

350MHZ CMOS Rail-to-Rail Output Opamps

Features

• Single-Supply Operation from +2.5V ~ +5.5V

• Rail-to-Rail Output

-3dB Bandwidth(G=+1): 350MHz (Typ.)

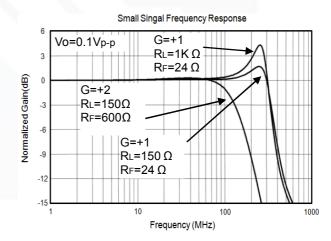
• Low Input Bias Current: 1pA (Typ.)

Quiescent Current: 4.2mA/Amplifier (Typ.)

Operating Temperature: -40°C ~ +125°C

Small Package:

GS8091 Available in SOT23-5 and SC70-5 Packages GS8092 Available in SOP8 and MSOP8 Packages GS8094 Available in SOP-14 and TSSOP-14 Packages GS8091N Available in SOT23-6 and SC70-6 Packages GS8092N Available in MSOP10 Packages


General Description

The GS8091/1N(single), GS8092/2N(dual), GS8094(quad) are rail-to-rail output voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input common-mode voltage range and output voltage swing, making them easy to use on single supplies as low as 2.5V. Despite being low cost, the GS8091 series provide excellent overall performance. They offer wide bandwidth to 350MHz (G = +1) along with 0.1dB flatness out to 58MHz (G = +2) and offer a typical low power of 4.2mA/amplifier.

The GS8091 series is low distortion and fast settling make it ideal for buffering high speed A/D or D/A converters. The GS8091/2N has a power-down disable feature that reduces the supply current to 75μ A. These features make the GS8091/2N ideal for portable and battery-powered applications where size and power are critical. All are specified over the extended -40 $^{\circ}$ C to +125 $^{\circ}$ C temperature range.

Applications

- Imaging
- Photodiode Preamp
- DVD/CD
- Filters
- Professional Video and Cameras
- Hand Sets
- Base Stations
- A-to-D Driver

www.gainsil.com

A0 1/20

Pin Configuration

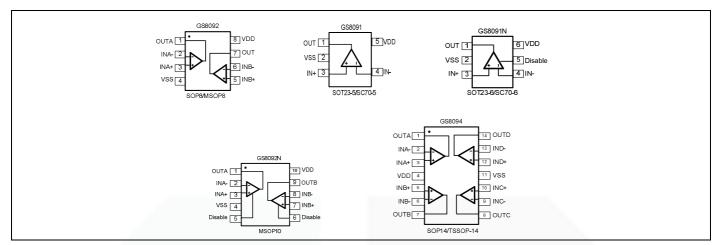


Figure 1. Pin Assignment Diagram

Absolute Maximum Ratings

Condition	Min	Max		
Power Supply Voltage (V _{DD} to Vss)	-0.5V	+7.5V		
Analog Input Voltage (IN+ or IN-)	Vss-0.5V	V _{DD} +0.5V		
PDB Input Voltage	Vss-0.5V	+7V		
Operating Temperature Range	-40°C	+125°C		
Junction Temperature	+16	D°C		
Storage Temperature Range	-55°C	+150°C		
Lead Temperature (soldering, 10sec)	+26	D°C		
Package Thermal Resistance (T _A =+25℃)				
SOP-8, θ _{JA}	125°	C/W		
MSOP-8, θ _{JA}	216°	C/W		
SOT23-5, θ _{JA}	190°	C/W		
SOT23-6, θ _{JA}	190°	C/W		
SC70-5, θ _{JA}	333°C/W			
ESD Susceptibility	·			
НВМ	6KV			
MM	400V			

Note: Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this specification are not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

www.gainsil.com

A0 2/20

Package/Ordering Information

MODEL	CHANNEL	ORDER NUMBER	PACKAGE DESCRIPTION	PACKAGE OPTION	MARKING INFORMATION
000004	Olas alla	GS8091-CR	SC70-5	Tape and Reel,3000	8091
GS8091	Single	GS8091-TR	SOT23-5	Tape and Reel,3000	8091
000000	D I	GS8092-SR	SOP-8	Tape and Reel,2500	GS8092
GS8092	Dual	GS8092-MR	MSOP-8	Tape and Reel,3000	GS8092
000004	0	GS8094-TR	TSSOP-14	Tape and Reel,3000	GS8094
GS8094	Quad	GS8094-SR	SOP-14	Tape and Reel,2500	GS8094
000004N	Single With	GS8091N-CR	SC70-6	Tape and Reel,3000	8091N
GS8091N	shutdown	GS8091N-TR	SOT23-6	Tape and Reel,3000	8091N
GS8092N	Dual With shutdown	GS8092N-MR	MSOP-10	Tape and Reel,2500	GS8092N

