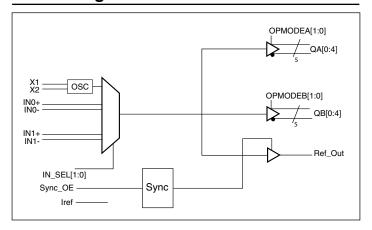


High Performance Differential Fanout Buffer

Features

- 10 differential outputs with 2 banks
- User configurable output signaling standard for each bank: LVDS or LVPECL or HCSL
- LVCMOS reference output up to 200MHz
- Up to 1.5GHz output frequency for differential outputs
- Ultra low additive phase jitter: < 0.02 ps (typ) (differential 156.25MHz, 12KHz to 20MHz integration range); < 0.01 ps (typ) (differential 156.25MHz, 10kHz to 1MHz integration range)
- Selectable reference inputs support either single-ended or differential or Xtal
- Low skew between outputs within banks (<40ps)
- Low delay from input to output (Tpd typ. < 0.9ns)
- Separate Input output supply voltage for level shifting
- 2.5V / 3.3V power supply
- Industrial temperature support
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact</u> <u>us</u> or your local Diodes representative.
 - https://www.diodes.com/quality/product-definitions/
- Packaging (Pb-free & Green available):
 - 48-pin, TQFN (ZD)

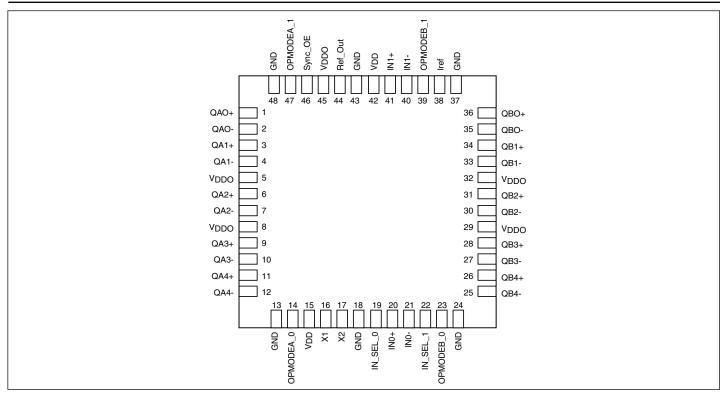

Description

The PI6C49S1510A is a high performance fanout buffer device which supports up to 1.5GHz frequency. It also integrates a unique feature with user configurable output signaling standards on per bank basis which provide great flexibilities to users. The device also uses Diodes' proprietary input detection technique to make sure illegal input conditions will be detected and reflected by output states. This device is ideal for systems that need to distribute low jitter clock signals to multiple destinations.

Applications

- Networking systems including switches and Routers
- High frequency backplane based computing and telecom platforms

Block Diagram


Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Configuration

Pin Description

Pin #	Pin Name	ŗ	Гуре	Description			
1,	QA0+)tm.i.t	Bank A differential output pair 0. Pin selectable LVPECL/LVDS/HCSL			
2	QA0-		Output	interface levels.			
3,	QA1+		\tt	Bank A differential output pair 1. Pin selectable LVPECL/LVDS/HCSL			
4	QA1-		Output	interface levels.			
5, 8, 29, 32, 45	VDDO	F	Power	Power supply pins for IO			
6,	QA2+		\tt	Bank A differential output pair 2. Pin selectable LVPECL/LVDS/HCSL			
7	QA2-		Output	interface levels.			
9,	QA3+)tm.i.t	Bank A differential output pair 3. Pin selectable LVPECL/LVDS/HCSL			
10	QA3-		Output	interface levels.			
11,	QA4+		\tt	Bank A differential output pair 4. Pin selectable LVPECL/LVDS/HCSL			
12	QA4-		Output	interface levels.			
13, 18, 24, 37, 43, 48	GND	F	Power	Power supply ground			
14, 47	OPMODEA	Input	Pull-down	Output mode select for Bank A. See Table 2 for functions, LVCMOS/LVTTL interface levels			
15, 42	VDD	I	Power	Power supply pins			

Pinout Description Cont.

