

4PST 耗尽型音频隔离开关

特点

4PST (NC)

耗尽型 MOSFET

音频频率范围

V_{CC(OFF)}: 1.6V 至 3.0V

Ro_N: 0.5Ω

■ R_{ON}平坦度: 0.01Ω ■ THD+N: 0.002%

应用

便携媒体播放器 MP3/MP4

手机

概述

ASW550是一个高性能、四刀单掷 (4PST),通常 关闭的耗尽型隔离开关。耗尽型技术允许器件在 不存在 VCC 时导通信号, 在存在 VCC 时隔离信

ASW550 在较宽的 VCC 电压范围内工作,具有设 计灵活性。

另外,在存在 VCC 时,选择引脚允许内部振荡器 频率在 500KHz 和 750KHz 之间以 75KHz 的步长 进行调整。该特性用以转移分散电磁干扰 (EMI), 从而满足客户规格要求。

典型应用框图

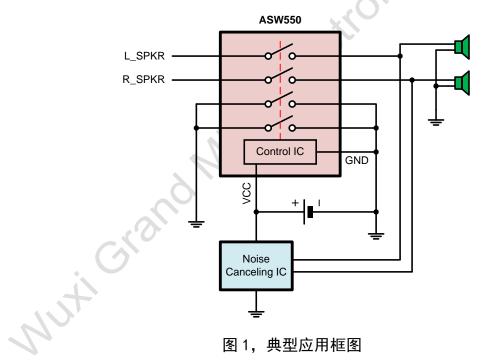


图 1,典型应用框图

修改历史记录

注: 之前版本的页码可能与当前版本有所不同。

版本	(時可能与当前版本有用 修改日期	修改内容
V01	2022/1/1	初始版本完成。
V02	2022/2/5	增加 WLCSP12 的包装信息。
V03	2022/3/28	增加 QFN16-3x3 的封装形式
		1、 增加 QFN16-3x3 的引脚框图和引脚说明。
		2、 增加 QFN16-3x3 的封装外形图。
		3、 增加 QFN16-3x3 的包装信息。
V04	2023/4	1、增加了典型性能测试图。
		2、更新 ASW550WLG 包装每卷 5000 只。
		3、增加湿敏等级和卷盘 Pin1 脚位置说明。
	SKOIN CHOIN	A Microelectronics

引脚框图 (WLCSP12)

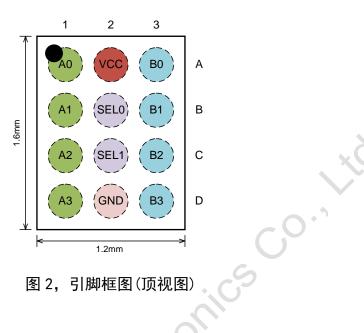


图 2, 引脚框图(顶视图)

引脚描述

引脚号	名称	类型	引脚描述
A1	A0	输入/输出	A - 端口
B1	A1	输入/输出	A - 端口
C1	A2	输入/输出	A - 端口
D1	A3	输入/输出	A - 端口
A2	VCC	电源/控制	电源电压 (参见表 1)
B2	SEL0	输入	振荡器频率控制 (参见表 2)。用于转移分散电磁干扰
C2	SEL1	输入	(EMI),从而满足客户规格要求。
D2	GND	接地	系统接地
A3	B0	输入/输出	B - 端口
B3	B1	输入/输出	B - 端口
C3	B2	输入/输出	B - 端口
D3	B3	输入/输出	B - 端口

备注:未使用的输入/输出端口建议悬空。

表 1 真值表

VCC	功能
0V ~ 0.2V	导通; B0 ~ B3 = A0 ~ A3
1.6V ~ 3.0V	断开; B0~B3≠A0~A3

表 2 振荡器频率步进逻辑

SEL1	SEL0	频率 (典型值)
低电平	低电平	500KHz
低电平	高电平	575KHz
高电平	低电平	650KHz
高电平	高电平	725KHz

备注:建议 SEL 选择上拉处理。

无锡有容微电子有限公司版权所有,更多产品信息敬请访问: http://www.grandmicro.com.cn Wuxi Grand Microelectronics Co., Ltd.

