}} \ge 2.0 \text{V}$		_	25	μA	
		TO-252-2 (3)	_	20	_		
θJC	Thermal Resistance	SOIC-8	_	45	_	°C/W	
		SOT-223	_	31	_		

6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.

7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from

0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J = +25°C) or 2% (-40°C ≤ T_J ≤ +125°C) below its nominal value measured at 1V differential.

10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2213-3.0 Electrical Characteristics ($@V_{IN} = 4V$, $I_{OUT} = 100\mu A$, $C_{IN} = 1.0\mu F$, $C_{OUT} = 2.2\mu F$, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}C$, **Bold** typeface applies over -40°C $\le T_J \le +125^{\circ}C$ (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
			-1		1	
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from Specified V _{OUT}	-2	_	2	%
$\Delta V_{OUT} / \Delta T$	Output Voltage Temperature		_	120	_	µV/°C
(ΔV _{OUT} /V _{OUT})/ΔT	Coefficient (Note 7)	_	_	40	_	ppm/°C
	Line Develotion		_	1.5	4.5	
V _{RLINE}	Line Regulation	$V_{IN} = 4V$ to 13.2V	_	_	12	mV
	Load Degulation (Note 9)		_	1	8	
Vrload	Load Regulation (Note 8)	I _{OUT} = 0.1mA to 500mA	_	_	17	mV
		1004	_	15	50	
		Ι _{ΟUT} = 100μΑ	_		70	
		L	_	110	150	
		$I_{OUT} = 50 \text{mA}$	—		230	
		100m4	_	140	250	
N/		I _{OUT} = 100mA	—		300	
Vdrop	Dropout Voltage (Note 9)	1. 150m 4	_	165	275	
		I _{OUT} = 150mA	—		350	
		I _{OUT} = 300mA	_	250	400	
			_	_	500	
		L 500 A	_	350	600	
		I _{OUT} = 500mA	—		700	
1	Chan dhu Cumant	$V_{EN} \le 0.4V$ (Shutdown)	_	0.01	1	
I _{STD}	Standby Current	V _{EN} ≤0.18V (Shutdown)	—		5	μA
			_	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100µA	_	_	180	
		V _{EN} ≥ 2.0V, I _{OUT} = 50mA	_	350	600	μA
		V _{EN} ≥ 2.0V, I _{OUT} = 50IIIA	_	_	800	
I _{GND}	Cround Din Current (Note 10)	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_	1.3	1.9	
	Ground Pin Current (Note 10)	V _{EN} 22.0V, I _{OUT} = 150mA	—		2.5	
			_	4	10	
		V _{EN} ≥2.0V, I _{OUT} = 300mA	_	_	15	- mA -
			_	11	20	
		V _{EN} ≥ 2.0V, I _{OUT} = 500mA	_	_	28	

Notes:

AP2213-3.0 Electrical Characteristics (cont.) ($@V_{IN} = 4V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}$ C, **Bold** typeface applies over -40°C $\le T_J \le +125^{\circ}$ C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100µA	_	75	_	dB	
I _{LIMIT}	Current Limit V _{OUT} = 0V		_	700	1000	mA	
e _{no}	Output Noise	$I_{OUT} = 50 \text{mA}$. $C_{OUT} = 2.2 \mu \text{E}$		260		nV/\sqrt{Hz}	
			_	_	0.4	.,	
VIL	Enable Input Logic-Low Voltage	Regulator Shutdown	_	_	0.18	V	
VIH	Enable Input Logic-High Voltage	Regulator Enabled	2.0	_	_	V	
		$V_{IL} \leq 0.4V$	_	0.01	1		
Ι _{ΙL}	Enable Input Logic-Low Current	V _{IL} ≤0.18V	_	_	2	μA	
		V _{IH} ≥2.0V	_	5	20		
Ιн	Enable Input Logic-High Current	V _{IH} ≥2.0V	_	_	25	μΑ	
		TO-252-2 (3)	_	20	_		
θις	Thermal Resistance	SOIC-8	_	45	_	°C/W	
		SOT-223	_	31	_		

6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.

7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% ($T_J = +25^{\circ}C$) or 2% (-40°C $\leq T_J \leq +125^{\circ}C$) below its nominal value measured at 1V differential.