Pin#	Pin Name	,	Туре	Description			
16	X1]	Input	XTAL input, can also be used as single ended input pin			
17	X2	C	Output	XTAL output. If X1 is used as a single ended input pin, X2 is to be left open			
19, 22	IN_SEL	Input	Pull-down	Input clock select. See Table 1 for function. LVCMOS/LVTTL interface levels.			
20	IN0+	Input	Pull-down	Reference input 0			
21	IN0-	Input	Pull-up/ Pull-down	Inverted reference input 0, internal bias to VDD/2			
23, 39	OPMODEB	Input	Pull-down	Output mode select for Bank B. See Table 2 for functions, LVCMOS/LVTTL interface levels			
26,	QB4+		\tt	Bank B differential output pair 4. Pin selectable LVPECL/LVDS/HCSL			
25	QB4-	- Output		interface levels.			
28,	QB3+	Outurnt		Bank B differential output pair 3. Pin selectable LVPECL/LVDS/HCSL			
27	QB3-	Output		interface levels.			
31,	QB2+	Output		Bank B differential output pair 2. Pin selectable LVPECL/LVDS/HCSL			
30	QB2-		rutput	interface levels.			
34,	QB1+		Output	Bank B differential output pair 1. Pin selectable LVPECL/LVDS/HCSL			
33	QB1-		rutput	interface levels.			
36,	QB0+)tm.i.t	Bank B differential output pair 0. Pin selectable LVPECL/LVDS/HCSL			
35	QB0-		Output	interface levels.			
38	Iref	C	Output	A fixed precision resistor (4750hm) from this pin to ground provides a reference current for HCSL mode. If LVPECL or LVDS mode chosen, pin can be left open			
40	IN1-	Input	Pull-up/ Pull-down	Inverted reference input, internal bias to VDD/2			
41	IN1+	Input	Pull-down	Reference input 1			
44	Ref_Out	C	utput	Reference output, CMOS			
46	Sync_OE	Input	Pull-down	Synchronous output enable for Ref_Out, see Table 3 for functions			

Function Table

Table 1: Input Select Function

IN_SEL [1]	IN_SEL [0]	Function
0	0	IN0 is the selected reference input
0	1	IN1 is the selected reference input
1	X	XTAL is the selected input

Table 2: Output Mode Select Function

OPMODEA/B [1]	OPMODEA/B [0]	Output Bank A / Bank B Mode
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	Hi-Z

Table 3: Reference Output Enable Function

Sync_OE	Ref_Out
0	Hi-Z
1	Output enabled

Table 4: Illegal Input Level Function

Input illegal status	Output status
Input open	Logic Low
Input both high	Logic Low
Input both low	Logic Low

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested)

Storage temperature55 to +150°C
Supply Voltage to Ground Potential (V_{DD} , V_{DDO})0.5 to +4.6V
Inputs (Referenced to GND)0.5 to $V_{\mbox{\tiny DD}} + 0.5 V$
Clock Output (Referenced to GND)0.5 to $V_{\mbox{\tiny DD}} + 0.5 V$
Latch up200mA
ESD Protection (Input)2000V min (HBM)
Junction Temperature 125 °C max

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Power Supply Characteristics and Operating Conditions

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V_{DD}	Core Supply Voltage		2.375		3.465	V
V _{DDO}	Output Supply Voltage		2.375		3.465	V
I_{DD}	Core Power Supply Current			90	130	
	Output Power Supply Current	All LVPECL outputs unloaded		150	190	mA
I_{DDO}		All LVDS outputs loaded		110	140	
		All HCSL outputs unloaded		80	120	
T_{A}	Ambient Operating Temperature ⁽¹⁾		-40		85	°C
T _B	PCB Operating Temperature ⁽¹⁾		-40		105	°C

Note 1: Either T_A or T_B used as operating condition

DC Electrical Specifications - Differential Inputs

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
I_{IH}	Input High current	Input = V _{DD}			150	uA
I _{IL}	Input Low current	Input = GND	-150			uA
C_{IN}	Input capacitance			3		PF
V_{IH}	Input high voltage				V _{DD} +0.3	V
$V_{\rm IL}$	Input low voltage		-0.3			V
V_{ID}	Input Differential Amplitude PK-PK		0.15		V _{DD} -0.85	V
V _{CM}	Common model input voltage		0.25		V _{DD} -1.2	V
ISO _{MUX}	MUX isolation			-89		dBc