引脚框图 (QFN16-3.0x3.0)

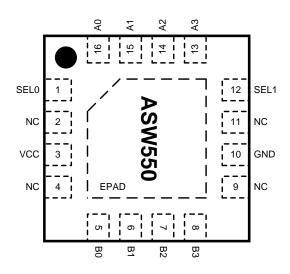


图 3, 引脚框图(顶视图)

引脚描述

引脚号	名称	类型	引脚描述
1	SEL0	输入	振荡器频率控制 (参见表 2)。用于转移分散电磁干扰
12	SEL1	输入	(EMI),从而满足客户规格要求。
2	NC		浮空
3	VCC	电源/控制	电源电压 (参见表 1)
4	NC		浮空
5	В0	输入/输出	B - 端口
6	B1	输入/输出	B - 端口
7	B2	输入/输出	B - 端口
8	B3	输入/输出	B - 端口
9	NC		浮空
10	GND	接地	系统接地
11	NC		浮空
13	A3	输入/输出	A - 端口
14	A2	输入/输出	A - 端口
15	A1	输入/输出	A - 端口
16	A0	输入/输出	A - 端口
0	EPAD		系统接地或浮空

备注:未使用的输入/输出端口建议悬空。

绝对最大额定值

电压电流等应力超过绝对最大额定值,可能会损坏器件。在超出推荐的工作条件的情况下,该器件可能无法正常工作,所以不建议让器件在这些条件下长期工作。此外,长期在高于推荐的工作条件下工作,会影响器件的可靠性。绝对最大额定值仅 是应力规格值。

符号	参数		最小值	最大值	单位
Vcc	电源/控制电压		0	5.5	V
V _{IN}	输入电压 (选择引脚 SEL0, SEL1)	0	Vcc	V
V _{SW(ON)}	DC 开关 I/O 电压 (开关导通)	V _{CC} = 0V	-5.0	+5.0	V
V _{SW(OFF)} ⁽¹⁾	DC 开关 I/O 电压 (开关隔离)	Vcc = 供电	-1.8	+3.0	V
I _{IK}	直流输入二极管电流		-50	. 7	mA
Isw	开关 I/O 电流	$V_{CC} = 0V$		350	mΑ
I _{SWPEAK}	峰值开关电流	持续 1mS 脉冲, <10% 的占空比		500	mA
ESD	HBM		0.,	±4.0	KV
T _A	绝对最大工作温度		-40	+85	°C
T _{STG}	存储温度		-65	+150	°C

注: (1) 开关隔离时, Vsw 值必须小于 Vcc

推荐工作条件

推荐的操作条件表明确了器件的真实工作条件。指定推荐的工作条件,以确保器件的最佳性能达到数据表中的规格。建议不要超过推荐工作条件,也不能按照绝对最大额定值进行设计。

符号	参数		最小值	最大值	单位
V _{CC(ON)}	开关导通的电源电压		0	0.2	V
V _{CC(OFF)}	开关隔离的电源电压		1.6	3.0	V
$V_{SW(ON)}$	DC 开关 I/O 电压 (开关导通)	$V_{CC} = 0V$	-2.0	+2.0	V
$V_{SW(OFF)}$	DC 开关 I/O 电压 (开关隔离)	V _{CC} = 1.6V 至 3.0V	-1.6	+1.6	V
NUT	Ckaugh				

直流电学特性

除非特别说明, 否则 TA 的典型值为 25°C。

符号	参数	测试条件	Vcc	T _A = -40°C 至 +85°C			单位
1ग 'च	多数	州风东什	(V)	最小值	典型值	最大值	半加
Ion	接地开关漏电流 (开关导通)	A _n = -1.4V 至 1.4V, B _n = 浮空	0	0	0.3	2.0	μΑ
loff	接地开关漏电流 (开关隔离)	A _n = 0.4V 至 1.4V, B _n = 浮空	3	0	0.5	1	μΑ
R _(ON)	开关导通电阻 ⁽²⁾	I _{SW} = ±24 mA, V _{SW} = -1.4 V 至 1.4 V	0		0.5		Ω
RFLAT(ON)	导通电阻平坦度(2)	Isw = ±24 mA, Vsw = -1.4 V 至 1.4 V	0		0.01	×0.	Ω
Icc	静态电流	SEL0 = SEL1 = Vcc	3	0	40	60	μΑ
ViH	输入高电平 (选择引脚)(3)		3	0.8*Vcc			٧
VıL	输入低电平 (选择引脚)(3)		3		Ο.	0.2*Vcc	V
lin	输入漏电流 (选择引脚)(3)		3	0)	±1	μΑ

