

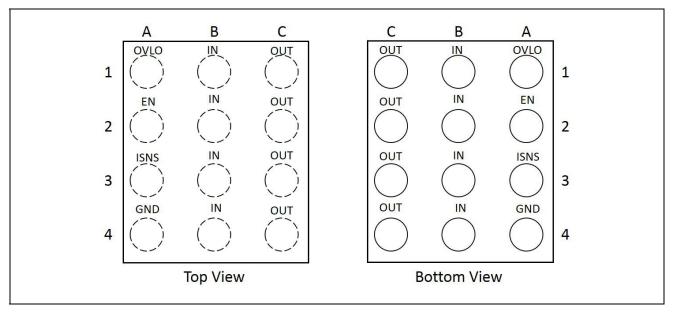
23mΩ OVP Switch with RCB Function

General Description

ET9918B can disconnect the systems from its output pin(OUT) in case wrong input operating conditions are detected. It achieve wide input voltage range from 2.5V to 29V and reverse blocking voltage up to 24V. The inside reverse blocking FET prevents the leakage current from output side to input side when input power supply is removed. ET9918B has an internal 14.5V OUT over-voltage protect threshold voltage and thresholds can also be programmed by outside OVLO pin. High accuracy current indicator is set internally. Default 7.5A over current protection is also set inside. Enable control is available to cut off the energy path. ET9918B has internal Thermal-Shutdown Protection.

The device is packaged in advanced WLCSP12, which is ideal for small form factor portable equipment .

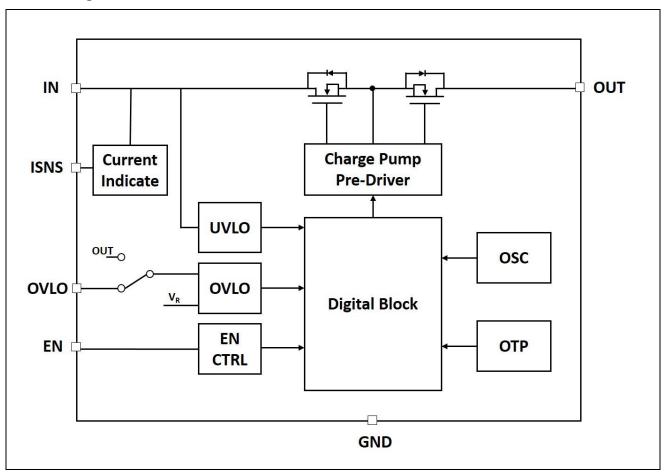
Features


- 5A continuous current capability
- Typical R_{ON} is $23m\Omega$ from input to output power path
- V_{IN} operating range from 2.5V to 29V
- Internal reverse blocking FET up to 24V
- Internal OUT over-voltage lockout is 14.5V typical
- Programmable OVP through outside resistors connected to OVLO pin
- Over-voltage protection response time is 70ns typical
- +/- 4% High accuracy current indicator
- Startup debounce time is 7.0ms typical
- Internal thermal-shutdown protection
- ESD protected: Human Body Model: JESD22-A114(All pins)±2KV
- Pat No. and Package

Part No.	Package			
ET9918B	WLCSP12 (1.77mm x 1.47mm, ball pitch=0.4mm)			

Application

- Smartphones, Tablet PC
- Mobile Devices
- Tablet PCs


Pin Configuration

Pin Function

Pin No.	Pin Name	Function		
		External OVLO Adjustment. Connect OVLO to GND when using the internal		
A1 OVLO		nreshold. Connect a resistor-divider to OVLO to set a different OVLO threshold;		
		this external resistor-divider is completely independent of the internal threshold.		
A2	EN	Device Enable. Active high.		
A3	ISNS	Current Indicator pin.		
A4 GND		Ground. Connect GND pins together for proper operation.		
B1,B2,B3,B4	IN	Voltage Input. Connect IN pins together for proper operation.		
C1 C2 C2 C4	OUT	Output Voltage. Output of internal switch.		
C1,C2,C3,C4		Connect OUT pins together for proper operation.		

Block Diagram

Functional Description

The OVP switch and reverse blocking FET are total $23m\Omega$ (TYP) on-resistance (R_{ON}) and protect low-voltage systems against voltage faults up to $29V_{DC}$. If EN is in the logic high state, when the output voltage (V_{OUT}) exceeds 14.5V, the internal FET is quickly turned off to prevent damage to the protected downstream components. If EN is in the logic low state, the switch will be shut down. Reverse blocking FET can prevent the leakage current from output side to input side when the input power is removed. The RCB voltage is up to 24V.

When $V_{\rm OVLO}$ is set lower than 0.25V. The overvoltage protection threshold is 14.5V. The overvoltage protection threshold can also be adjusted by external resistors when $V_{\rm OVLO}$ is set higher than 0.3V.

$$V_{OUT_OVLO} = V_{OVLO_TH} * (1 + R1/R2)$$
 Note: $V_{OVLO_TH} = 1.20V$ (TYP.)