DC Electrical Specifications - LVCMOS Inputs

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I_{IH}	Input High current	$Input = V_{DD}$			150	uA
$I_{\rm IL}$	Input Low current	Input = GND	-150			uA
V _{IH}	Input high voltage	$V_{DD}=3.3V$	2.0		V _{DD} +0.3	V
V _{IL}	Input low voltage	$V_{DD}=3.3V$	-0.3		0.8	V
V _{IH}	Input high voltage	V _{DD} =2.5V	1.7		V _{DD} +0.3	V
V _{IL}	Input low voltage	V _{DD} =2.5V	-0.3		0.7	V

DC Electrical Specifications- LVPECL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		V _{DDO} -1.4		$V_{\rm DDO}$ -0.9	V
V _{OL}	Output Low voltage		V _{DDO} -2.2		$V_{\rm DDO}$ -1.7	V

DC Electrical Specifications- LVDS Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage			1.43		V
V _{OL}	Output Low voltage			1.0		V
Vocm	Output commode voltage			1.25		V
DVocm	Change in Vocm between completely output states				50	mV
Ro	Output impedance		85		140	W

DC Electrical Specifications - HCSL Outputs

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
V _{OH}	Output High voltage		520		900	mV
V _{OL}	Output Low voltage		-150		150	mV

DC Electrical Specifications - LVCMOS Output

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
***	Output High voltage	V _{DDO} =3.3V +/-5%, I _{OH =} 8mA	2.3			V
V_{OH}		V _{DDO} =2.5V +/- 5%, I _{OH =} 8mA	1.5			V
V _{OL}	Output Low voltege	V _{DDO} =3.3V +/-5%, I _{OL =} -8mA			0.5	V
	Output Low voltage	V _{DDO} =2.5V +/- 5%, I _{OL =} -8mA			0.4	V
V _{OH}	Output High voltage	V _{DDO} =3.3V +/-5%, I _{OH =} 24mA	2.1			V
		V _{DDO} =2.5V +/- 5%, I _{OH =} 16mA	1.5			V
V _{OL}	Out	V _{DDO} =3.3V +/-5%, I _{OL =} -24mA			1	V
	Output Low voltage	V _{DDO} =2.5V +/- 5%, I _{OL =} -16mA			0.8	V
R _{IUT}	Output Impedance	$V_{\rm DDO}$ = 3.3V ± 5%		17		Ω
		$V_{\rm DDO}$ = 2.5V ± 5%		22	-	Ω

AC Electrical Specifications – Differential Outputs

Parameter	Description	Conditions		Min.	Тур.	Max.	Units
-		LVPECL, LVDS				1500	MILE
F _{OUT}	Clock output frequency	HCSL				250	MHz
			LVPECL	120	150	300	ps
$T_{\rm r}$	Output rise time	From 20% to 80%	LVDS	120	150	300	
			HCSL	300		700	
			LVPECL	120	150	300	
$T_{\rm f}$	Output fall time	From 80% to 20%	LVDS	120	150	300	ps
			HCSL	300		700	
	Output duty cycle	Frequency<650MHz, $V_{ID} \ge 400 \text{mV}$	LVPECL, HCSL (<250MHz)	48		52	%
			LVDS	47		53	
		Frequency<1GHz,	LVPECL	45		55	
T_{ODC}		$V_{\rm ID} \geq 400 mV$	LVDS	45		55	
		Frequency<1.5GHz, $V_{ID} \ge 400 \text{mV}$	LVDS	40		60	
		Frequency<1.5GHz, V _{ID} ≥ 400mV	LVPECL	40		60	
		LVPECL outputs @ <1G	Hz	500		1100	
17	Output swing Single-ended	LVPECL outputs @ >1GHz		400		1000	mV.
V_{pp}		LVDS outputs @ <1GHz		250		600	mV
		LVDS outputs @ >1GHz		250		550	

AC Electrical Specifications - Differential Outputs Cont.

