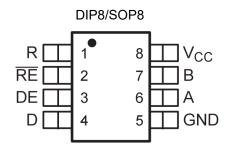


HIGH OUTPUT RS-485 TRANSCEIVERS

DESCRIPTION

The HX65HVD05, HX75HVD05, HX65HVD06,HX75HVD06, HX65HVD07, and HX75HVD07 combine a 3-state differential line driver and differential line receiver. They are designed for balanced data transmission and interoperate with ANSI TIA/EIA-485-A and ISO 8482E standard-compliant devices. The driver is designed to provide a differential output voltage greater than that required by these standards for increased noise margin. The drivers and receivers have active-high and active-low enables respectively, which can be externally connected together to function as direction control.

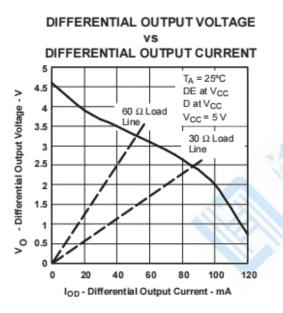
The driver differential outputs and receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or not powered. These devices feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications.

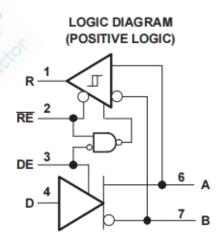

FEATURES

- Minimum Differential Output Voltage of 2.5 V Into a 54-Ω Load
- Open-Circuit, Short-Circuit, and Idle-Bus Failsafe Receiver
- 1/8th Unit-Load Option Available (Up to 256 Nodes on the Bus)
- Bus-Pin ESD Protection Exceeds 16 kV HBM
- Driver Output Slew Rate Control Options
- Electrically Compatible With ANSI TIA/EIA-485-A Standard
- Low-Current Standby Mode...1 µA Typical
- Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications
- Pin Compatible With Industry Standard SN75176

APPLICATIONS

- Data Transmission Over Long or Lossy Lines or Electrically Noisy Environments
- Profibus Line Interface
- Industrial Process Control Networks
- Point-of-Sale (POS) Networks
- Electric Utility Metering
- Building Automation
- Digital Motor Control


Pin Connection



ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
HX65HVD05EIPG	DIP8L	65HVD05	TUBE	2000pcs/box
HX65HVD06EIPG	DIP8L	65HVD06	TUBE	2000pcs/box
HX65HVD07EIPG	DIP8L	65HVD07	TUBE	2000pcs/box
HX75HVD05ECPG	DIP8L	75HVD05	TUBE	2000pcs/box
HX75HVD06ECPG	DIP8L	75HVD06	TUBE	2000pcs/box
HX75HVD07ECPG	DIP8L	75HVD07	TUBE	2000pcs/box
HX65HVD05EIDRG	SOP8L	65HVD05	REEL	2500pcs/reel
HX65HVD06EIDRG	SOP8L	65HVD06	REEL	2500pcs/reel
HX65HVD07EIDRG	SOP8L	65HVD07	REEL	2500pcs/reel
HX75HVD05ECDRG	SOP8L	75HVD05	REEL	2500pcs/reel
HX75HVD06ECDRG	SOP8L	75HVD06	REEL	2500pcs/reel
HX75HVD07ECDRG	SOP8L	75HVD07	REEL	2500pcs/reel

PACKAGE DISSIPATION RATINGS

(See Figure 12 and Figure 13)

PACKAGE	T _A ≤ 25°C POWER	R DERATING FACTOR ⁽¹⁾	T _A = 70°C POWER	T _A = 85°C POWER
PACKAGE	RATING	ABOVE TA = 25°C	RATING	RATING
D(2)	710 mW	5.7 mW/°C	455 mW	369 mW
D(3)	1282 mW	10.3 mW/°C	821 mW	667 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW

- (1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.
- (2) Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3
- (3) Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted

			HX65HVD05, HX65HVD06, HX65HVD07 HX75HVD05, HX75HVD06, HX75HVD07		
Supply voltage range, V(CC	-0.3 V to 6 V			
Voltage range at A or B			-9 V to 14 V		
Input voltage range at D,	DE, R or RE	-0.5 V to VCC + 0.5 V			
Voltage input range, tran	sient pulse, A and B, through 10	00 (see Figure 11)	-50 V to 50 V		
Receiver output current,	lo		–11 mA to 11mA		
	Human body model ⁽³⁾	A, B, and GND	16 kV		
Electrostatic discharge	Human body modek*	All pins	4 kV		
	Charged-device model ⁽⁴⁾ All pins		1 kV		
Continuous total power dissipation		See Dissipation Rating Table			

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under" recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
- (3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.
- (4) Tested in accordance with JEDEC Standard 22, Test Method C101.