Load current can be indicated by ISNS pin. It has high accuracy which is up to +/- 4%. Also a 7.5A over current protection is integrated inside.

The internal FET turns off when the junction temperature exceeds $+160^{\circ}$ C (TYP.). The device exits thermal shutdown after the junction temperature cools by 20° C (TYP.) and holds more than 100ms.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor $1\mu F$ or lager must be placed between the VIN and GND pins.

Output Capacitor

A 1µF or lager capacitor should be placed between the OUT and GND pins.

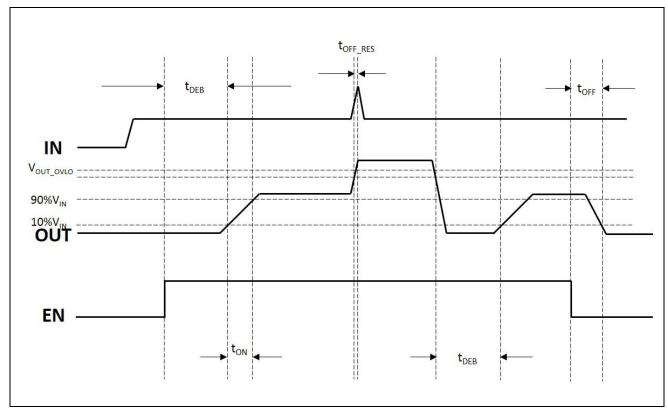
Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

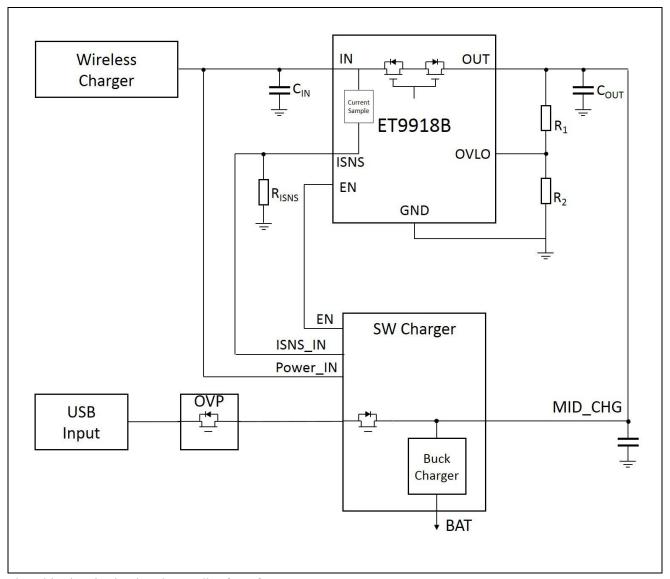
Symbol	Parameters	Min	Max	Unit
$V_{\text{IN}}, V_{\text{EN}}, V_{\text{OVLO}}$	IN/EN/OVLO to GND	-0.3	29	V
V_{OUT}	OUT to GND	-0.3	24	V
V _{ISNS}	ISNS to GND	-0.3	7	V
I_{SW1}	Maximum Continuous Current of switch IN-OUT		5	A
I _{SW2}	Maximum Peak Current of switch IN-OUT(10ms)		7	A
P_{D}	Power Dissipation at T_A = +70°C		960	mW
T_{STG}	Storage Junction Temperature	-65	+150	$^{\circ}\!\mathbb{C}$
T_{A}	Operating Temperature Range	-40	+85	$^{\circ}\!\mathbb{C}$
T _{STORE}	Soldering Temperature (reflow)		+260	$^{\circ}$
T_{J}	Junction Temperature		+150	$^{\circ}$

Electrical Characteristics

Unless otherwise noted, typical values are at $V_{\text{IN}}\!\!=\!\!5V$ and $T_{A}\!\!=\!\!25\,^{\circ}\!\!\text{C}$.

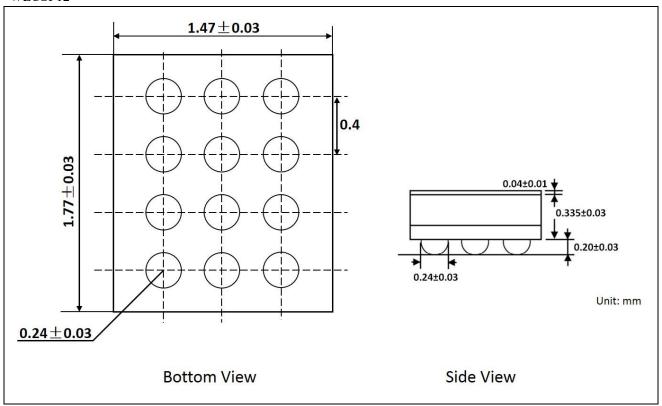

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
Basic Operation							
V _{IN}	Input Voltage		2.5		26	V	
$ m V_{RB}$	V _{RB} Reverse Blocking Range				22	V	
I _{IN}	V _{IN} Quiescent Current	V _{IN} =5V, OUT floating		100		μΑ	
I_{RB}	Reverse Blocking Current	V_{IN} =0V, V_{OUT} =16V, EN=0V		3	6	uA	
I_{SD}	Shutdown Current	$V_{IN}=5V$, $EN=0V$		13	18	uA	
Ron	On-Resistance of Switch IN-OUT	V_{IN} =5.0 V , I_{OUT} =1 A		23		mΩ	
V _{OVLO}	Overvoltage	V _{OUT} rising	13.5	14.5	15.5	V	
	Protect of V _{OUT}	V _{OUT} falling		14.2		v	

