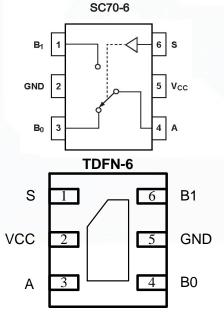


General Description

The GS4157/4157B is a high-bandwidth, fast single-pole double-throw (SPDT) CMOS switch. It can be used as an analog switch or as a low-delay bus switch. Specified over a wide operating power supply voltage range, 1.65V to 5.5V, the GS4157/4157B has a maximum ON resistance of 5.1-ohms at 1.65V, 3.9-ohms at 2.3V & 2.85-ohms at 4.5V. Break-before-make switching prevents both switches being enabled simultaneously. This eliminates signal disruption during switching.


The control input, S, tolerates input drive signals up to 5.5V, independent of supply voltage.

GS4157/4157B is an improved direct replacement for the FSA4157/NC7SB4157

Applications

Cell Phones
PDAs
Portable Instrumentation
Battery Powered Communications
Computer Peripherals

Connection Diagram(Top View)

Features

- ◆CMOS Technology for Bus and Analog Applications
- ♦ Low ON Resistance: 3-ohms @ 2.7V
- ♦ Wide VCC Range: 1.65V to 5.5V
- ♦ Rail-to-Rail Signal Range
- ♦ Control Input Overvoltage Tolerance: 5.5V min.
- ♦ High Off Isolation: 57dB at 10MHz
- ◆ 54dB (10MHz) Crosstalk Rejection Reduces Signal Distortion
- ◆ Break-Before-Make Switching
- ♦ High Bandwidth: 300 MHz
- ◆ Extended Industrial Temperature Range: -40°C to 85°C
- ◆ Improved Direct Replacement for NC7SB4157
- ◆ Packaging (Pb-free & Green available):

Pin Description

Name	Description
S	Logic Control
Vcc	Positive Power Supply
А	Common Output/Data Port
В0	Data Port (Normally Closed)
GND	Ground
B1	Data Port

Logic Function Table

Logic Input (S)	Function
0	B0 Connected to A
1	B1 Connected to A

ORDERING INFORMATION

Ordering Code	Package Description	Temp Range	Top Marking
GS4157EXT-TR	6-pin SC70	–40 ℃ to +85 ℃	ABG
GS4157BEXT-TR	6-pin TDFN 1.45X1	–40 ℃ to +85 ℃	ABG

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

RECOMMENDED OPERATING CONDITIONS (3)

1.65V to 5.5V
0V to VCC
0V to VCC
0V to VCC
40°C to +85°C
350°C/W

Note 1:Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Note 2:The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Control input must be held HIGH or LOW; it must not float.

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Unit s
V_{IAR}	Analog Input Signal Range		Vcc	T _A = 25°C & -40°C to 85°C	0		V _{CC}	V
Ron	ON Resistance ⁽⁴⁾	I _{out} = 100mA, B ₀ or B ₁ =1.5V	2.7V	T _A = 25°C		3	4.5	Ω
Ron	ON Resistance ⁽⁴⁾	I _{out} = 100mA, Bo or B1=3.5V	4.5V	T _A = 25°C			3	
ΔR_{ON}	ON Resistance Match Between Channels ^(4,5,6)	l _{out} = 100mA, B0=B1=1.5V	2.7V	T _A = 25°C			0.75	Ω
Ronf	ON Resistance ^(4,5,7) Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 1.5V	2.7V	T _A = 25°C		N.	1.5	Ω
Ronf	ON Resistance ^(4,5,7) Flatness	I(A) = -100mA; B0 or B1= 0V, 1.5V, 3.0V,	4.5V	T _A = 25°C			0.5	Ω
Vін	Input High Voltage	Logic High Level	V _{CC} = 1.65V to 1.95V V _{CC} = 2.3V to	T _A = 25°C & -40°C to 85°C	1.5			- V
VIL	Input Low Voltage Logic Low Level	Logic Low Level	5.5V V _{CC} = 1.65V to 1.95V				0.5	V
		Logic Low Level	V _{CC} = 2.3V to 5.5V				0.8	v

DC ELECTRICAL CHARACTERISTICS (TA = - 40°C to +85°C)

Input		0.51/11.55.51/	V _{CC} = 0V	T _A = 25°C		±0.1	
I _{IN} Leakage Current		0 ≤V _{IN} ≤5.5V	to 5.5V	T _A = -40°C to 85°C		±1.0	
loff	OFF State Leakage Current	A=1V,4.5V, B0 or B1=4.5V, 1V	Vcc = 5.5V	T _A = 25°C	-2.0	2.0	μΑ
loo	Quiescent	All channels ON or OFF, V _{IN} = V _{CC} or	V _{CC} =	T _A = 25°C		1	
Icc	Supply Current GND, I _{OUT} = 0		5.5V	T _A = -40°C to 85°C		10	

- Note 4: Measured by voltage drop between A and B pins at the indicated current through the device. ON resistance is determined by the lower of the voltages on two ports (A or B)
- Note 5: Parameter is characterized but not tested in production.
- Note 6: DR_{ON} = R_{ON} max R_{ON} min. measured at identical V_{CC}, temperature and voltage levels.
- Note 7: Flatness is defined as difference between maximum and minimum value of ON resistance over the specified range of conditions..