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM MAX	UNIT
Supply voltage, VCC	and men	4.5	5.5	V
Voltage at any bus terminal (sep	arately or common mode) VI or VIC	₋₇ (1)	12	V
High-level input voltage, VIH	D, DE, RE		2	V
Low-level input voltage, V _I L	D, DE, RE		8.0	V
Differential input voltage, VID (se	ee Figure 7)	-12	12	٧
Lligh lovel output ourrent lev	Driver		-100	ъъ Л
High-level output current, IOH	Receiver		-8	mA
Low lovel output ourrent lou	Driver		100	m A
Low-level output current, IOL	Receiver		8	mA
	HX65HVD05			
	HX65HVD06	-40	85	°C
Operating free-air temperature,	HX65HVD07			
TA	HX75HVD05			
	HX75HVD06	0	70	°C
	HX75HVD07			

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.

DRIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER		TEST COM	MIN T	YP(1) MAX	UNIT	
VIK	Input clamp voltage		I _I = -18 mA		V		
			No Load				
VOD	Differential output voltage		R _L = 54Ω, See Figu	ıre 4		2.5	V
			V _{test} = -7 V to 12 V	, See Figure 2		2.2	
∆ VOD	Change in magnitude of diffe outputvoltage	erential	See Figure 4 and Fi	gure 2	-0.2	0.2	٧
V _{OC} (SS)	Steady-state common-mode voltage	output	Coo Figure 2		2.2	3.3	V
ΔVOC(SS)	Change in steady-state common-modeoutput voltage	0	See Figure 3		-0.1	0.1	V
	Peak-to-peak	HVD05	600			600	
VOC(PP)	common-modeoutput HVD06		See Figure 3	500		mV	
	voltage	HVD07			900		
loz	High-impedance output curre	ent	See receiver input currents				
lj	Input current	D	No.		-100	0	μA
	input current	DE			0	100	μΛ
los	Short-circuit output current		-7 V VO 12 V	4 43	-250	250	mA
C _(diff)	Differential output capacitan	ce	$V_{ID} = 0.4 \sin (4E6\pi t) + 0.5 V$, DE at 0 V			16	pF
			RE at V _{CC} , D & DE at V _{CC} ,No load	Receiver disabled and driver enabled		9 15	mA
ICC Supply current		A	RE at VCC, D at VCC DE at 0 V,No load	Receiver disabled and driver disabled (standby)		1 5	μA
			RE at 0 V, D & DE at V _{CC} ,No load	Receiver enabled and driver enabled		9 15	mA

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

DRIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

	PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
		HVD05			6.5	11	
tpLH	Propagation delay time, low-to-high-level output	HVD06			27	40	ns
		HVD07			250	400	
		HVD05			6.5	11	
tPHL	Propagation delay time, high-to-low-level output	HVD06			27	40	ns
		HVD07			250	400	
		HVD05	D 540 C 50 pc	2.7	3.6	6	
tr	Differential output signal rise time	HVD06	R _L = 54Ω, C _L = 50 pF, See Figure 4	18	28	55	ns
		HVD07	See rigule 4	150	300	450	
		HVD05		2.7	3.6	6	
tf	Differential output signal fall time	HVD06		18	28	55	ns
		HVD07		150	300	450	
		HVD05		2			
tsk(p)	Pulse skew (tphl - tplh)	HVD06	- X -		2.5		ns
		HVD07	L'A.	10			
		HVD05		3.5			
t _{sk(pp)} (2)	Part-to-part skew		100	14			ns
		HVD07	A CONTRACTOR OF THE PARTY OF TH		100		
	Propagation delay time,	HVD05	.00	25			
tPZH1	high-impedance-to-high-level output	HVD06	MAINE		45		ns
	riigir irripedanoe to riigir level output	HVD07	RE at 0 V, R _L =110,	250			
		HVD05	See Figure 5	25			
t _{PHZ}	Propagation delay time,	HVD06			60		ns
	high-level-to-high-impedance output	HVD07			250		
	Propagation delay time,	HVD05			15		
tPZL1	high-impedance-to-low-level output	HVD06			45		ns
	mgn-impedance-to-low-level output	HVD07	RE at 0 V, R _L = 110,		200		
	Propagation delay time,		See Figure 6		14		
tPLZ	low-level-to-high-impedance output	HVD06			90		ns
	low-level-to-ingn-impedance output	HVD07			550		
tPZH2	Propagation delay time, standby-to-high-level o	R _L = 110Ω, \overline{RE} at 3 V, See Figure 5	6		μs		
tPZL2	Propagation delay time, standby-to-low-level o	utput	R _L = 110Ω, \overline{RE} at 3 V, See Figure 6		6		μs