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
T	D. C. 11111 III. DAG	156.25MHz, 12kHz to 20MHz		0.02		ps
T_j	Buffer additive jitter RMS	156.25MHz, 10kHz to 1MHz		0.01		ps
V _{CROSS}	Absolute crossing voltage	HCSL		460		mV
DV _{CROSS}	Total variation of crossing voltage	HCSL			140	mV
T _{SK}	Output Skew	10 outputs devices, outputs in same tank, with same load, at DUT.		15	40	ps
T.	D D.l	LVPECL, LVDS @ 3.3V, 100MHz		570		ps
T_{PD}	Propagation Delay	HCSL @ 3.3V, 100MHz		900		ps
T _{OD}	Valid to HiZ				80	ns
T _{OE}	HiZ to valid				80	ns
T _{P2P Skew}	Part to Part Skew ⁽¹⁾			80	120	ps

AC Electrical Specifications - CMOS

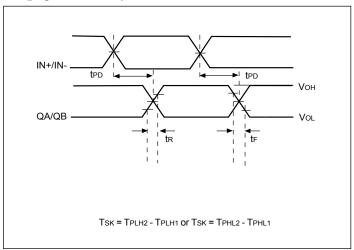
Parameter	Description	Conditions	Min.	Тур.	Max.	Units
	Ref Out frequency	XTAL input	10		50	MHz
F _{OUT}		Reference input			200	MHz
T _j	Duffen additive litter DMC	XTAL input		0.3		ps
	Buffer additive jitter RMS	Reference input		0.03		ps
$t_{r/} t_{f}$	Rise time, Fall time	$C_L = 10pF$		1.5		ns
T _{ODC}	Output duty cycle	$C_L = 10 pF$	45		55	%
$t_{\rm PD}$	Propagation delay	3.3V, 25MHz		2200		ps
t_S	Setup time		300			ps
t _{SOD}	Clock edge to output disable	Ref_Out	2		4	cycles
t _{SOE}	Clock edge to output enable	Ref_Out	2		4	cycles

Notes:

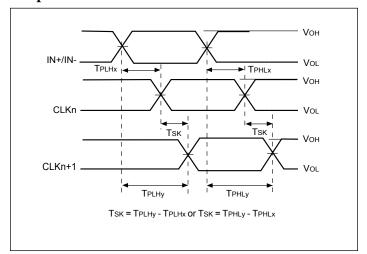
Crystal Characteristics

Parameter	Min.	Тур.	Max.	Units
Mode of Oscillation		Fundamental		
Frequency Range	10		50	MHz
Equivalent Series Resistance (ESR)			70	Ω
Shunt Capacitance			7	pF
Load Capacitance	10		18	pF
Drive Level			500	μW

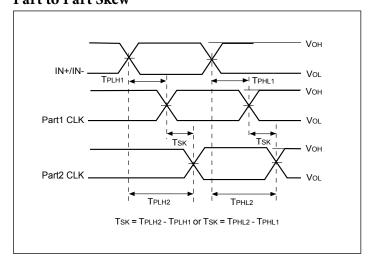
^{1.} This parameter is guaranteed by design



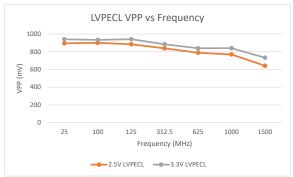
Recommended Crystals

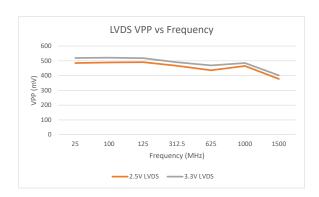

Diodes recommends:

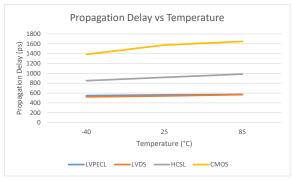
- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/GC_GF.pdf
- b) FY2500091, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm http://www.pericom.com/pdf/datasheets/se/FY_F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm http://www.pericom.com/pdf/datasheets/se/FL.pdf


