

DATASHEET

SMD • Middle Power LED G67-21S/R3C-D1530L6M41829Z15/2T

Features

- · PLCC-2 package
- · Top view Red LED
- · Wide viewing angle
- · Pb-free
- The product itself will remain within RoHS compliant version.
- Compliance with EU REACH.
- Compliance Halogen Free .(Br<900ppm,Cl<900ppm,Br+Cl<1500ppm)

Description

The Everlight G67-21S package has high efficacy, Middle Power consumption, wide viewing angle and a compact form factor. These features make this package an ideal LED for all lighting applications.

Applications

- · Decorative and Entertainment Lighting
- · Agriculture Lighting
- · General use

Device Selection Guide

Chip Materials	Emitted Color	Resin Color
AlGaInP	Red	Water Clear

Absolute Maximum Ratings (T_{Soldering}=25℃)

Parameter	Symbol	Rating	Unit
Forward Current	l _F	150	mA
Peak Forward Current (Duty 1/10 @10ms)	I _{FP}	300	mA
Power Dissipation	P _d	435	mW
Electrostatic Discharge(HBM) (2)	ESD	2000	V
Operating Temperature	T_{opr}	-40 ~ +85	°C
Storage Temperature	T_{stg}	-40 ~ +100	°C
Thermal Resistance (Junction / Soldering point)	Rth J-S	50	°C/W
Junction Temperature	Τj	115	°C
Soldering Temperature	T _{sol}	Reflow Soldering : 260 °C for 10 sec. Hand Soldering : 350 °C for 3 sec.	

Note:

Electro-Optical Characteristics (T_{Soldering}=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Luminous flux ₍₁₎	Ø	15.0		24.0	lm	I _F =150mA
Forward Voltage	VF	1.8		2.9	V	I _F =150mA
Viewing Angle	$2\theta_{1/2}$		120		deg	I _F =150mA
Reverse Current	IR			50	μΑ	V _R =5V

Notes:

- 1. Tolerance of Radiometric Luminous flux: ±11%.
- 2. Tolerance of Forward Voltage: ±0.1V.

^{1.} The products are sensitive to static electricity and must be carefully taken when handling products

^{2.}Test result of Electrostatic Discharge is only for reference.

Bin Range of Radiometric Power

Bin Code	Min.	Max.	Unit	Condition
L6	15	16		
L7	16	17		
L8	17	18		1 450 - 4
L9	18	19	lm l _i	I _F =150mA
M3	19	21	_	
M4	21	24		

Notes:

Tolerance of Luminous flux: ±11%

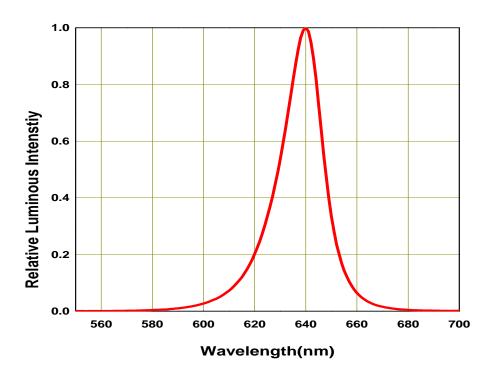
Bin Range of Forward Voltage

Bin Code	Min.	Max.	Unit	Condition
25	1.8	2.8		
26	1.9	2.0	_	
27	2.0	2.1	_	
28	2.1	2.2	_	
29	2.2	2.3	_	
30	2.3	2.4	V	I _F =150mA
31	2.4	2.5	_	
32	2.5	2.6	_	
33	2.6	2.7	_	
34	2.7	2.8	_	
35	2.8	2.9	_	

Note:

Tolerance of Forward Voltage: ±0.1V.

Dominant Wavelength Bins


Bin Code	Min.	Max.	Unit	Condition
O54	615	620		
R51	620	625	nm	$I_F=150mA$
R52	625	630		

Notes:

Dominant / Peak wavelength measurement tolerance: ±1nm.

