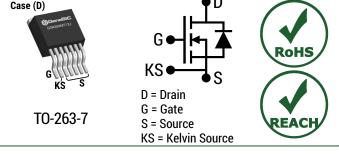
Silicon Carbide MOSFET

N-Channel Enhancement Mode

Features

Advantages

• Reduced Ringing


- G3R[™] (3rd Generation) Technology
- Low Temperature Coefficient of RDS(ON)
- Lower Q_G and Smaller R_{G(INT)}
- Low Device Capacitances (Coss, CRSS)
- LoRing[™] Electromagnetically Optimized Design
- Superior Cost-Performance Index
- Robust Body Diode with Low V_F and Low Q_{RR}
- 100% Avalanche (UIL) Tested

Case (D)

Package

VDS

RDS(ON)(Typ.) =D(Tc = 100°C) =

Applications

- Auxiliary Power Supply
- Solar Inverters
- UPS
- High Voltage DC-DC Converters
- Switched Mode Power Supplies
- Auxiliary Motor Drives
- High Frequency Converters

• Ease of Paralleling without Thermal Runaway

• Faster and More Efficient Switching

Superior Robustness and System Reliability

• Better Power Density and System Efficiency

 Compatible with Commercial Gate Drivers Low Conduction Losses at all Temperatures

• Lesser Switching Spikes and Lower Losses

Absolute Maximum Ratings (At T_c = 25°C Unless Otherwise Stated)

Parameter	Symbol	Conditions	Values	Unit	Note
Drain-Source Voltage	V _{DS(max)}	V_{GS} = 0 V, I_{D} = 100 μA	1200	V	
Gate-Source Voltage (Dynamic)	V _{GS(max)}		-10/+22	V	
Cata Source Voltage (Static)	V _{GS(op)-ON}	Recommended Operation	+15 to +18	v	
Gate-Source Voltage (Static)	V _{GS(op)} -0FF	Recommended Operation	-5 to -3	v	
		$T_C = 25^{\circ}C$, $V_{GS} = -5 / +15 V$	10		
Continuous Forward Current	ID	T _C = 100°C, V _{GS} = -5 / +15 V	7	А	Fig. 15
		T _C = 135°C, V _{GS} = -5 / +15 V	5		
Pulsed Drain Current	I _{D(pulse)}	$t_P \leq 3 \mu s, D \leq 1\%, V_{GS}$ = 15 V, Note 1	16	А	Fig. 14
Power Dissipation	PD	T _c = 25°C	64	W	Fig. 16
Non-Repetitive Avalanche Energy	Eas	L = 21.5 mH, I _{AS} = 2.0 A	43	mJ	
Operating and Storage Temperature	Tj , T _{stg}		-55 to 175	°C	

Thermal/Package Characteristics

Deremeter	Symbol	Conditions		Values			Noto
Parameter			Min.	Тур.	Max.	- Unit	Note
Thermal Resistance, Junction - Case	RthJC				2.36	°C/W	Fig. 13
Weight	WT			1.45		g	