10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

AP2213-3.3 Electrical Characteristics ($@V_{IN} = 4.3V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}$ C, **Bold** typeface applies over -40°C $\le T_J \le +125^{\circ}$ C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Mariatian (mar Oracitiad)/	-1	_	1	
$\Delta V_{OUT}/V_{OUT}$	Output Voltage Accuracy	Variation from Specified V _{OUT}	-2	_	2	%
$\Delta V_{OUT} / \Delta T$	Output Voltage Temperature		_	120		µV/°C
(ΔV _{OUT} /V _{OUT})/ΔT	Coefficient (Note 7)	-	_	36.3		ppm/°C
N/	Line Demulation		—	1.5	4.5	
V _{RLINE}	Line Regulation	$V_{IN} = 4.3V$ to 13.2V	_	_	12	mV
	Load Degulation (Nate 9)		_	1	9	
Vrload	Load Regulation (Note 8)	$I_{OUT} = 0.1 \text{mA} \text{ to } 500 \text{mA}$			18	mV
		4004	_	15	50	
		I _{OUT} = 100μA	—		70	
			_	110	150	
		I _{OUT} = 50mA	_	-	230	mV
		100m4	_	140	250	
V		I _{OUT} = 100mA	—		300	
Vdrop	Dropout Voltage (Note 9)	450	_	165	275	
		I _{OUT} = 150mA	—		350	
		I _{OUT} = 300mA	—	250	400	
				-	500	
			_	350	600	
		I _{OUT} = 500mA	_		700	
1		$V_{EN} \le 0.4V$ (Shutdown)		0.01	1	
I _{STD}	Standby Current	V _{EN} ≤0.18V (Shutdown)	—		5	μA
			_	100	150	
		V _{EN} ≥ 2.0V, I _{OUT} = 100µA			180	
			_	350	600	μA
		$V_{EN} \ge 2.0V$, $I_{OUT} = 50mA$	_		800	
I _{GND}			_	1.3	1.9	
	Ground Pin Current (Note 10)	V _{EN} ≥ 2.0V, I _{OUT} = 150mA	_		2.5	
			_	4	10	
		V _{EN} ≥ 2.0V, I _{OUT} = 300mA	_		15	- mA -
				11	20	
		$V_{EN} \ge 2.0V$, $I_{OUT} = 500mA$	_	_	28	

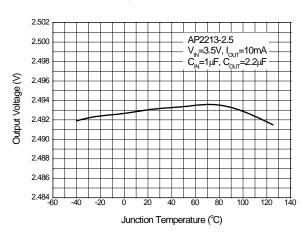
Notes:

AP2213-3.3 Electrical Characteristics (cont.) ($@V_{IN} = 4.3V$, $I_{OUT} = 100\mu$ A, $C_{IN} = 1.0\mu$ F, $C_{OUT} = 2.2\mu$ F, $V_{EN} \ge 2.0V$, $T_J = +25^{\circ}$ C, **Bold** typeface applies over -40^{\circ}C $\le T_J \le +125^{\circ}$ C (Note 6), unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
PSRR	Ripple Rejection	f = 100Hz, I _{OUT} = 100µA	_	75	_	dB	
I _{LIMIT}	Current Limit	V _{OUT} = 0V	-	700	1000	mA	
e _{no}	Output Noise	$I_{OUT} = 50$ mA, $C_{OUT} = 2.2\mu$ F, 100pF from BYP to GND	_	260	_	nV/\sqrt{Hz}	
			_	_	0.4		
VIL	Enable Input Logic-Low Voltage	Regulator Shutdown	_	_	0.18	V	
VIH	Enable Input Logic-High Voltage	Enable Input Logic-High Voltage Regulator Enabled		_	_	V	
		$V_{IL} \leq 0.4V$	_	0.01	1		
Ι _{ΙL}	Enable Input Logic-Low Current	V _{IL} ≤0.18V	_	_	2	μA	
		V _{IH} ≥2.0V	_	5	20		
lін	Enable Input Logic-High Current	$V_{\text{IH}} \ge 2.0 \text{V}$		_	25	μA	
		TO-252-2 (3)	_	20	_		
θJC	Thermal Resistance	SOIC-8	_	45	_	°C/W	
		SOT-223	_	31	_		

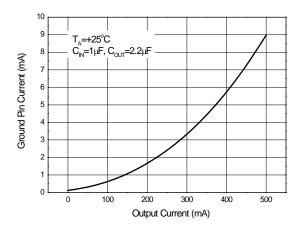
6. Specifications in bold type are limited to -40°C ≤ T_J ≤ +125°C. Limits over temperature are guaranteed by design, but not tested in production.

7. Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

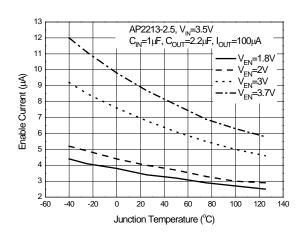

8. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from

0.1mA to 500mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
9. Dropout voltage is defined as the input to output differential at which the output voltage drops 1% (T_J = +25°C) or 2% (-40°C ≤ T_J ≤ +125°C) below its nominal value measured at 1V differential.

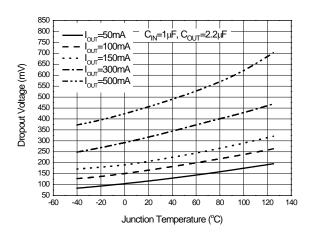
10. Ground pin current is the regulator quiescent current plus pass transistor base current. The total current drawn from the supply is the sum of the load current plus the ground pin current.

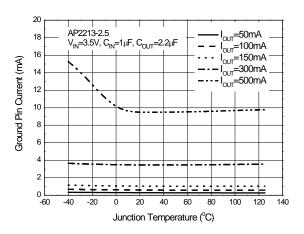


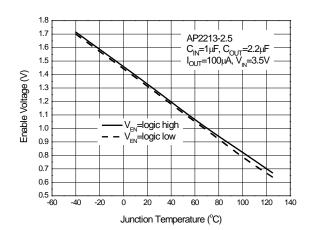
Performance Characteristics



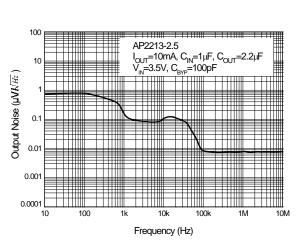
Output Voltage vs. Junction Temperature


Ground Pin Current vs. Output Current

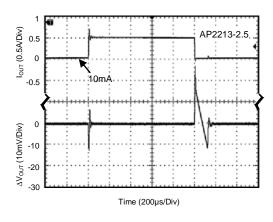

Enable Current vs. Junction Temperature


Dropout Voltage vs. Junction Temperature

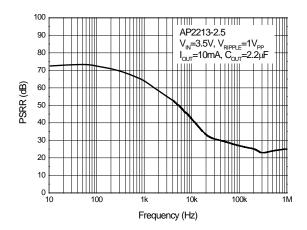
Ground Pin Current vs. Junction Temperature

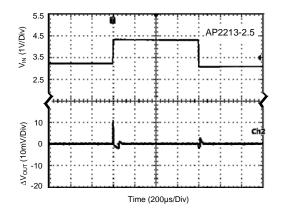


Enable Voltage vs. Junction Temperature

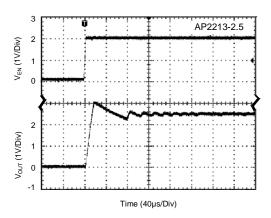


Performance Characteristics (cont.)

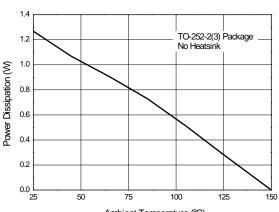



Output Noise vs. Frequency

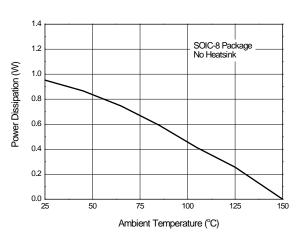
 $\label{eq:load-transient} \begin{array}{l} \mbox{Load Transient} \\ \mbox{(Conditions: $V_{IN}=3.5V$, $C_{BYP}=100pF$, $V_{EN}=2V$,} \\ \mbox{I}_{OUT}=10mA \ to \ 500mA$, $C_{IN}=1.0\mu F$, $C_{OUT}=2.2\mu F$)} \end{array}$



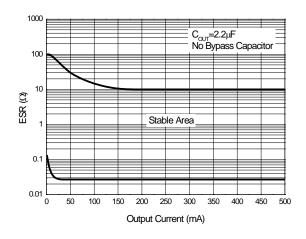
PSRR vs. Frequency



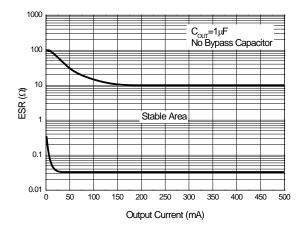
 $\label{eq:Venvs.Vout} \begin{array}{l} V_{\text{EN}} \text{ vs. } V_{\text{OUT}} \\ \text{(Conditions: } V_{\text{EN}} = 0V \text{ to } 2V, \ V_{\text{IN}} = 3.5V, \ I_{\text{OUT}} = 30m\text{A}, \\ C_{\text{BYP}} = \text{open, } C_{\text{IN}} = 1.0 \mu\text{F}, \ C_{\text{OUT}} = 2.2 \mu\text{F}) \end{array}$