注: (2) 通过测试和特性保证; (3) 选择控制引脚上的电压必须小于 Vcc。

交流电学特性

除非特别说明,否则 TA的典型值为 25°C, WLCSP12 封装。

符号	参数	测试条件	Vcc (V)	典型值	单位
ton	导通时间 Vcc 至输出(4,5)	$R_L = 32 \Omega$, $C_L = 10pF$, $V_{SW} = 1.4V$	1.6	160	nS
toff	隔离时间 Vcc 至输出(4,5)	$R_L = 32 \Omega$, $C_L = 10pF$, $V_{SW} = 1.4V$	1.6	90	μS
Oirr	关断隔离 ^(4,5)	$R_L = 32 \Omega$, $f = 20KHz$, $V_{SW} = 0.35V_{RMS}$	1.6	-90	dB
OIRR		$R_L = 32 \Omega$, $f = 20KHz$, $V_{SW} = 0.707V_{RMS}$	1.6	-85	dB
V	串扰(4,5)	$R_L = 32 \Omega$, $f = 20KHz$, $V_{SW} = 0.707V_{RMS}$	0	-100	dB
X _{TALK}	中机 ^(*,*)	$R_L = 32 \Omega$, $f = 20KHz$, $V_{SW} = 1V_{RMS}$	0	-100	dB
BW	-3dB 带宽 ⁽⁵⁾	$R_L = 32 \Omega$, $C_L = 0pF$	0	<200	MHz
THD+N	总谐波失真+噪声(4,5)	R_L = 32 Ω , f = 20Hz Ξ 20KHz, V_{SW} = 1 V_{RMS}	0	0.002	%

注: (4) SEL0 = SEL1 = 低电平; (5) 由产品特性保证。

ASW550

典型性能特征

除非有特殊说明,常规 Ta = 25℃

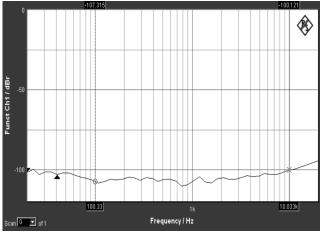


Figure 1, OIRR vs Frequency (WLCSP12, Vsw=0.35VRMs,RL=32Ω)

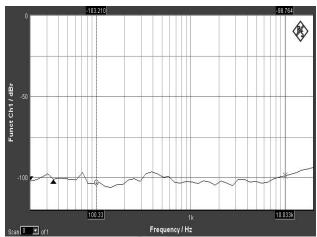


Figure 2, OIRR vs Frequency (QFN16, Vsw=0.35Vrms,RL=32Ω)



Figure 3, OIRR vs Frequency (WLCSP12,Vsw=0.707VRMs,RL=32 Ω)

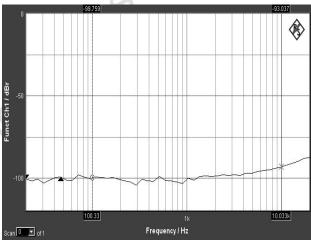


Figure 4, OIRR vs Frequency (QFN16,Vsw=0.707VRMs,RL=32Ω)

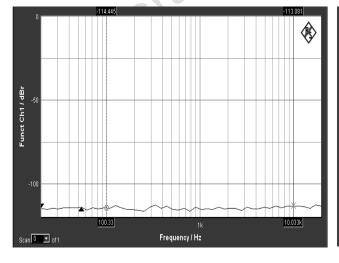


Figure 5, XTALK vs Frequency (WLCSP12, Vsw=0.707VRMS, RL=32Ω)

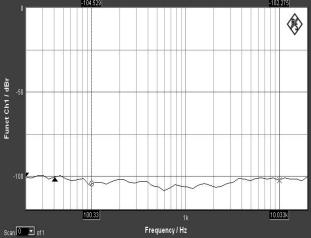
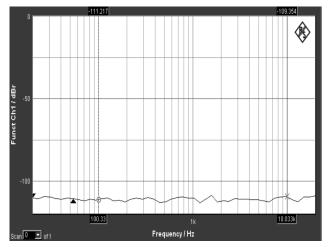



Figure 6, XTALK vs Frequency (QFN16,Vsw=0.707VRMs,RL=32Ω)

无锡有容微电子有限公司版权所有,更多产品信息敬请访问: http://www.grandmicro.com.cn Wuxi Grand Microelectronics Co., Ltd.