 Note 8: Guaranteed by design.

CAPACITANCE⁽¹²⁾

Parameter	Description	ription Test Conditions		Temp (°C)	Min.	Тур	Max.	Units
CIN	Control Input					2.3		
Сю-в	For B Port,Switch OFF	f= 1 MHz ⁽¹²⁾	Vcc = 5.0V	T _A = 25°C		6.5		pF
C _{IOA-ON}	For A Port, Switch ON					18.5		

SWITCH AND AC CHARACTERISTICS

Parameter	Description	Test Conditions	Supply Voltage	Temp (°C)	Min.	Тур	Max.	Units
	tPLH Propagation Delay: A to Bn See test circuit diagrams 1 and 2 Open (10)		V _{CC} = 2.3V to 2.7V			1.2		
		diagrams 1 and 2. V _I	V _{CC} = 3.0V to 3.6V	T _A = 25°C & -40 to 85°C		0.8		-
		Open (10)	V _{CC} = 4.5V to 5.5V			0.3		
		diagrams 1 & 2. See test circuit V _I = 2V _{CC} for T _{PZL} , V _I = 0V for t _{PZH}	V _{CC} = 1.65V to 1.95V	T _A = 25°C	7		23	
t_{PZL}	t _{PZL} Enable Turn t t _{PZH} ON Time:		V _{CC} = 2.3V to 2.7V		3.5		13	
t _{PZH}			V _{CC} = 3.0V to 3.6V		2.5		6.9	ns
			V _{CC} = 4.5V to 5.5V		1.7		5.2	
	OUTPUT		V _{CC} = 2.5V				24	
t _{PZL} ENABLE TURN t _{PZH} NOTIME: A TO BN	ENABLE	NABLE diagrams 1 and 2. URN V _I = 2V _{CC} for T _{PZL} , IOTIME: V _I = 0V for t _{PZL}	V _{CC} = 3.3V	T _A = 25°C & -40 to 85°C			14	
	NOTIME:		V _{CC} = 3.0V to 3.6V				7.6	
	N 1 2 13 14 211	V _{CC} = 4.5V to 5.5V				5.7		

GS4157/4157B

Low-Voltage, 2.8 Ω SPDT Analog Switch

	Output		V _{CC} = 1.65V to 1.95V		3		12.5	
tPLZ	Disable Turn	See test circuit diagrams 1 and 2.	V _{CC} = 2.3V to 2.7V	T _A = 25°C	2		7	
t _{PHZ} OFF Time: A to Bn	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V		1.5		5		
	Atobii		V _{CC} = 4.5V to 5.5V		0.8		3.5	
	Output		Vcc = 2.5V				13	
tPLZ	Disable Turn	See test circuit diagrams 1 and 2.	V _{CC} = 3.3V	$T_A = -40 \text{ to}$			7.5	
tpHZ	OFF Time:	$V_I = 2V_{CC}$ for T_{PZL} , $V_I = 0V$ for t_{PZH}	V _{CC} = 3.0V to 3.6V	85°C			5.3	
	A to Bn	1 2 2 2 1	V _{CC} = 4.5V to 5.5V	1			3.8	
		See test circuit diagram 9. ⁽⁹⁾	V _{CC} = 2.5V	T _A = 25°C & -40 to 85°C	0.5			
	Break		V _{CC} = 3.3V		0.5			
t _{BM}	Before Make Time		V _{CC} = 3.0V to 3.6V		0.5			
			VCC = 4.5V to 5.5V		0.5			
	Charge	C _L = 0.1nF, V _{GEN} =	Vcc = 5.0V	T 0500		7		-0
Q	Injection	0V, R _{GEN} = $0Ω$. See test circuit 4.	VCC = 3.3V	T _A = 25°C		3		рС
OIRR	Off Isolation	$R_L = 50\Omega$, $V_{GEN} = 0V$, $R_{GEN} = 0\Omega$. See test circuit 5. (11)	V _{CC} = 1.65V to 5.5V	T _A = 25°C		– 57		dB
X _{TALK}	Crosstalk Isolation	See test circuit 6.	V _{CC} = 1.65V to 5.5V	T _A = 25°C		-54		
f _{3dB}	–3dB Bandwidth	See test circuit 9	V _{CC} = 1.65V to 5.5V	T _A = 25°C		300		MHz

Note 6: Guaranteed by design

Note 7: Guaranteed by design but not production tested. The device contributes no other propagation delay other than the RC delay of the switch ON resistance and the 50pF load capacitance, whne driven by an ideal voltage source with zero output impedance.