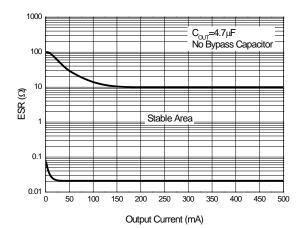
Power Dissipation vs. Ambient Temperature



Performance Characteristics (cont.)



Power Dissipation vs. Ambient Temperature


ESR vs. Output Current

ESR vs. Output Current

ESR vs. Output Current

Application Information

Input Capacitor

A 1 μ F minimum capacitor is recommended to be placed between V_{IN} and GND.

Output Capacitor

An output capacitor is required to prevent oscillation. A 1μ F minimum is recommended when C_{BYP} is unused. A 2.2μ F minimum is recommended when C_{BYP} is 100pF. The output capacitor may be increased to improve transient response.

Noise Bypass Capacitor

A bypass capacitor is connected to the internal voltage reference. A small capacitor connected from BYP to GND makes this reference quiet, resulting in a significant reduction in output noise, but the ESR stable area will be narrowed. In order to keep the output stability, it is recommended to use the bypass capacitor no more than 100pF.

The start-up speed of the AP2213 is inversely proportional to the value of the reference bypass capacitor. In some cases, if output noise is not a major concern and rapid turn-on is necessary, omit C_{BYP} and leave BYP open.

Power Dissipation

Thermal shutdown may take place if the maximum power dissipation is exceeded in application. Under all possible operating conditions, the junction temperature must be within the range specified under absolute maximum ratings to avoid thermal shutdown.

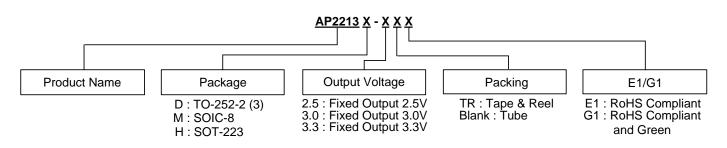
To determine if the power dissipated in the regulator reaches the maximum power dissipation (see Figure Power Dissipation vs. Ambient Temperature (SOIC-8 Package), ESR vs. Output Current ($C_{OUT} = 1\mu F$)), use:

 $T_J = P_D^* \theta_{JA} + T_A$

 $P_{D} = (V_{IN} - V_{OUT})^* I_{OUT} + V_{IN}^* I_{GND}$

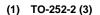
Where: $T_J \leq T_{J(max)}$, $T_{J(max)}$ is absolute maximum ratings for the junction temperature; $V_{IN}*I_{GND}$ can be ignored due to its small value.

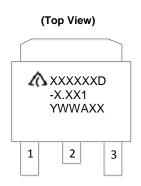
 $T_{J(max)}$ is +150°C, θ_{JA} is 90°C/W for TO-252-2 (3) package and 160°C/W for SOIC-8 package.


Example: For 2.5V version packaged in SOIC-8, I_{OUT} = 500mA, T_A = +50°C, V_{IN(Max)} is:

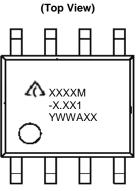
(150°C-50°C)/(0.5A*160°C/W)+2.5V=3.75V

Therefore, for good performance, please make sure that the input voltage is less than 3.75V without heatsink when $T_A = +50^{\circ}C$.