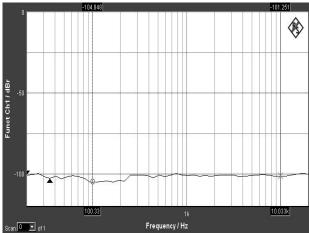
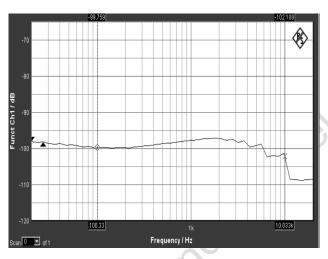



Figure 7, XTALK vs Frequency (WLCSP12,Vsw=1VRMs,RL=32Ω)

Figure 8, XTALK vs Frequency (QFN16,Vsw=1VRMs,RL=32Ω)

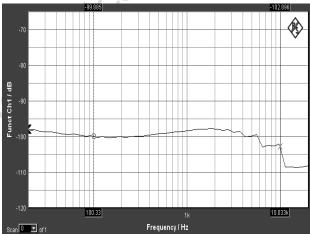
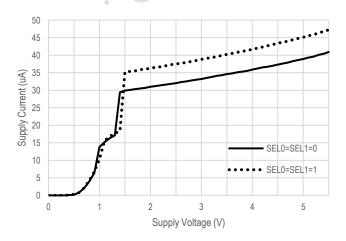
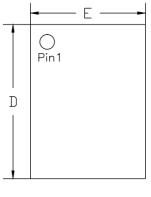
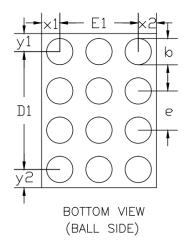


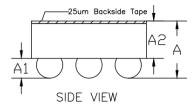
Figure 9, THD+N vs Frequency (WLCSP12,Vsw=1VRMs,RL=32 Ω)

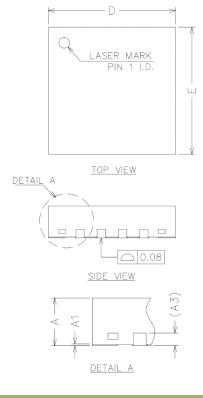
Figure 10, THD+N vs Frequency (QFN16,Vsw=1VRMs,RL=32Ω)

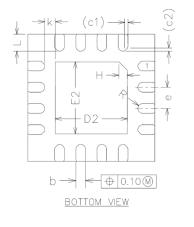




Figure 11, Supply Current vs. Supply Voltage

封装外形图 (WLCSP12)






COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

(,		
SYMBOL	MIN	NOM	MAX		
Α	0.542	0.582	0.622		
A1	0.177	0.202	0.227		
A2	0.355	0.380	0.405		
D	1.540	1.570	1.600		
D1		1.200BSC			
E	1.140	1.170	1.200		
E1		0.800BSC			
Ф	0.243	0.268	0.293		
е	(0.400BSC			
x1	(0.185 REF	-		
x2	0.185 REF				
y1	0.185 REF				
y2		0.185 REF	-		

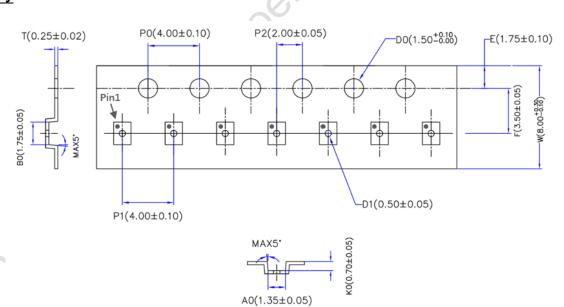
封装外形图 (QFN16-3.0x3.0)