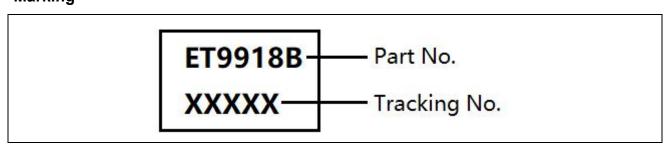
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Over-voltage Protect			0.30		V
	Hysteresis of V _{IN} Adjustable OVLO					
	Threshold Range		4		20	V
V _{OVLO_TH}	OVLO Set Threshold		1.16	1.20	1.24	V
V _{OVLO_SEL}	External OVLO Select Threshold		0.2		0.3	V
**	Under Voltage	V _{IN} rising		2.4	2.7	V
V_{UVLO_R}	Lockout Threshold	V _{IN} falling		2.3		
	Current Indicator	I_{OUT} =0.5A, R_{SNS} =806 Ω	288	300	312	mV
V_{ISNS}	Accuracy	I_{OUT} =1.0A, R_{SNS} =806 Ω	576	600	624	mV
	Sampling Ratio			1350		
$ m V_{IH}$	EN Input Logic High Voltage		1.0			V
$V_{\rm IL}$	EN Input Logic Low Voltage				0.3	V
	Thermal Shutdown			160		$^{\circ}$
	Thermal-Shutdown Hysteresis			20		$^{\circ}$
Dynamic Ch	aracteristics			1		
$t_{ m DEB}$	Debounce Time	Time from 2.1V $<$ V $_{IN}<$ V $_{OVLO}$ to V $_{OUT}=$ 10% of V $_{IN}$		7.0		ms
$t_{ m ON}$	Switch Turn-On Time	R_L =100 Ω , C_L =22uF, V_{OUT} from $0.1 \times V_{IN}$ to $0.9 \times V_{IN}$		2.0		ms
t _{OFF_RES} ⁽¹⁾	Switch Turn-off Response Time	$V_{\rm IN}$ > $V_{\rm OVLO}$ to $V_{\rm OUT}$ stop rising		70		ns
toff	Switch Turn-off Time	Disable to V_{OUT} =10% V_{IN} V_{IN} =5.0V, C_{OUT} =10uF, R_{OUT} =100 Ω		2.6		ms


Note:

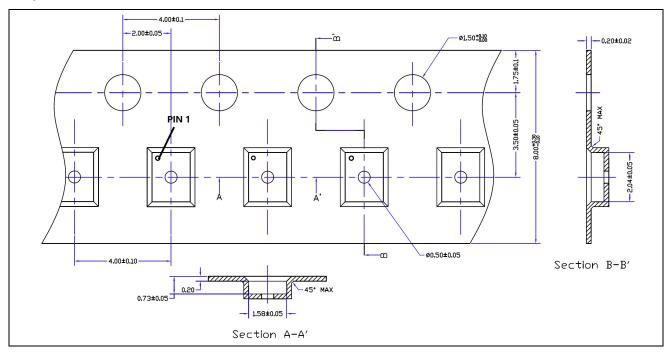
1. Guaranteed by characterization and design.

Timing Diagrams


Application Circuits


^{*:} This electric circuit only supplies for reference. Recommended R_{ISNS} value is $500\Omega \sim 2000\Omega$.

Package Dimension


WLCSP12

Marking

Tape Information

Revision History and Checking Table

No.	Version	Date	Revision Item	Request	Function and characteristic checking	Package dimension checking	Typos checking
1	1.0	2019-4-23	Original Version	Yangz	Yangz	Zhujl	Zhujl
2	1.1	2019-6-4	 Modify VISNS accuracy from ± 10% to ±4%. Modify OVLO pin's absolute maximum value from 7V to 29V. 	Yangz	Yangz	Zhujl	Zhujl
3	1.2	2019-8-8	 Update Block Diagram. Add typical sampling ratio value in Electrical Characteristics. Add recommended R_{ISNS} value. 	Yangz	Yangz	Zhujl	Zhujl
4	1.3	2020-03-25	Document check and formalize	Shib	Shib	Liujy	Liujy
5	1.4	2020-05-28	Add tape information	Yangz	Yangz	Liujy	Liujy
6	1.5	2020-11-3	Add Marking	Yangz	Yangz	Liujy	Liujy

单击下面可查看定价,库存,交付和生命周期等信息

>>ETEK