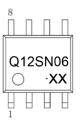


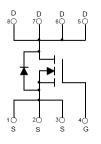
GPT090N06PQ

60V N-Channel MOSFET

Product Summary

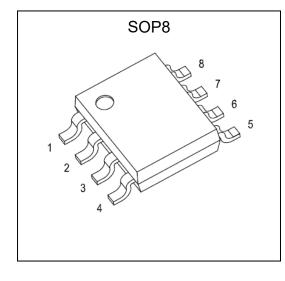
V _{(BR)DSS}	R _{DS(on)MAX}	ID	
60V	9mΩ@10V	12A	
	13mΩ@4.5V	IZA	


Feature


- Low R_{DS(ON)}
- Low Gate Charge
- Optimized for fast-switching applications

Application

- Synchronus Rectification in DC/DC and AC/DC Converters
- Industrial and Motor Drive application


MARKING:

ABSOLUTE MAXIMUM RATINGS (TJ=25°C unless otherwise noted)

Parameter		Symbol	Value	Unit
Continuous Drain Current ^G	Tc=25°C	- I _D	12	A
Continuous Drain Current ^e	T _c =100°C		9	A
Drain to Source Voltage		Vds	60	V
Gate to Source Voltage		Vgs	±20	V
Pulsed Drain Current ^C		IDM	48	A
Avalanche Energy ^C	L=0.5mH	Eas	195	mJ
Power Dissinction ^A	Tc=25°C	PD	3.1	w
Power Dissipation ^A	Tc=100°C		2.0	vv
Thermal Resistance Junction to Ambient ^A	T≤10s	Р	40	°C \\ \
Thermal Resistance Junction to Ambient ^{A,D}	Steady-State	R _{0JA}	75	°C/W
Thermal Resistance Junction to Case	Steady-State	Rejc	24	°C/W
Operating and Storage Temperature		TJ,Tstg	-55 ~150	°C

Equivalent Circuit

MOSFET ELECTRICAL CHARACTERISTICS(T_a=25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
Static Characteristics	·						
Drain-source breakdown voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D =250µA	60			V	
		V _{DS} =60V,V _{GS} = 0V,T _J =25°C			1		
Zero gate voltage drain current	IDSS	V _{DS} =60V,V _{GS} = 0V,T _J =100°C	100		100	μA	
Gate-body leakage current	I _{GSS}	V _{GS} =±20V, V _{DS} = 0V			±100	nA	
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250µA	1.1	1.7	2.5	V	
5	_	V _{GS} =10V, I _D =12A		8.2	9.0	mΩ	
Drain-source on-resistance	R _{DS(on)}	V _{GS} =4.5V, I _D =12A		10.5	13.0	mΩ	
Forward tranconductance	g fs	V _{DS} =5V, I _D =12A		70		S	
Gate Resistance	Rg	V _{GS} =0V, V _{DS} Open, f=1MHz		1.6		Ω	
Dynamic characteristics							
Input Capacitance	Ciss			1988		pF	
Output Capacitance	Coss	V _{DS} =30V,V _{GS} =0V,f =1MHz		470			
Reverse Transfer Capacitance	Crss	-		14			
Total gate charge(10V)	Qg			31			
Gate-source charge	Qgs	V _{DD} =30V,V _{GS} =10V,I _D =12A		6		nC	
Gate-drain charge	Q _{gd}	-		5			
Turn-on delay time	t _{d(on)}			10.5			
Turn-on rise time	tr	$V_{GS}=10V, V_{DS}=15V, R_L=2.5\Omega,$		4.5		ns	
Turn-off delay time	t _{d(off)}	R _{GEN} =3Ω		29.5			
Turn-off fall time	t _f	-		8			
Source-Drain Diode characteristics							
Body Diode Voltage	V _{DS}	TJ=25°C,IS=12A, VGS = 0V		0.9	1.2	V	
Body-Diode Continuous Current ^G	Is				12	А	
Reverse Recovey Time	t _{rr}			17		ns	
Reverse Recovey Charge	Q _{rr}	l⊧=12A, dl/dt=500A/µs		58		nC	