Note 8: Off loster = 20 Log10 [V_A / V_{Bn}] and is measured in dB.

Note 9: TA = 25°C, f = 1MHz. Capacitance is characterized but not tested in production.

TEST CIRCUITS AND TIMING DIAGRAMS

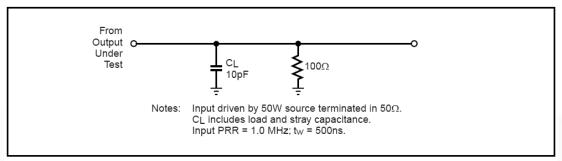


Figure 1. AC Test Circuit

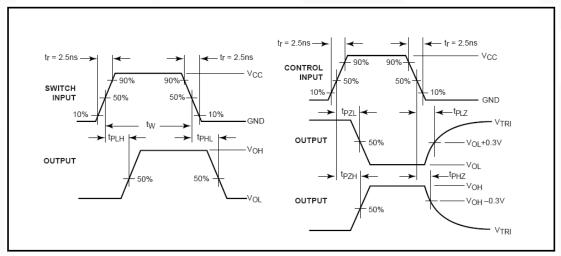


Figure 2. AC Waveforms

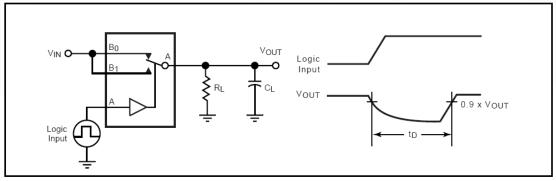


Figure 3. Break Before Make Interval Timing

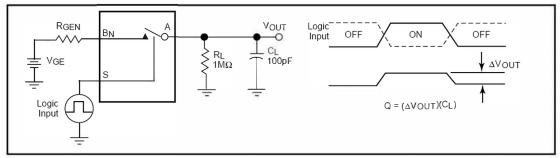
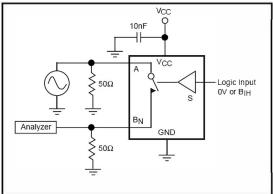



Figure 4. Charge Injection Test

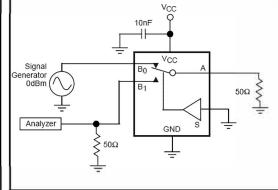
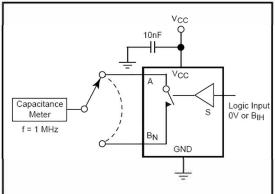



Figure 5. Off Isolation

Figure 6. Crosstalk

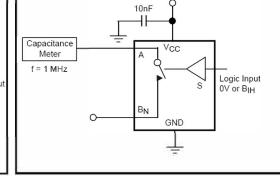
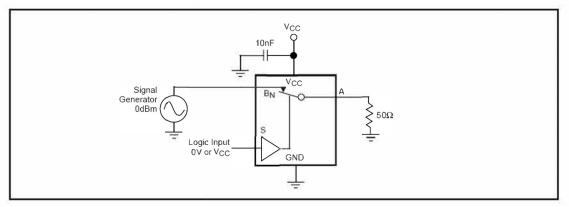
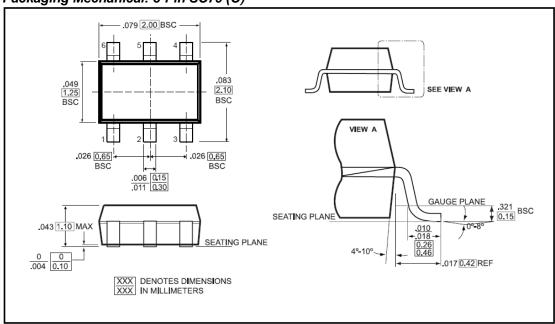
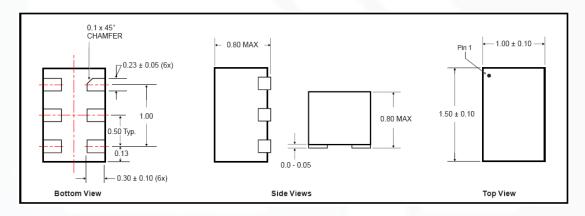


Figure 7. Channel Off Capacitance

Figure 8. Channel On Capacitance




Figure 9. Bandwidth



Packaging Mechanical: 6-Pin SC70 (C)

Packaging Mechanical: 6-Pin TDFN

单击下面可查看定价,库存,交付和生命周期等信息

>>Gainsil(聚洵)