Propagation Delay

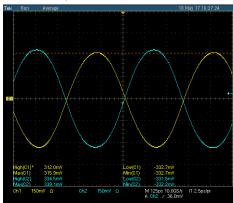
Output Skew

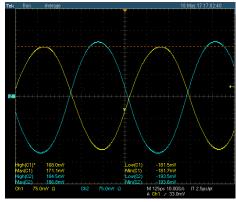


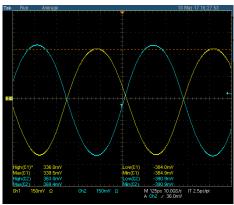

Part to Part Skew

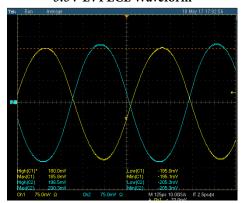


LVPECL/ LVDS Output Swing vs. Frequency




Propagation Delay vs Temperature

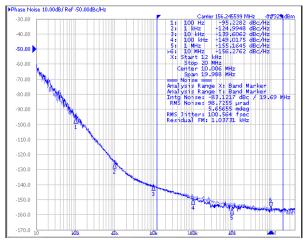

1.5GHz LVPECL/ LVDS Waveform

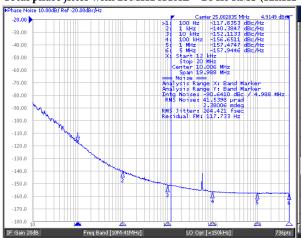


2.5V LVDS Waveform

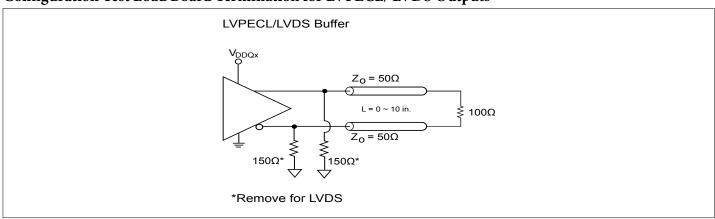
3.3V LVPECL Waveform

3.3V LVDS Waveform

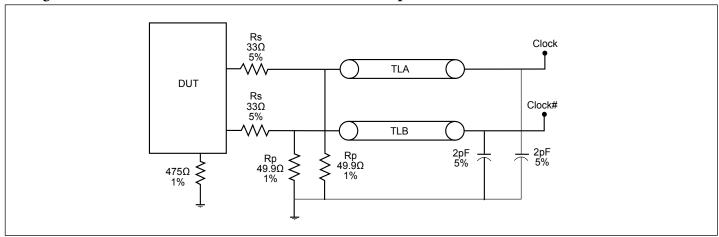


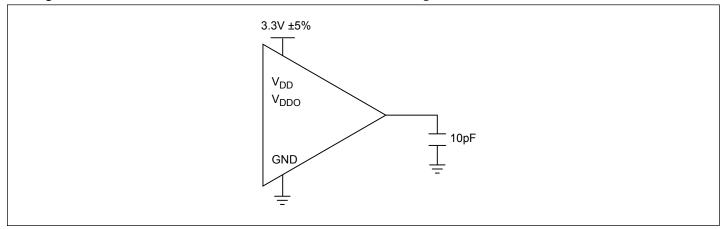

Phase Noise and Additive Jitter

Output phase noise (Dark Blue) vs Input Phase noise (light blue)


Additive jitter is calculated at 156.25MHz~27fs RMS (12kHz to 20MHz). Additive jitter = $\sqrt{\text{Output jitter}^2 - \text{Input jitter}^2}$

Total phase jitter with 25MHz XTAL ~ 264fs RMS (12kHz ~20MHz)


Configuration Test Load Board Termination for LVPECL/ LVDS Outputs



Configuration Test Load Board Termination for HCSL Outputs

Configuration Test Load Board Termination for LVCMOS Outputs

Application Information

Wiring the differential input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V_REF should be 1.25V and R1/R2 = 0.609.