Spectrum Distribution

Typical Electro-Optical Characteristics Curves

Fig.1 – Forward Voltage Shift vs. Junction Temperature

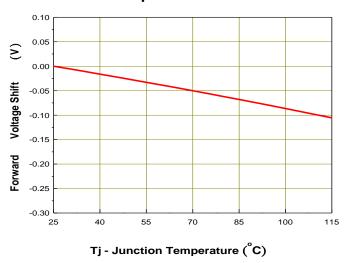
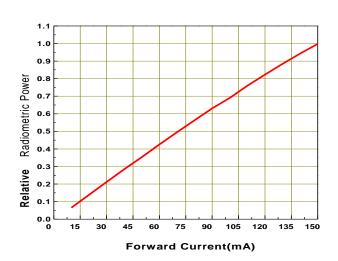



Fig.2 - Relative Radiometric Power vs. Forward Current

Typical Electro-Optical Characteristics Curves

Fig.3 - Relative Luminous Intensity vs. Junction Temperature

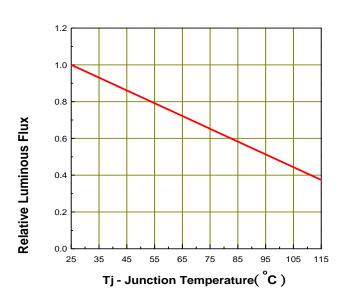


Fig.4 - Forward Current vs. Forward Voltage

Fig.5 – Max. Driving Forward Current vs. Soldering Temperature

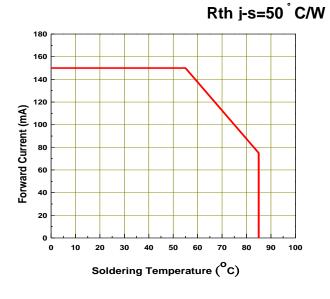
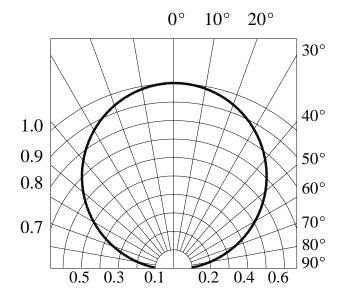
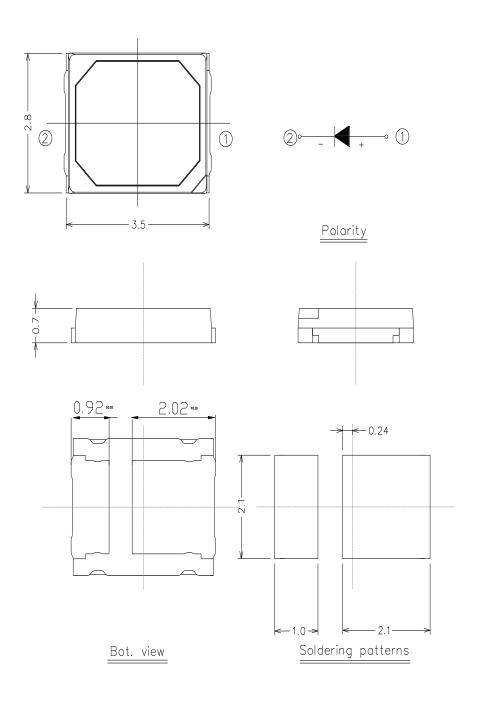
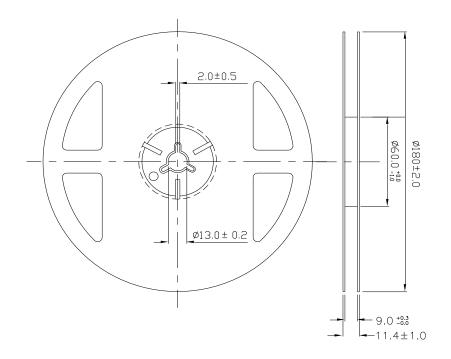




Fig.6 - Radiation Diagram

Package Dimension

Note:

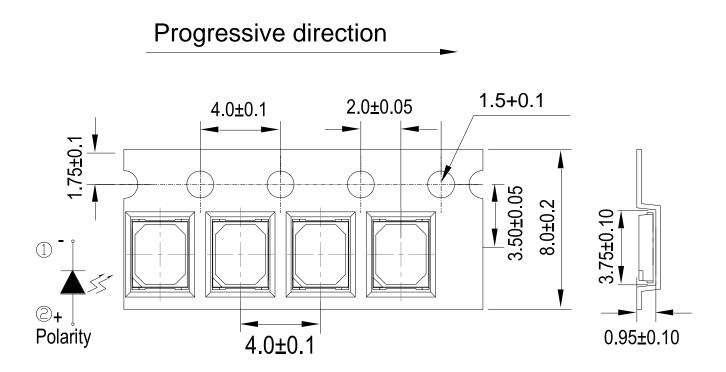
Tolerance unless mentioned is ±0.1 mm; Unit = mm