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
А	0.70	0.75	0.80
A1	0.00	0.02	0.05
А3		0.20REF	
b	0.18	0.23	0.28
D	2.90	3.00	3.10
Е	2.90	3.00	3.10
D2	1.60	1.70	1.80
E2	1.60	1.70	1.80
е	0.40	0.50	0.60
Н		0.20REF	
K	0.15	_	_
L	0.35	0.40	0.45
c1	_	0.07	_
c2	none	0.07	_
R	0.09	_	

NOTE:

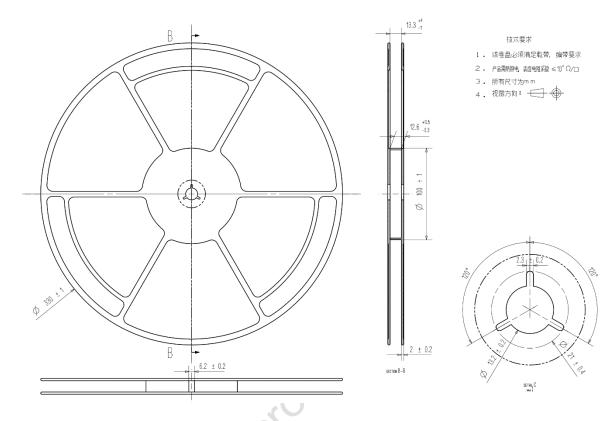
ALL DIMENSIONS REFER TO JEDEC STANDRAD MO-220 WEED-4.


卷盘和卷带信息 (WLCSP12)

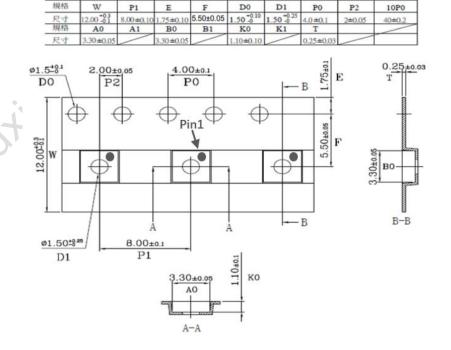
卷盘尺寸 (7寸)

- 1. 材料:聚苯乙烯(黑色);
- 2. 平整度:最大允许2毫米;
- 3. 所有尺寸为毫米; 4. 表面电阻: 10⁵ TO 10¹⁰ OHMS/SQ.
 - 5. 所有未注公差: ±0.25。

巻帯尺寸


- 1. ALL DIMS IN MM

- 1. ALL DIMS IN MM
 2. MATERIAL:BLACK CONDUCTIVE PC
 3. The other tolerance not indicated are ±0.1mm
 4.10 sprocket hole pitch cumulative tolerance ±0.20mm
 5. Carrier camber is within 1mm in 250mm
 6. There must not be foreign body adhesion and the state of the surface must be excellent
 7. Surface resistance 1X10E4≤Rs<1X10E9 OHMS
 8. Friction Voltage <100V
- 8.Friction Voltage <100V
- 9.17" PLASTIC-Reel



卷盘和卷带信息 (QFN16L-3x3)

<u>卷盘尺寸 (13 寸)</u>

卷带尺寸

(UNIT:mm)

无锡有容微电子有限公司版权所有,更多产品信息敬请访问: http://www.grandmicro.com.cn Wuxi Grand Microelectronics Co., Ltd.

产品订购信息

器件编号	产品丝印	工作温度范围	封装信息	湿敏等级	包装方法
ASW550WLG	ASW550 YYWW ⁽¹⁾	-40°C 至 +85°C	WLCSP12	MSL-3	卷带和卷盘 (每卷 5000 只)
ASW550QNG	ASW550 XXXXXX ⁽²⁾ YYWW ⁽¹⁾ ZZ ⁽³⁾	-40°C 至 +85°C	QFN16-3.0x3.0	MSL-3	卷带和卷盘 (每卷 5000 只)
注: (1) YY 表示年号,	WW 表示周号; (2)	XXXXXX 表示批次号;	(3) ZZ 表示工厂代码;		
注: (1) YY 表示年号,		XXXXXX 表示批次号;			70.
	Ckaino				

单击下面可查看定价,库存,交付和生命周期等信息

>>GrandMicro(有容微)