A0 3/20

Electrical Performance Characteristics

 $(G=+2, R_F=600\Omega, R_G=600\Omega, and R_L=150\Omega)$ connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A=+25$ °C.)

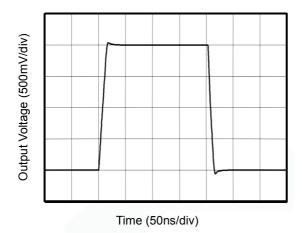
			GS8091/52/54/51N/52N					
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
		+25℃	+25℃	0℃ to70℃	-40℃to 85℃	-40 ℃ to125 ℃	UNITS	MIN
DYNAMIC PERFORMANCE								
-3dB Small Signal Bandwidth	G = +1, Vo = 0.1V p-p, R_F = 24 Ω , R_L = 150 Ω	335					MHz	TYF
	G = +1, Vo = 0.1V p-p, R_F = 24 Ω , R_L = 1k Ω	330					MHz	TYF
	$G = +2$, $Vo = 0.1V p-p$, $R_L = 50\Omega$	79					MHz	TYF
	G = +2, Vo = 0.1V p-p, R _L = 150Ω	130					MHz	TYI
	G = +2, Vo = 0.1V p-p, $R_L = 1k\Omega$	165					MHz	TYI
	$G = +2$, $Vo = 0.1V p-p$, $R_L = 10k\Omega$	172					MHz	TYI
Gain-Bandwidth Product	$G = +10, R_L = 150\Omega$	180					MHz	TYI
	$G = +10, R_L = 1k\Omega$	195					MHz	TYF
Bandwidth for 0.1dB Flatness	G = +2, Vo = 0.1V _{p-p} , R_L = 150 Ω , R_F =600 Ω	71					MHz	TYI
Slew Rate	G = +1, 2V Output Step	119/-232					V/ μ s	TYI
	G = +2, 2V Output Step	135/-180					V/ μ s	TY
	G = +2, 4V Output Step	142/-206					V/μs	TY
Rise-and-Fall Time	G = +2, Vo = 0.2V _{p-p} , 10% to 90%	3.5					ns	TY
	G = +2, Vo = 2V _{p-p} , 10% to 90%	8.5					ns	TYI
Settling Time to 0.1%	G = +2, 2V Output Step	35					ns	TYI
Overload Recovery Time	V _{IN} • G = +VS	14.5					ns	TYI
NOISE/DISTORTION PERFORMANCE								
Input Voltage Noise	f = 1MHz	4.3					nV/ Hz	TYI
Differential Gain Error (NTSC)	G = +2, R _L = 150Ω	0.004					%	TY
Differential Phase Error (NTSC)	G = +2, R _L = 150Ω	0.08					degree	TY
DC PERFORMANCE								
Input Offset Voltage (Vos)		±2	±8	±8.5	±9	±9.3	mV	MA
Input Offset Voltage Drift		2					μ V/ ℃	TY
Input Bias Current (I _B)		1					PA	TY
Input offset Current (I _{OS})		2					PA	TY
Open-Loop Gain (A _{OL})	$V_{\rm O}$ = 0.3V to 4.7V, $R_{\rm L}$ = 150 Ω	80	75	74	74	70	dB	MII
	$V_O = 0.2V$ to 4.8V, $R_L = 1k\Omega$	104	92	91	91	80	dB	MII
INPUT CHARACTERISTICS								
Input Common-Mode Voltage Range (V _{CM})		-0.2 to +3.8					V	TY
Common-Mode Rejection Ratio (CMRR)	V _{CM} = -0.1V to +3.5V	80	66	65	65	62	dB	MII

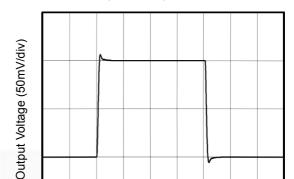
A0 4/20

Electrical Performance Characteristics

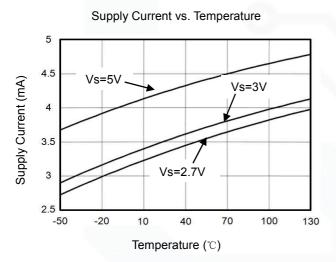
 $(G=+2, R_F=600\Omega, R_G=600\Omega, and R_L=150\Omega)$ connected to $V_S/2$, unless otherwise noted. Typical values are at $T_A=+25^{\circ}C$.)