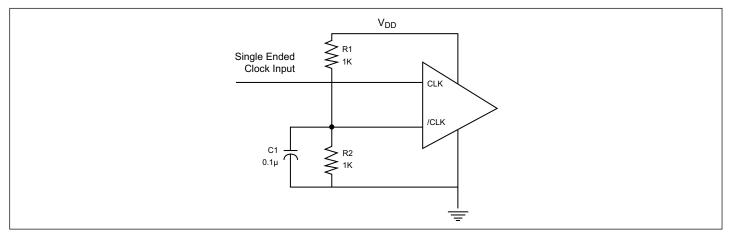
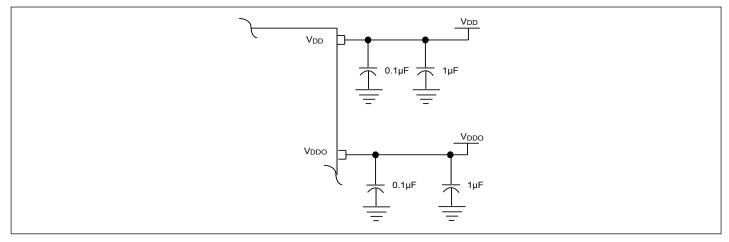
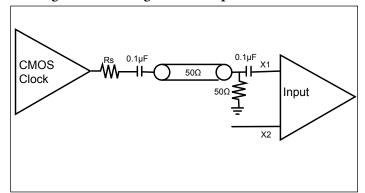
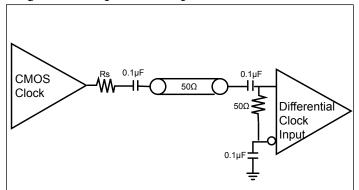
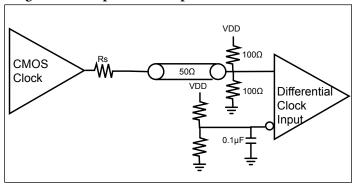



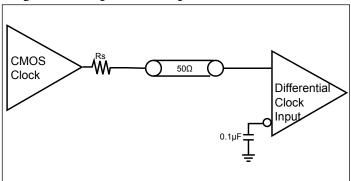
Figure 1. Single-ended input to Differential input device

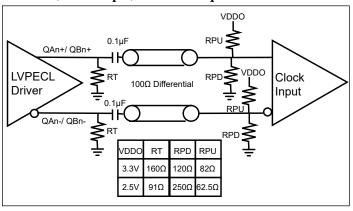
Power Supply Filtering Techniques

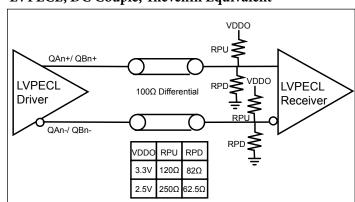

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. All power pins should be individually connected to the power supply plane through vias, and $0.1\mu F$ an $1\mu F$ bypass capacitors should be used for each pin.