Rev 23/Feb

=

1200 V

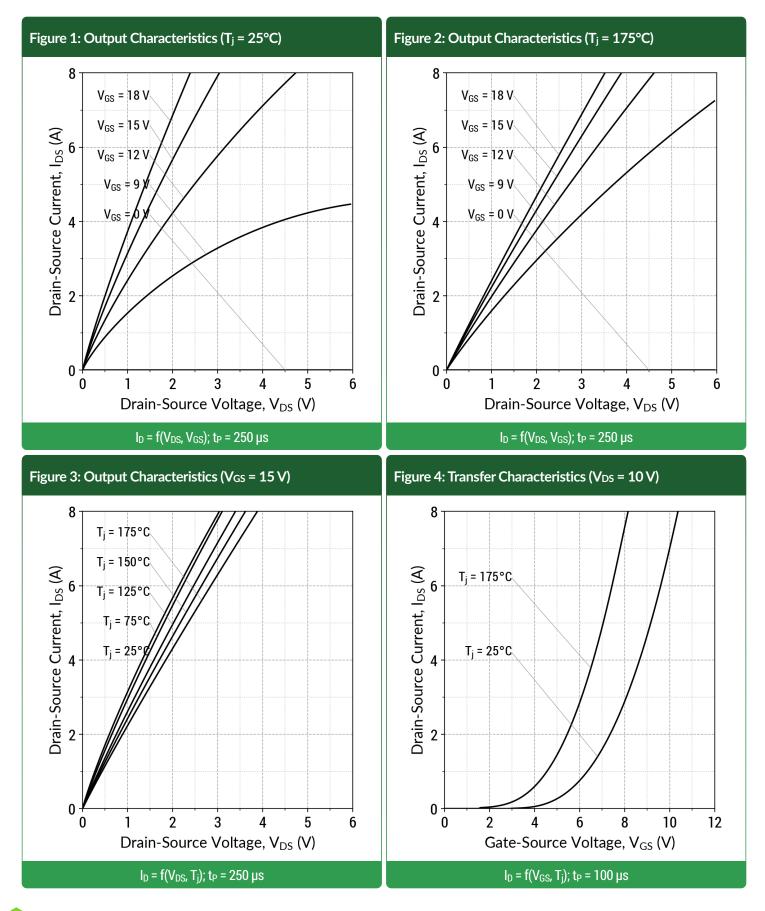
 $350 \, \text{m}\Omega$

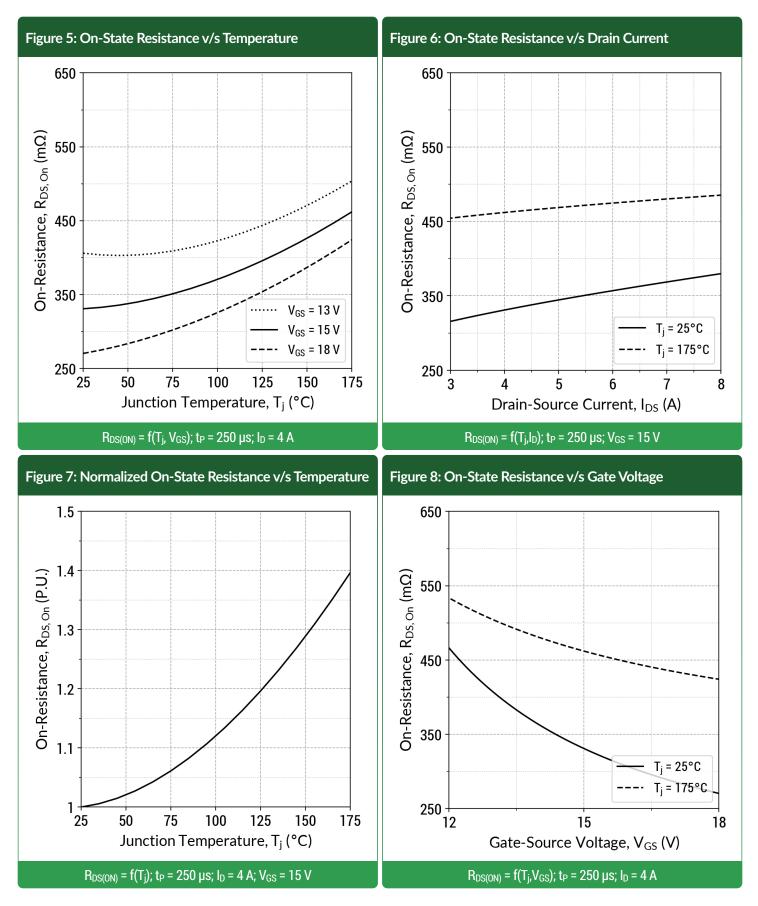
7A

Electrical Characteristics (At Tc = 25°C Unless Otherwise Stated)