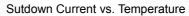
		GS8091/52/54/51N/52N						
PARAMETER	CONDITIONS	TYP	MIN/MAX OVER TEMPERATURE					
				0℃	-40℃to	-40℃		MIN/
		+25 ℃	+25℃	to70℃	85℃	to125℃	UNITS	MAX
OUTPUT CHARACTERISTICS								
Output Voltage Swing from Rail	R _L = 150Ω	0.12					V	TYP
	$R_L = 1k\Omega$	0.03					V	TYP
Output Current		120	100	98	93	87	mA	MIN
Closed-Loop Output Impedance	f<100kHz	0.045					Ω	TYP
POWER-DOWN DISABLE								
(GS8091/2N only)								
Turn-On Time		108					ns	TYP
Turn-Off Time		60					ns	TYP
DISABLE Voltage-Off			0.8				V	MAX
DISABLE Voltage-On			2				V	MIN
POWER SUPPLY								
Operating Voltage Range			2.5	2.7	2.7	2.7	V	MIN
			5.5	5.5	5.5	5.5	V	MAX
Quiescent Current (per amplifier)		4.2	5.3	5.6	5.7	6.1	mA	MAX
Supply Current when Disabled per		75	120	130	132	137	μА	MAX
amplifier(GS8091/2N only)								
Power Supply Rejection Ratio (PSRR)	ΔV_S = +2.7V to +5.5V, V_{CM} = (-V _S) +0.5	80	67	67	65	62	dB	MIN

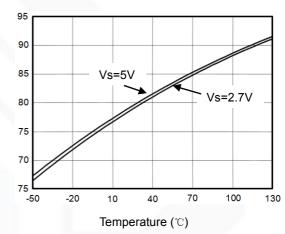

A0 5/20

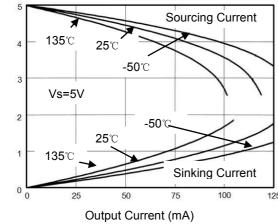


Typical Performance characteristics


 $(Vs=+5V,G=+2,R_F=600\Omega,R_G=600\Omega,and\ R_L=150\Omega\ connected\ to\ Vs/2,\ unless\ otherwise\ noted.$ Typical values are at $T_A=+25^{\circ}C.)$ Non-Inverting Large-Signal Step Response


Shutdown Current (µA)



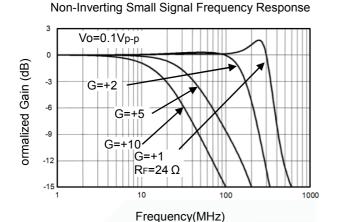

Time (50ns/div)



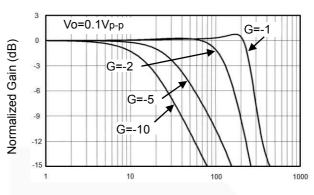
5AINSIL

Output Voltage (V)

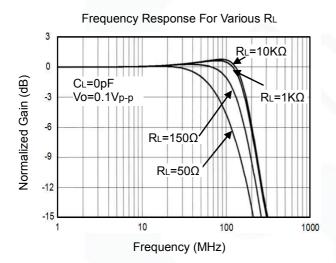
www.gainsil.com

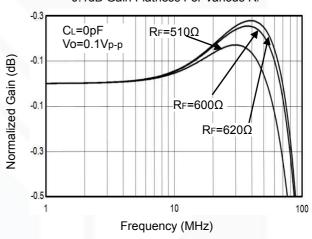

A0 6/20

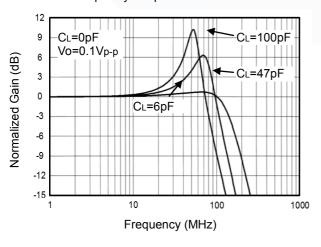
Output Voltage (V)