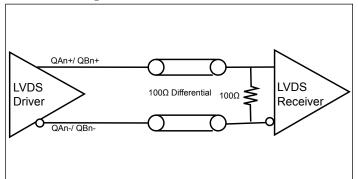

Driving X1 with a Single Ended Input

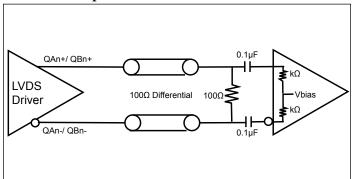

Single Ended Input, AC Couple

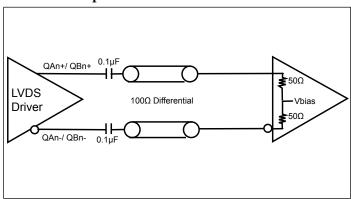

Single Ended Input, DC Couple

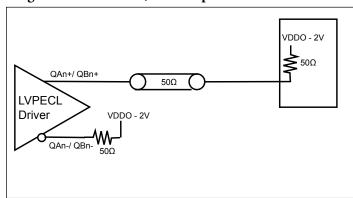

Single Ended Input, DC Couple

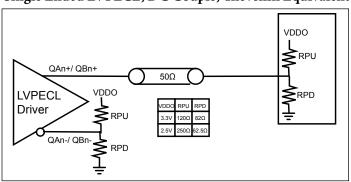
LVPECL, AC Couple, Thevenin Equivalent

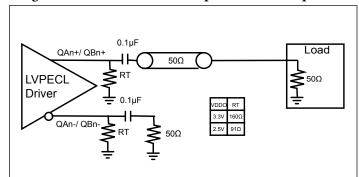

LVPECL, DC Couple, Thevenin Equivalent



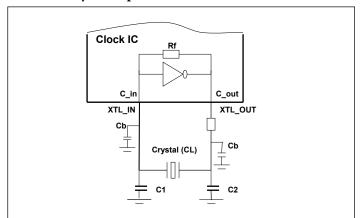

LVDS DC Couple

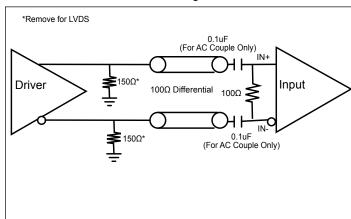

LVDS AC Couple at Load


LVDS AC Couple with Internal Termination

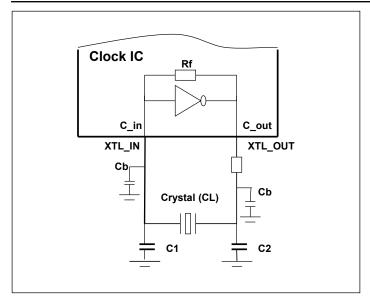

Single Ended LVPECL, DC Couple

Single Ended LVPECL, DC Couple, Thevenin Equivalent


Single Ended LVPECL, AC Couple, Thevenin Equivalent



Clock IC Crystal Input Guide


LVPECL/ LVDS AC and DC Input

Clock IC Crystal loading cap. Design Guide

CL =crystal spec. loading cap.

 $C_{in}/out = (3\sim 5pF)$ of IC pin cap.

 $Cb = PCB \text{ trace } (2\sim4pF)$

C1,C2 = load cap. of design

Rd = 50 to 100Ω drive level limit

Design guide: C1=C2=2 *CL - (Cb +C_in/out) to meet target +/-ppm < 20 ppm

Example 1: Select CL=18 pF crystal, C1=C2=2*(18pF) - (4pF+5pF)=27pF, check datasheet too

Example 2: For higher frequency crystal (=>20MHz), can use formula C1=C2=2*(CL-6), can do fine tune of C1, C2 for more accurate ppm if necessary

Thermal Information

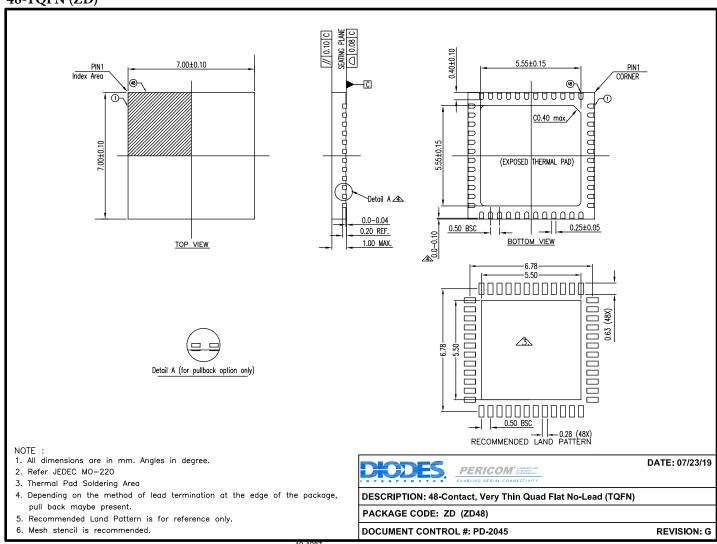
Symbol	Description	Condition	
$\Theta_{ m JA}$	Junction-to-ambient thermal resistance	Still air	23.65 °C/W
$\Theta_{ m JC}$	Junction-to-case thermal resistance		9.10 °C/W

Part Marking

PI6C49S 1510AZDIE YYWWXX

YY: Year

WW: Workweek


1st X : Assembly Site Code 2nd X : Wafer Site Code

Packaging Mechanical

For latest package info.

 $please\ check: http://www.diodes.com/design/support/packaging/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging/packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packaging-mechanicals-and-thermal-characteristics/pericom-packaging-packagin$

Ordering Information

Ordering Code	Package Code	Package Description	Operating Temperature
PI6C49S1510AZDIEX	ZD	48-Contact, Very Thin Quad Flat No-Lead (TQFN)	-40 °C to 85 °C

Notes:

- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.
- 2. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.
- 4. E = Pb-free and Green
- 5. X suffix = Tape/Reel

IMPORTANT NOTICE

- 1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).
- 2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.
- 3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.
- 4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.
- 5. Diodes products are provided subject to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- 6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.
- 7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.
- 8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2021 Diodes Incorporated

www.diodes.com

单击下面可查看定价,库存,交付和生命周期等信息

>>Diodes Incorporated(达迩科技(美台))