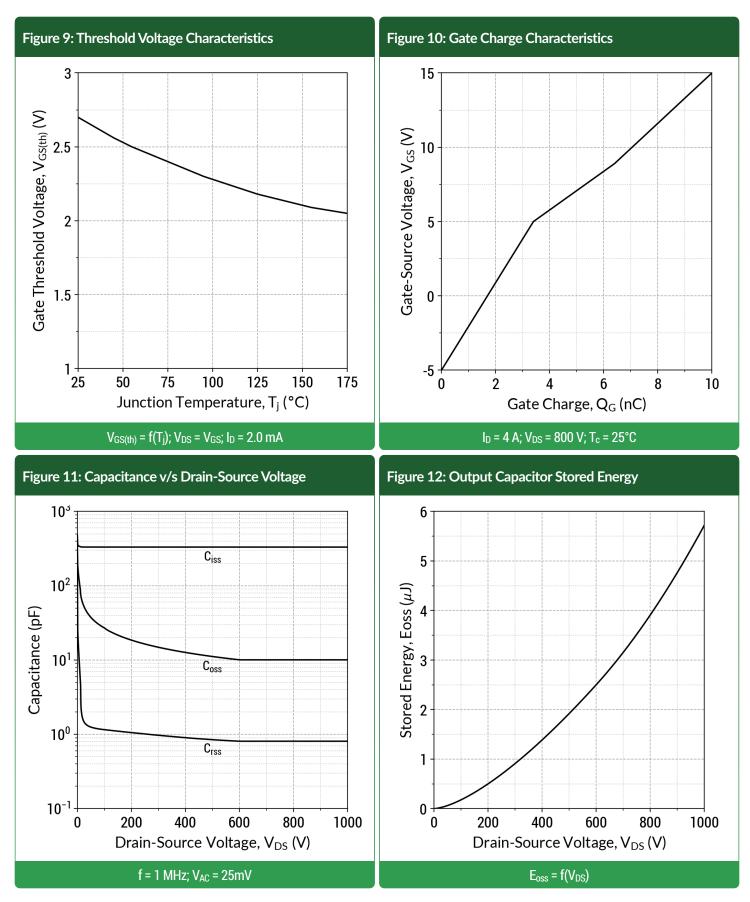
Parameter	Symbol	Conditions -	Values				
			Min.	Тур.	Max.	Unit	Note
Drain-Source Breakdown Voltage	V _{DSS}	V_{GS} = 0 V, I _D = 100 µA	1200			V	
Zero Gate Voltage Drain Current	IDSS	V_{DS} = 1200 V, V_{GS} = 0 V		1		μA	
Gate Source Leakage Current	I _{GSS}	$V_{DS} = 0 V$, $V_{GS} = 22 V$ $V_{DS} = 0 V$, $V_{GS} = -10 V$			100 -100	nA	
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 2.0 mA V _{DS} = V _{GS} , I _D = 2.0 mA, T _j = 175°C	1.8	2.70 2.05		v	Fig. 9
Transconductance	g fs	V _{DS} = 10 V, I _D = 4 A V _{DS} = 10 V, I _D = 4 A, T _j = 175°C		1.8 2.1		S	Fig. 4
Drain-Source On-State Resistance	Rds(on)	$V_{GS} = 15 \text{ V, } I_D = 4 \text{ A}$ $V_{GS} = 15 \text{ V, } I_D = 4 \text{ A, } T_j = 175^{\circ}\text{C}$ $V_{GS} = 18 \text{ V, } I_D = 4 \text{ A}$ $V_{GS} = 18 \text{ V, } I_D = 4 \text{ A, } T_j = 175^{\circ}\text{C}$		350 489 295 424	395	mΩ	Fig. 5-8
Input Capacitance	Ciss			331		pF	Fig. 11
Output Capacitance	Coss			10			
Reverse Transfer Capacitance	Crss			0.8		•	
Coss Stored Energy	Eoss			4		μJ	Fig. 12
Coss Stored Charge	Q _{oss}	$f = 1 \text{ MHz}, V_{AC} = 25 \text{mV}$		15		nC	
Effective Output Capacitance (Energy Related)	C _{o(er)}			12			Net- 0
Effective Output Capacitance (Time Related)	Co(tr)			19	pF		Note 2
Gate-Source Charge	Q _{gs}	V _{DS} = 800 V, V _{GS} = -5 / +15 V		3			Fig. 10
Gate-Drain Charge	Q _{gd}	I _D = 4 A		3		nC	
Total Gate Charge	Qg	Per IEC607478-4		10			
Internal Gate Resistance	R _{G(int)}	f = 1 MHz, V _{AC} = 25 mV		2.5		Ω	
Turn-On Switching Energy (Body Diode)	E _{0n}	T _j = 25°C, V _{GS} = -5/+15V, R _{G(ext)} = 15 Ω, L =		29			Fig. 22,26
Turn-Off Switching Energy (Body Diode)	Eoff	400.0 μH, I _D = 4 A, V _{DD} = 800 V		5		μJ	
Turn-On Delay Time	t _{d(on)}			9			Fig. 24
Rise Time	tr	$V_{DD} = 800 \text{ V}, \text{ V}_{GS} = -5/+15 \text{ V}$		10			
Turn-Off Delay Time	t _{d(off)}	- R _{G(ext)} = 15 Ω, L = 400.0 µH, I _D = 4 A $-Timing relative to VDS, Inductive load -$		10		ns	
Fall Time	t _f			7			