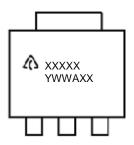

Ordering Information



F			Part N	lumber	Mark	ing ID	
	Package	Temperature Range	RoHS Compliant	RoHS Compliant and Green	RoHS Compliant	RoHS Compliant and Green	Packing
			AP2213D-2.5E1	AP2213D-2.5G1	AP2213D- 2.5E1	AP2213D- 2.5G1	100/Tube
			AP2213D-2.5TRE1	AP2213D-2.5TRG1	AP2213D- 2.5E1	AP2213D- 2.5G1	2500/Tape & Reel
Lead-Free	TO 000 0 (0)	-252-2 (3) -40 to +125°C	AP2213D-3.0E1	AP2213D-3.0G1	AP2213D- 3.0E1	AP2213D- 3.0G1	100/Tube
(Pb)	TO-252-2 (3)		AP2213D-3.0TRE1	AP2213D-3.0TRG1	AP2213D- 3.0E1	AP2213D- 3.0G1	2500/Tape & Reel
Lead-Free Green	ree Green		AP2213D-3.3E1	AP2213D-3.3G1	AP2213D- 3.3E1	AP2213D- 3.3G1	100/Tube
			AP2213D-3.3TRE1	AP2213D-3.3TRG1	AP2213D- 3.3E1	AP2213D- 3.3G1	2500/Tape & Reel
			AP2213M-2.5E1	AP2213M-2.5G1	2213M-2.5E1	2213M-2.5G1	100/Tube
			AP2213M-2.5TRE1	AP2213M-2.5TRG1	2213M-2.5E1	2213M-2.5G1	2500/Tape & Reel
Lead-Free			AP2213M-3.0E1	AP2213M-3.0G1	2213M-3.0E1	2213M-3.0G1	100/Tube
Pb	SOIC-8	-40 to +125°C	AP2213M-3.0TRE1	AP2213M-3.0TRG1	2213M-3.0E1	2213M-3.0G1	2500/Tape & Reel
Lead-Free Green			AP2213M-3.3E1	AP2213M-3.3G1	2213M-3.3E1	2213M-3.3G1	100/Tube
			AP2213M-3.3TRE1	AP2213M-3.3TRG1	2213M-3.3E1	2213M-3.3G1	2500/Tape & Reel
(Pb)			AP2213H-2.5TRE1	AP2213H-2.5TRG1	EH13C	GH13C	4000/Tape & Reel
Lead-Free	SOT-223	-40 to +125°C	AP2213H-3.0TRE1	AP2213H-3.0TRG1	EH13E	GH13E	4000/Tape & Reel
Lead-Free Green			AP2213H-3.3TRE1	AP2213H-3.3TRG1	EH13F	GH13F	4000/Tape & Reel



Marking Information

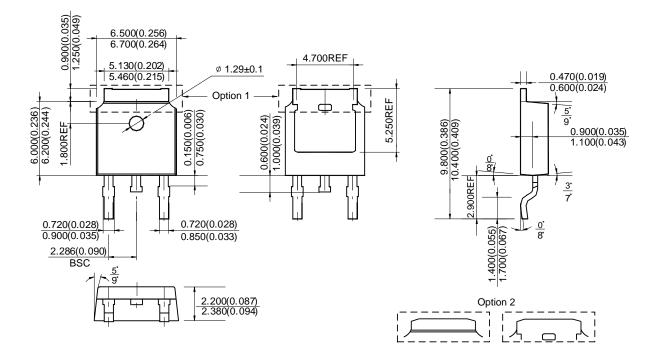


(2) SOIC-8

(3) SOT-223

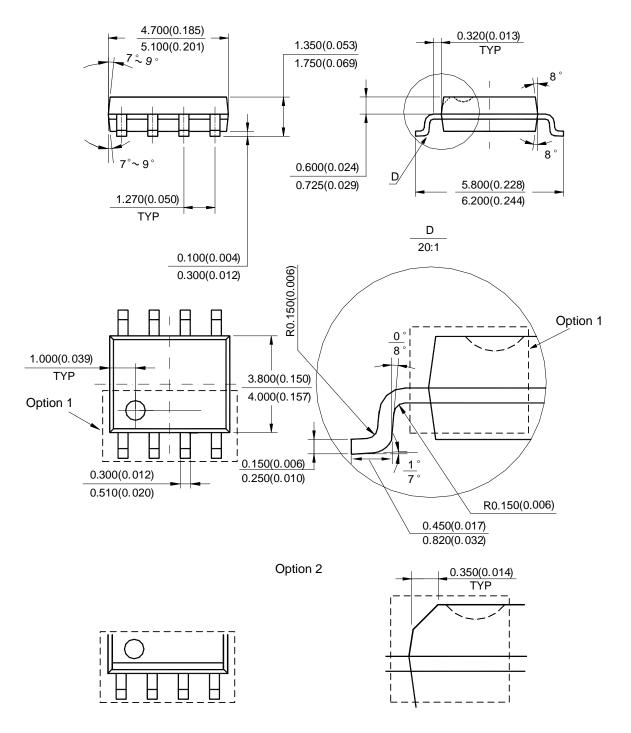
(Top View)