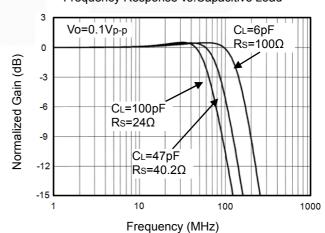


Typical Performance characteristics


 $(Vs=+5V,G=+2,\,R_F=600\Omega,R_G=600\Omega,and\,R_L=150\Omega\,\,connected\,\,to\,\,Vs/2,\,unless\,\,otherwise\,\,noted.\,\,Typical\,\,values\,\,are\,\,at\,\,T_A=+25^{\circ}C.)$



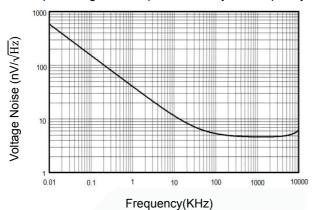

Frequency(MHz)

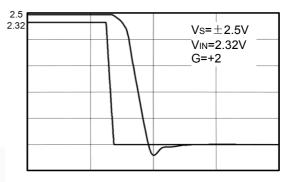

0.1dB Gain Flatness For Various RF

Frequency Response vs. Capacitive Load

SAINSIL

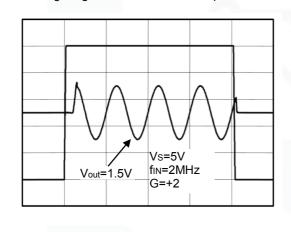
www.gainsil.com


A0 7/20

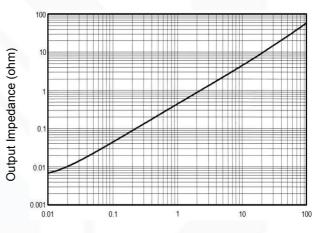

Typical Performance characteristics

 $(Vs=+5V,G=+2,\,R_F=600\Omega,R_G=600\Omega,and\,\,R_L=150\Omega\,\,connected\,\,to\,\,Vs/2,\,unless\,\,otherwise\,\,noted.\,\,Typical\,\,values\,\,are\,\,at\,\,T_A=+25^{\circ}C.)$

Input Voltage Noise Spectral Density vs. Frequency



Overload Recovery Time



Time(20ns/div)

Large-Signal Disable/Enable Response

Closed-Loop Output Impedance vs Frequency

Frequency (MHz)

Time (500n/div)

Output Voltage (1V/div)

A0 8/20

Application Note

Driving Capacitive Loads

GS809X series op amps are unity-gain stable and suitable for a wide range of general-purpose applications. The small footprints of the GS809X series packages save space on printed circuit boards and enable the design of smaller electronic products.

Power Supply Bypassing and Board Layout

GS809X series operates from a single 2.5V to 5.5V supply or dual ± 1.25 V to ± 2.75 V supplies. For best performance, a 0.1μ F ceramic capacitor should be placed close to the V_{DD} pin in single supply operation. For dual supply operation, both V_{DD} and V_{SS} supplies should be bypassed to ground with separate 0.1μ F ceramic capacitors.

Low Supply Current

The low supply current (typical 4.2mA per channel) of GS809X series will help to maximize battery life. They are ideal for battery powered systems

Operating Voltage

GS809X series operate under wide input supply voltage (2.5V to 5.5V). In addition, all temperature specifications apply from -40 °C to +125 °C. Most behavior remains unchanged throughout the full operating voltage range. These guarantees ensure operation throughout the single Li-Ion battery lifetime

Rail-to-Rail Output

Rail-to-Rail output swing provides maximum possible dynamic range at the output. This is particularly important when operating in low supply voltages. The output voltage of GS809X series can typically swing to less than 30mV from supply rail in light resistive loads (>1k Ω), and 120mV of supply rail in moderate resistive loads (150 Ω).