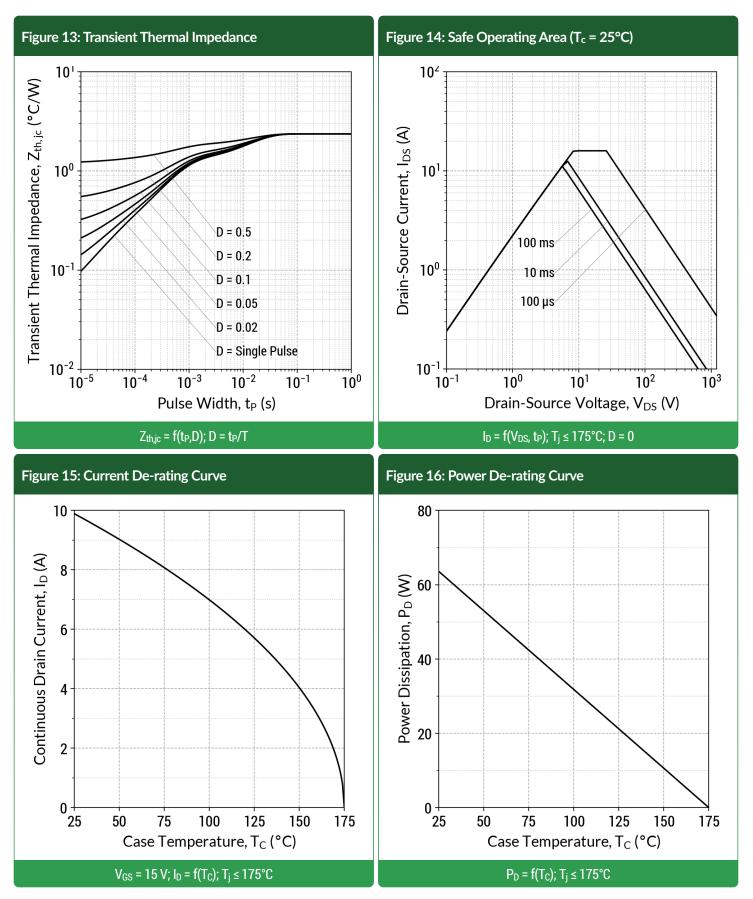
Note 1: Pulse Width tP Limited by Tj(max)