Moisture Resistant Packing Materials

Label Explanation

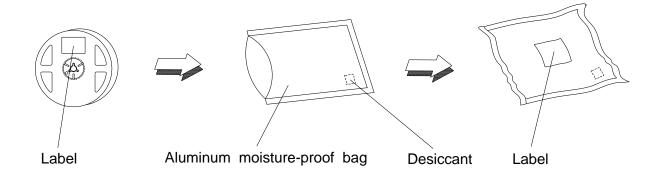
- · CPN: Customer's Product Number
- P/N: Product Number
- QTY: Packing Quantity
- · CAT: Luminous Intensity Rank
- HUE: Dom. Wavelength Rank
- REF: Forward Voltage Rank
- LOT No: Lot Number

Reel Dimensions



Note:

Tolerances unless mentioned ±0.1mm. Unit = mm


Carrier Tape Dimensions: Loaded Quantity 4000 pcs. Per Reel

Note:

Tolerance unless mentioned is ±0.1mm; Unit = mm

Moisture Resistant Packing Process

Reliability Test Items and Conditions

The reliability of products shall be satisfied with items listed below.

Confidence level: 90%

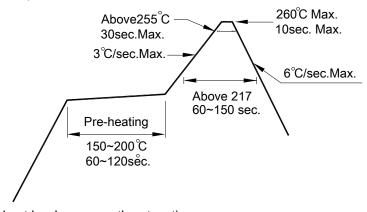
LTPD: 10%

No.	Items	Test Condition	Test Hours/Cycles	Sample Size	Ac/Re
1	Reflow Soldering	Temp.: 260°C/10sec.	6 Min.	22 PCS.	0/1
2	Thermal Shock	H : +100°C 20min ∫ 10 sec L : -10°C 20min	200 Cycles	22 PCS.	0/1
3	Temperature Cycle	H:+100°C 30min ∫ 5 min L:-40°C 30min	200 Cycles	22 PCS.	0/1
4	High Temperature/Humidity Storage	Ta=85°C,85%RH	1000 Hrs.	22 PCS.	0/1
5	High Temperature/Humidity Operation	Ta=85°C,85%RH, I _F = 90mA	1000 Hrs.	22 PCS.	0/1
6	Low Temperature Storage	Ta=-40°C	1000 Hrs.	22 PCS.	0/1
7	High Temperature Storage	Ta=85°C	1000 Hrs.	22 PCS.	0/1
8	Low Temperature Operation Life	Ta=-40°C, I _F = 180 mA	1000 Hrs.	22 PCS.	0/1
9	High Temperature Operation/ Life#1	Ta=25°C, I _F = 180 mA	1000 Hrs.	22 PCS.	0/1
10	High Temperature Operation/ Life#2	Ta=55°C, I _F =180mA	1000 Hrs.	22 PCS.	0/1
11	High Temperature Operation/ Life#3	Ta=85°C, I _F = 90 mA	1000 Hrs.	22 PCS.	0/1

Precautions for Use

1. Over-current-proof

Customer must apply resistors for protection; otherwise slight voltage shift will cause big current change (Burn out will happen).

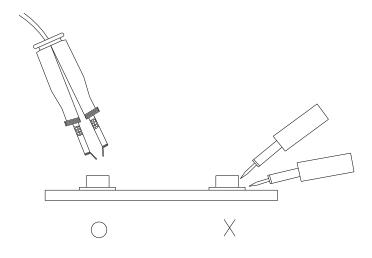

2. Storage

- 2.1 Do not open moisture proof bag before the products are ready to use.
- 2.2 Before opening the package: The LEDs should be kept at 30°C or less and 90%RH or less.
- 2.3 After opening the package: The LED's floor life is 168 Hrs under 30°C or less and 60% RH or less. If unused LEDs remain, it should be stored in moisture proof packages.
- 2.4 If the moisture absorbent material (silica gel) has faded away or the LEDs have exceeded the storage time, baking treatment should be performed using the following conditions.

Baking treatment: 60±5°C for 24 hours.

3. Soldering Condition

3.1 Pb-free solder temperature profile


- 3.2 Reflow soldering should not be done more than two times.
- 3.3 When soldering, do not put stress on the LEDs during heating.
- 3.4 After soldering, do not warp the circuit board.

4. Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

5. Repairing

Repair should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.

DISCLAIMER

- 1. EVERLIGHT reserves the right(s) on the adjustment of product material mix for the specification.
- 2. The product meets EVERLIGHT published specification for a period of twelve (12) months from date of shipment.
- 3. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 4. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from the use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 5. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without obtaining EVERLIGHT's prior consent.
- 6. This product is not intended to be used for military, aircraft, automotive, medical,

单击下面可查看定价,库存,交付和生命周期等信息

>>Everlight(亿光)