Capacitive Load Tolerance

The GS809X family is optimized for bandwidth and speed, not for driving capacitive loads. Output capacitance will create a pole in the amplifier's feedback path, leading to excessive peaking and potential oscillation. If dealing with load capacitance is a requirement of the application, the two strategies to consider are (1) using a small resistor in series with the amplifier's output and the load capacitance and (2) reducing the bandwidth of the amplifier's feedback loop by increasing the overall noise gain. Figure 2. shows a unity gain follower using the series resistor strategy. The resistor isolates the output from the capacitance and, more importantly, creates a zero in the feedback path that compensates for the pole created by the output capacitance.

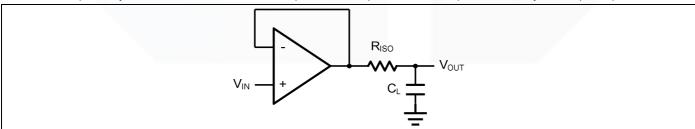


Figure 2. Indirectly Driving a Capacitive Load Using Isolation Resistor

The bigger the RISO resistor value, the more stable VOUT will be. However, if there is a resistive load RL in parallel with the capacitive load, a voltage divider (proportional to R_{ISO}/R_L) is formed, this will result in a gain error.

A0 9/20

GS8091/92/94/91N/92N

The circuit in Figure 3 is an improvement to the one in Figure 2. R_F provides the DC accuracy by feed-forward the V_{IN} to R_L . C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving the phase margin in the overall feedback loop. Capacitive drive can be increased by increasing the value of C_F . This in turn will slow down the pulse response.

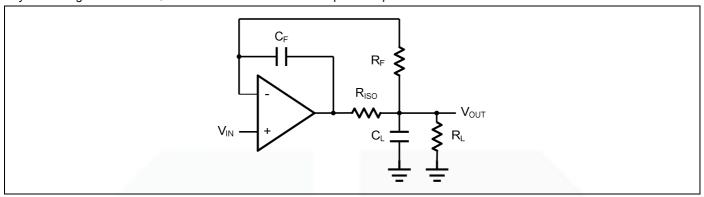


Figure 3. Indirectly Driving a Capacitive Load with DC Accuracy

A0 10/20

Typical Application Circuits

Differential amplifier

The differential amplifier allows the subtraction of two input voltages or cancellation of a signal common the two inputs. It is useful as a computational amplifier in making a differential to single-end conversion or in rejecting a common mode signal. Figure 4. shown the differential amplifier using GS809X.

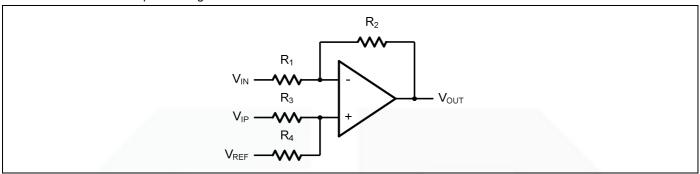


Figure 4. Differential Amplifier

$$V_{\text{OUT}} = (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_4}{R_1} V_{\text{IN}} - \frac{R_2}{R_1} V_{\text{IP}} + (\frac{R_1 + R_2}{R_2 + R_4}) \frac{R_3}{R_1} V_{\text{REF}}$$

If the resistor ratios are equal (i.e. R₁=R₃ and R₂=R₄), then

$$V_{\text{OUT}} = \frac{R_2}{R_1} (V_{\text{IP}} - V_{\text{IN}}) + V_{\text{REF}}$$

Low Pass Active Filter

The low pass active filter is shown in Figure 5. The DC gain is defined by $-R_2/R_1$. The filter has a -20dB/decade roll-off after its corner frequency $f_C=1/(2\pi R_3C_1)$.

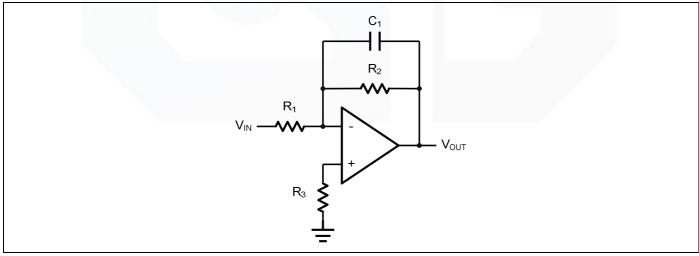


Figure 5. Low Pass Active Filter

www.gainsil.com

A0 11/20

Driving Video

The GS809X can be used in video applications like in Figure 6.