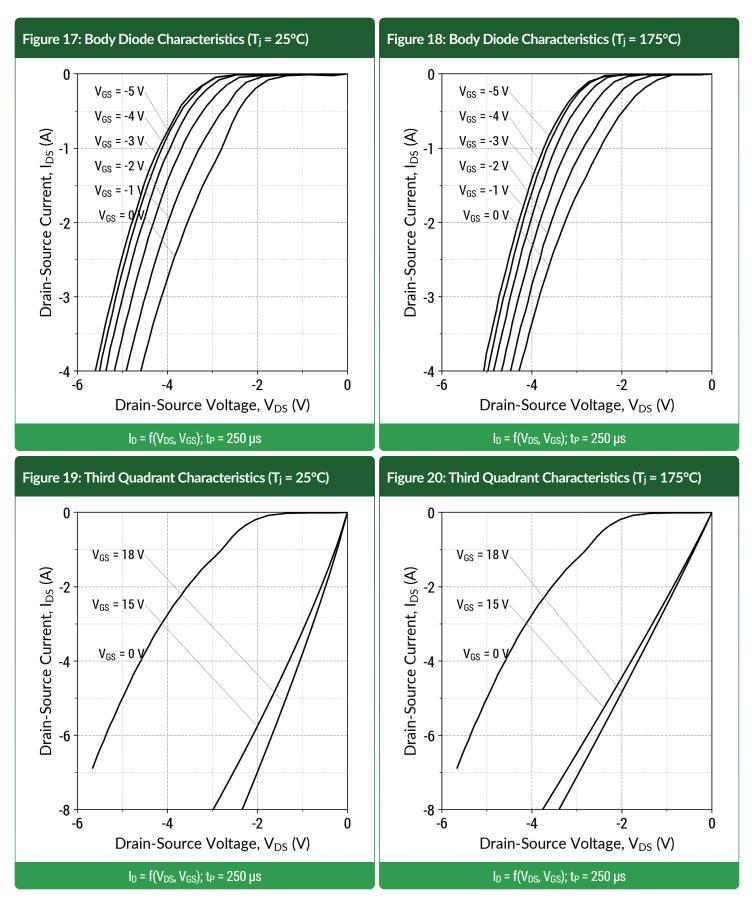

Note 2: $C_{o(er)}$, a lumped capacitance that gives same stored energy as C_{OSS} while V_{DS} is rising from 0 to 800V. $C_{o(tr)}$, a lumped capacitance that gives same charging times as C_{OSS} while V_{DS} is rising from 0 to 800V.

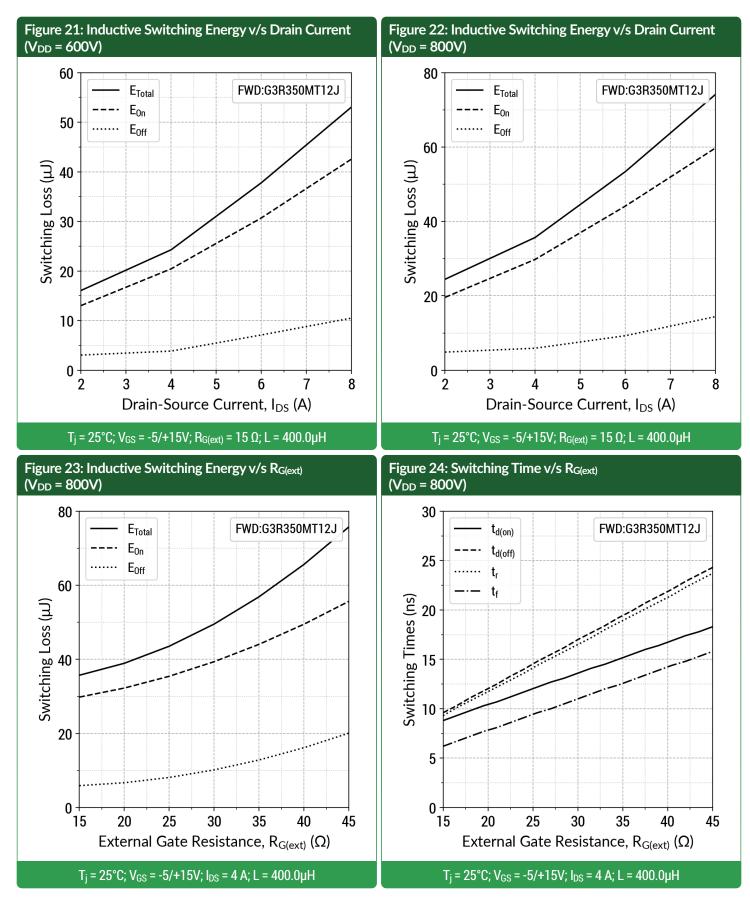

Reverse Diode Characteristics

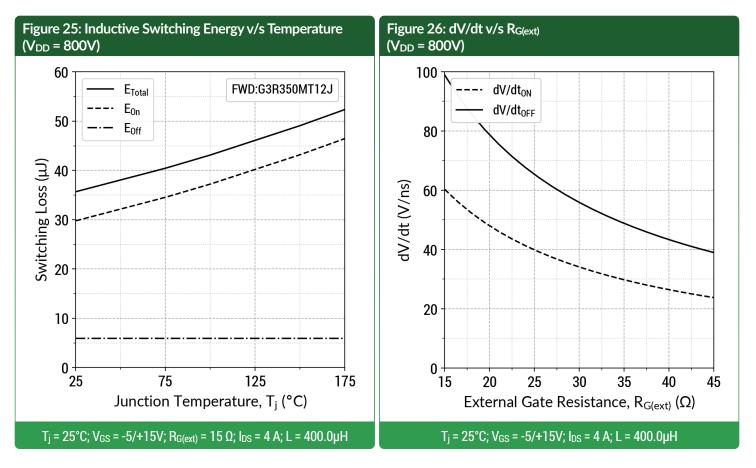
Parameter	Symbol	Conditions		Values			Note
			Min.	Тур.	Max.	Unit	Note
Diode Forward Voltage		V_{GS} = -5 V, I_{SD} = 2 A		4.8		N	Fig. 17.10
	V _{SD}	$V_{GS} = -5 V$, $I_{SD} = 2 A$, $T_j = 175^{\circ}C$ 4.3	4.3		V	Fig. 17-18	
Continuous Diode Forward Current	ls	V_{GS} = -5 V, T_{c} = 100°C	4			Α	
Diode Pulse Current	I _{S(pulse)}	V _{GS} = -5 V, Note 1		16		Α	
Reverse Recovery Time	t _{rr}	$V_{GS} = -5 V, I_{SD} = 4 A, V_R = 800 V$		7		ns	
Reverse Recovery Charge	Q _{rr}			14		nC	
Peak Reverse Recovery Current	I _{rrm}	dif/dt = 1500 A/µs, Tj = 25°C		1		Α	
Reverse Recovery Time	t _{rr}			12		ns	
Reverse Recovery Charge	Q _{rr}	V _{GS} = -5 V, I _{SD} = 4 A, V _R = 800 V dif/dt = 1500 A/µs, T _i = 175°C		35		nC	
Peak Reverse Recovery Current	Irrm	$u_{II}/u_{L} = 1500 \text{ A}/\mu_{S}, 1_{j} = 175 \text{ C}$		3		А	