First and Second Lines: Logo and Marking ID (See Ordering Information) Third Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number


First and Second Lines: Logo and Marking ID (See Ordering Information) Third line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number

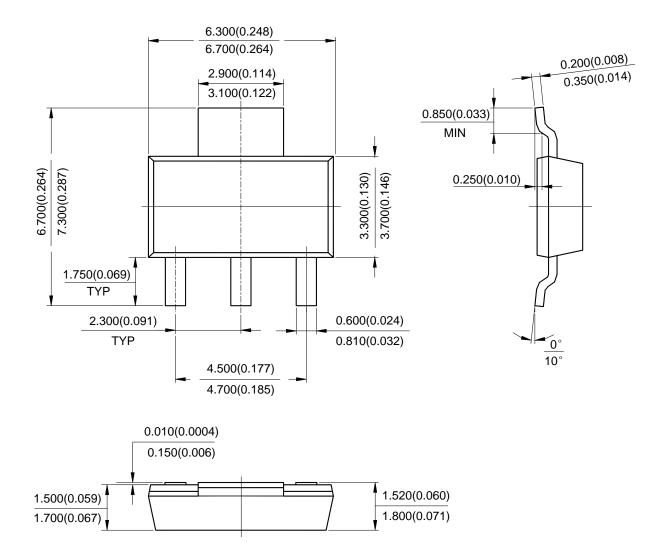
First Line: Logo and Marking ID (See Ordering Information) Second Line: Date Code Y: Year WW: Work Week of Molding A: Assembly House Code XX: 7th and 8th Digits of Batch Number

Package Outline Dimensions (All dimensions in mm(inch).)


(1) Package Type: TO-252-2 (3)

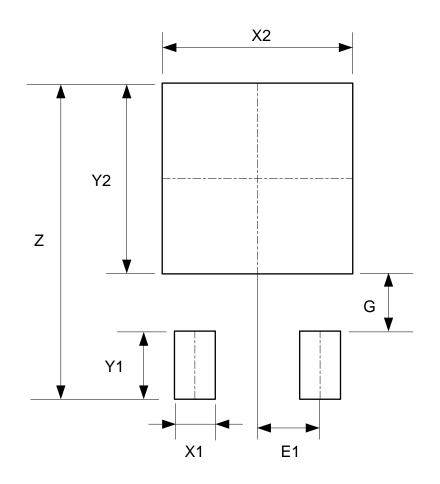
Package Outline Dimensions (All dimensions in mm(inch).) (continued)

(2) Package Type: SOIC-8



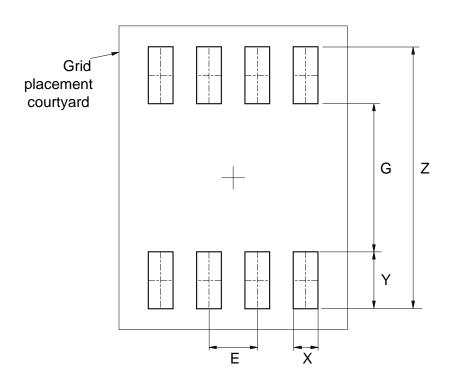
Note: Eject hole, oriented hole and mold mark is optional.

Package Outline Dimensions (All dimensions in mm(inch).) (continued)


(3) Package Type: SOT-223

Suggested Pad Layout

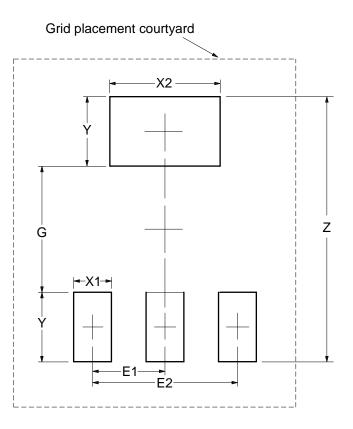
(1) Package Type: TO-252-2 (3)



Dimensions	Z	X1	X2=Y2	Y1	G	E1
Dimensions	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

Suggested Pad Layout (continued)

(2) Package Type: SOIC-8



Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	6.900/0.272	3.900/0.154	0.650/0.026	1.500/0.059	1.270/0.050

Suggested Pad Layout (continued)

(3) Package Type: SOT-223

Dimensions	Z	G	X1	X2	Y	E1	E2
	(mm)/(inch)						
Value	8.400/0.331	4.000/0.157	1.200/0.047	3.500/0.138	2.200/0.087	2.300/0.091	4.600/0.181

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))