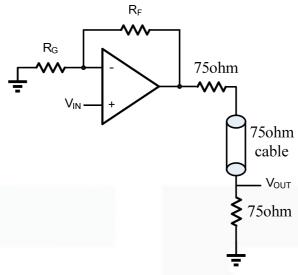
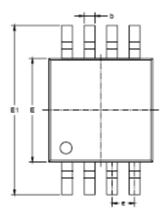
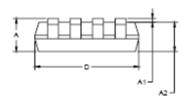


Figure 6. Typical video driving

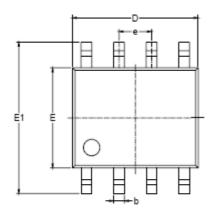


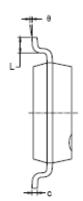
A0 12/20

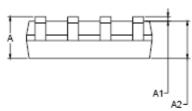


Package Information

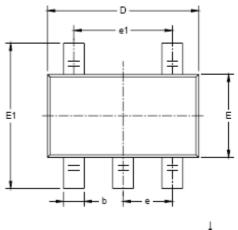
MSOP8

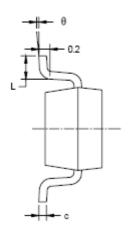

In Milli	isions meters	Dimensions In Inches		
MIN	MAX	MIN	MAX	
0.820	1.100	0.032	0.043	
0.020	0.150	0.001	0.008	
0.750	0.950	0.030	0.037	
0.250	0.380	0.010	0.015	
0.090	0.230	0.004	0.009	
2.900	3.100	0.114	0.122	
2.900	3.100	0.114	0.122	
4.750	5.050	0.187	0.199	
0.650 BSC		0.026 BSC		
0.400	0.800	0.016	0.031	
0°	6°	0°	6°	
	MIN 0.820 0.020 0.750 0.250 0.090 2.900 2.900 4.750 0.650 0.400	0.820 1.100 0.020 0.150 0.750 0.950 0.250 0.380 0.090 0.230 2.900 3.100 2.900 3.100 4.750 5.050 0.850 BSC 0.400 0.800	MIN MAX MIN 0.820 1.100 0.032 0.020 0.150 0.001 0.750 0.950 0.030 0.250 0.380 0.010 0.090 0.230 0.004 2.900 3.100 0.114 2.900 3.100 0.114 4.750 5.050 0.187 0.650 BSC 0.026 0.400 0.800 0.016	

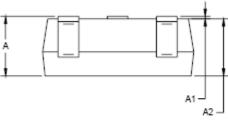



A0 13/20

SOP8

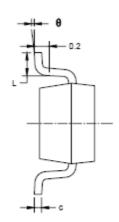

Symbol		nsions imeters	Dimensions In Inches		
-	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
e	1.27	1.27 BSC		BSC	
L	0.400	1.270	0.016	0.050	
е	0°	8°	0°	8°	

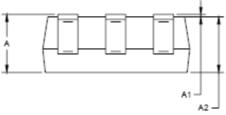



A0 14/20

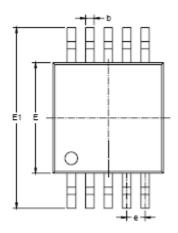
SOT23-5

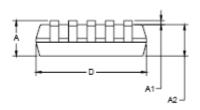
Symbol		isions imeters	Dimensions In Inches		
, , , , , , , , , , , , , , , , , , , ,	MIN	MAX	MIN	MAX	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037	BSC	
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	




A0 15/20

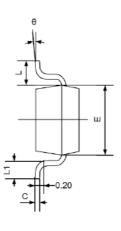
SOT23-6


Symbol		nsions meters	Dimensions In Inches		
-,	MIN	MAX	MIN	MAX	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
e	0.950	BSC	0.037	BSC	
e1	1.900	1.900 BSC		BSC	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	


A0 16/20

MSOP-10

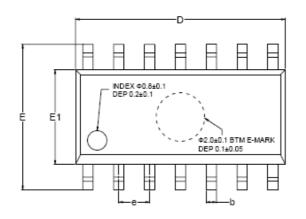
Symbol		nsions imeters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.180	0.280	0.007	0.011	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
e	0.500	0.500 BSC		BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