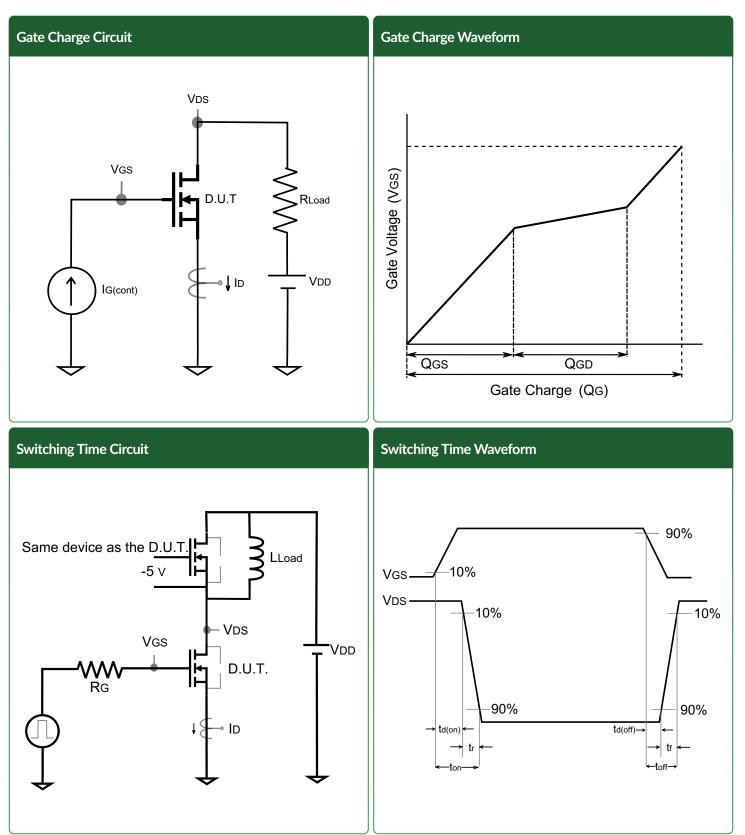


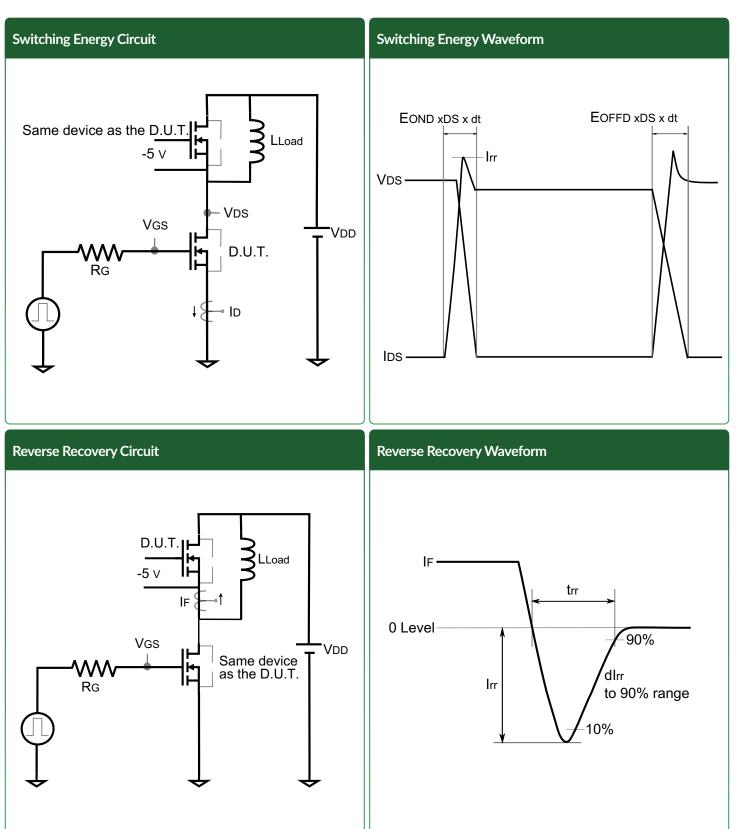


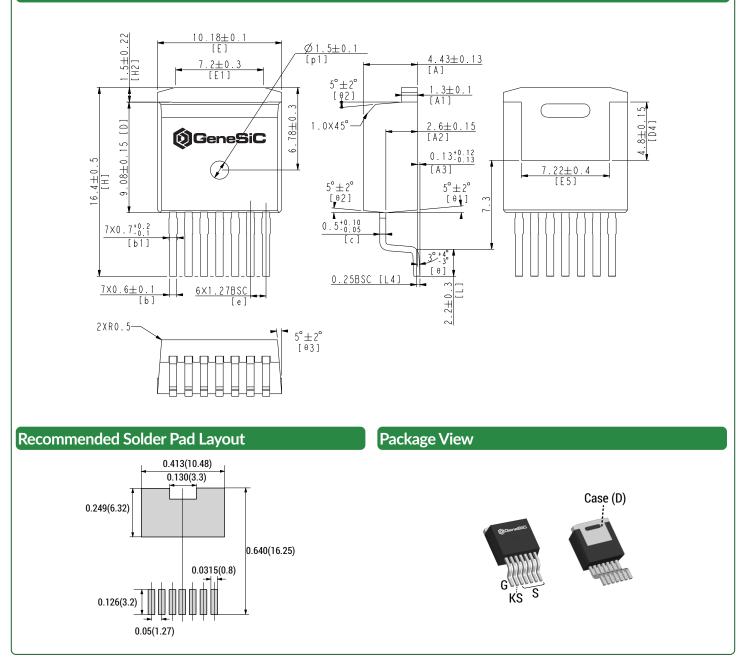












Package Dimensions

TO-263-7 Package Outline

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS.
- 3. THE SOURCE AND KELVIN-SOURCE PINS ARE NOT INTERCHANGABLE. THEIR EXCHANGE MIGHT LEAD TO MALFUNCTION.

Compliance

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS 2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863. RoHS Declarations for this product can be obtained from your GeneSiC representative.

REACH Compliance

REACH substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a GeneSiC representative to insure you get the most up-to-date REACH SVHC Declaration. REACH banned substance information (REACH Article 67) is also available upon request.

Disclaimer

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice. GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

Related Links

SPICE Models:	https://www.genesicsemi.com/sic-mosfet/G3R350MT12J/G3R350MT12J_SPICE.zip
PLECS Models:	https://www.genesicsemi.com/sic-mosfet/G3R350MT12J/G3R350MT12J_PLECS.zip
CAD Models:	https://www.genesicsemi.com/sic-mosfet/G3R350MT12J/G3R350MT12J_3D.zip
Gate Driver Reference:	https://www.genesicsemi.com/technical-support
 Evaluation Boards: 	https://www.genesicsemi.com/technical-support
Reliability:	https://www.genesicsemi.com/reliability
Compliance:	https://www.genesicsemi.com/compliance
• Quality Manual:	https://www.genesicsemi.com/quality

Revision History

• Rev 23/Feb: Updated with Most Recent Data

Rev 23/Feb

Supersedes: Rev 20/Jun, Rev 20/Aug, Rev 21/Jan, Rev 21/May

www.genesicsemi.com/sic-mosfet/

Copyright© 2023 GeneSiC Semiconductor Inc. All Rights Reserved.

Downloaded From Oneyac.com

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155, Dulles, VA 20166; USA Page 14 of 14 单击下面可查看定价,库存,交付和生命周期等信息

>>GENESIC