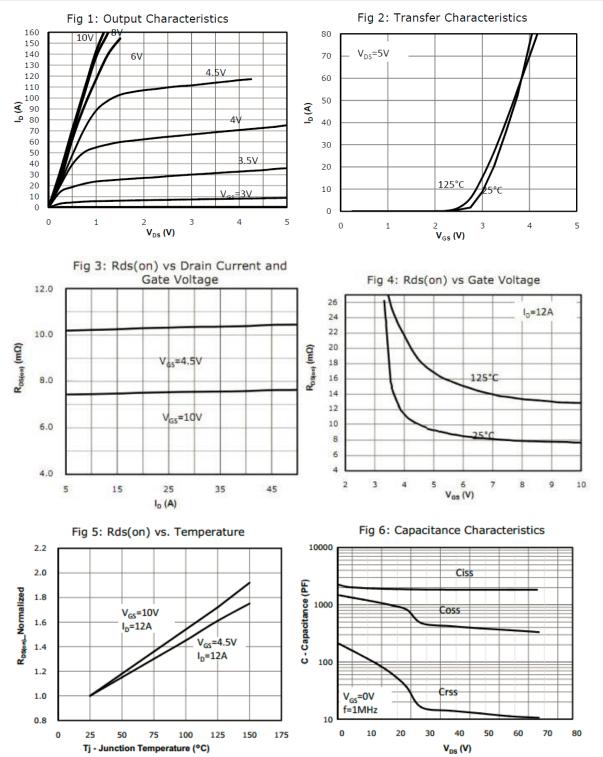
A. The value of R_{BJA} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with $T_A = 25^{\circ}$ C. The Power dissipation P_D is based on R_{BJA} t 10s and the maximum allowed junction temperature of 150°C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on T_{J(MAX)}=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper

dissipation limit for cases where additional heatsinking is used.

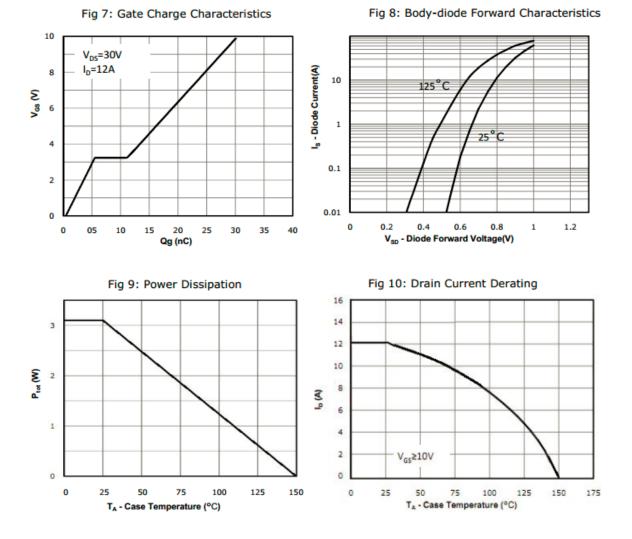
C. Single pulse width limited by junction temperature $T_{J(\text{MAX})}{=}150^{\circ}\text{C}.$

D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to case $R_{\theta JC}$ and case to ambient.

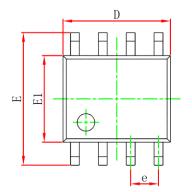

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

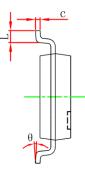
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}$ =150°C. The SOA curve provides a single pulse rating.

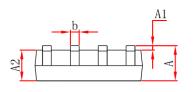
G. The maximum current rating is package limited.



Typical Electrical and Thermal Characteristics






GPT090N06PQ

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.007	0.010	
D	4.800	5.000	0.189	0.197	
e	1.270 (BSC)		0.050 (BSC)		
Е	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
L	0.400	1.270	0.016	0.050	
θ	0 °	8°	0 °	8°	

单击下面可查看定价,库存,交付和生命周期等信息

>>GP(格瑞宝)