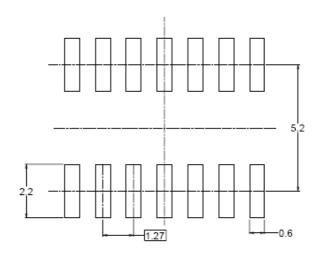


A0 17/20

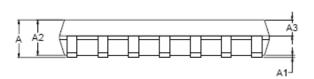
SC70-5

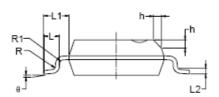
	Dimens	sions	Dimens	sions
Symbol	In Milli	In Millimeters		es
	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.080	0.150	0.003	0.006
D	2.000	2.200	0.079	0.087
E	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650T	ΥP	0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°



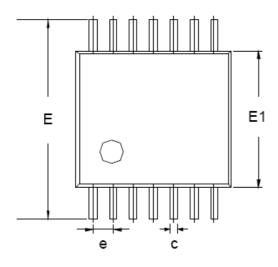


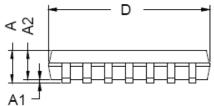
A0 18/20

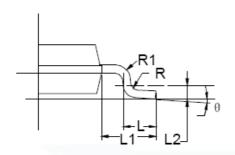



SOP-14

RECOMMENDED LAND PATTERN (Unit: mm)


Dimens	ions In Mill	imeters	Dime	nsions In In	ches
MIN	MOD	MAX	MIN	MOD	MAX
1.35		1.75	0.053		0.069
0.10		0.25	0.004		0.010
1.25		1.65	0.049		0.065
0.55		0.75	0.022		0.030
0.36		0.49	0.014		0.019
8.53		8.73	0.336		0.344
5.80		6.20	0.228		0.244
3.80		4.00	0.150		0.157
	1.27 BSC		0.050 BSC		
0.45		0.80	0.018		0.032
	1.04 REF			0.040 REF	
	0.25 BSC			0.01 BSC	
0.07			0.003		
0.07			0.003		
0.30		0.50	0.012		0.020
0°		8°	0°		8°
	MIN 1.35 0.10 1.25 0.55 0.36 8.53 5.80 3.80 0.45 0.07 0.07 0.30	MIN MOD 1.35 0.10 1.25 0.55 0.36 8.53 5.80 3.80 1.27 BSC 0.45 1.04 REF 0.25 BSC 0.07 0.07 0.30	1.35 1.75 0.10 0.25 1.25 1.65 0.55 0.75 0.36 0.49 8.53 8.73 5.80 6.20 3.80 4.00 1.27 BSC 0.45 0.80 1.04 REF 0.25 BSC 0.07 0.07 0.30 0.50	MIN MOD MAX MIN 1.35 1.75 0.053 0.10 0.25 0.004 1.25 1.65 0.049 0.55 0.75 0.022 0.36 0.49 0.014 8.53 8.73 0.336 5.80 6.20 0.228 3.80 4.00 0.150 1.27 BSC 0.80 0.018 1.04 REF 0.25 BSC 0.003 0.07 0.003 0.003 0.30 0.50 0.012	MIN MOD MAX MIN MOD 1.35 1.75 0.053 0.004 0.10 0.25 0.004 0.049 1.25 1.65 0.049 0.014 0.36 0.49 0.014 0.036 8.53 8.73 0.336 0.228 3.80 4.00 0.150 0.050 BSC 0.45 0.80 0.018 0.040 REF 0.25 BSC 0.003 0.003 0.003 0.07 0.003 0.003 0.003 0.30 0.50 0.012 0.012


www.gainsil.com


A0 19/20

TSSOP-14

	Dimensions					
Symbol	In Millimeters					
Symbol	MIN	TYP	MAX			
Α	-	-	1.20			
A1	0.05	-	0.15			
A2	0.90	1.00	1.05			
b	0.20	-	0.28			
С	0.10	-	0.19			
D	4.86	4.96	5.06			
E	6.20	6.40	6.60			
E1	4.30	4.40	4.50			
е		0.65 BSC				
L	0.45	0.60	0.75			
L1	1.00 REF					
L2	0.25 BSC					
R	0.09					
θ	0°	-	8°			

A0 20/20

单击下面可查看定价,库存,交付和生命周期等信息

>>Gainsil(聚洵)