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

RECEIVER ELECTRICAL CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

PARAMETER		TES	ST CONDITIONS		MIN	TYP(1)	MAX	UNIT	
V _{IT+} Positive-going input threshold voltage		IO = -8 mA	IO = -8 mA			0.01		V	
V _{IT+} Negative-going in threshold voltage	put	IO = 8 mA				-0.2		V	
V _{hys} Hysteresis voltag (V _{IT+} - V _{IT-})	е					35		mV	
V _{IK} Enable-input clam	pvoltage	I _I = -18 mA				-1.5		V	
VOH High-level outp voltage	ut	V _{ID} = 200 mV,	I_{OH} = -8 mA,	See Figure 7		4		V	
VOL Low-level output	ut voltage	$V_{ID} = -200 \text{ mV},$	IOL = 8 mA,	See Figure 7		0.4		V	
I _{OZ} High-impedance-s output current	tate	VO = 0 or VCC	RE at V _C C		-1		1	μΑ	
			V _A or V _B = 12 V			0.23	0.5		
	LIV/D05	Oth an immutat O V	V _A or V _B = 12 V,	V _C C = 0 V		0.3	0.5	Л	
	HVD05	HVD05	Other inputat 0 V	VA or VB = -7 V	- Xa	-0.4	0.13		mA
I. D in most assument			V_A or $V_B = -7 V$,	VCC = 0 V	-0.4	0.15			
II Bus input current			V _A or V _B = 12 V	and the same		0.06	0.1		
	HVD06	Oth an immutat 0 \/	V _A or V _B = 12 V,	VCC = 0 V		0.08	0.13	Л	
	HVD07	Other inputat 0 V	V _A or V _B = -7 V	John	-0.1	0.05		mA	
			V_A or $V_B = -7 V$,	VCC = 0 V	-0.05	0.03			
I _{IH} High-level input curre	ent,RE	V _{IH} = 2 V	NE CON		-60	26.4		μΑ	
I _{IL} Low-level input curr	ent, RE	V _{IL} = 0.8 V	" HIP		-60	27.4		μΑ	
C _(diff) Differential input capacitance		V _I = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V			16		pF		
ICC Supply current		REat 0 V, D & DE at 0 V, No load	Receiver enabled disabled	and driver		5	10	mA	
		RE at V _{CC} , DE at 0 V,D at V _{CC} , No load	Receiver disabled disabled(standby)			1	5	μΑ	
		RE at 0 V, D & DE at VCC,No load	Receiver enabled enabled	and driver		9	15	mA	

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

RECEIVER SWITCHING CHARACTERISTICS

over operating free-air temperature range unless otherwise noted

PARAMETER		TEST CONDITIONS	MIN	TYP(1)	MAX	UNIT
tplH Propagation delay time, low-to-high-level output 1/2 UL	HVD05			14.6	25	ns
tPHL Propagation delay time, high-to-low-level output 1/2 UL	HVD05			14.6	25	ns
to u. Propagation delay time, law to high level output 1/9 III	HVD06			55	70	no
tpLH Propagation delay time, low-to-high-level output 1/8 UL	HVD07	V _{ID} = -1.5 V to 1.5 V,		55	70	ns
to a Propagation delay time, high to low level output 1/9 LII	HVD06	C _L = 15 pF,		55	70	no
tpHL Propagation delay time, high-to-low-level output 1/8 UL	HVD07	See Figure 8		55	70	ns
	HVD05			2		
t _{sk(p)} Pulse skew (tpHL - tpLH)	HVD06			4.5		ns
. ,	HVD07		4.5			
	HVD05			6.5		
t _{sk(pp)} ⁽²⁾ Part-to-part skew	HVD06			14		ns
	HVD07			14		
t _r Output signal rise time		C _L = 15 pF,		2	3	
tf Output signal fall time		See Figure 8		2	3	ns
tPZH1 Output enable time to high level		1		10		
tPZL1 Output enable time to low level				10		
tPHZ Output disable time from high level		See Figure 9	15			ns
tpLZ Output disable time from low level		KX XO		15		
tPZH2 Propagation delay time, standby-to-high-level output	N	C _L = 15 pF, DE at 0,		6		
tPZL2 Propagation delay time, standby-to-low-level output	1/1/2	See Figure 10		6		μs

⁽¹⁾ All typical values are at 25°C and with a 5-V supply.

PARAMETER MEASUREMENT INFORMATION

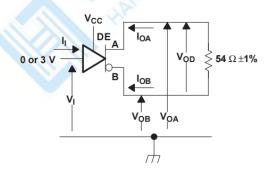


Figure 1. Driver VOD Test Circuit and Voltage and Current Definitions

⁽²⁾ tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

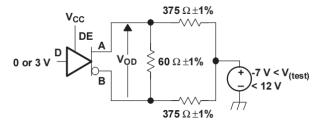
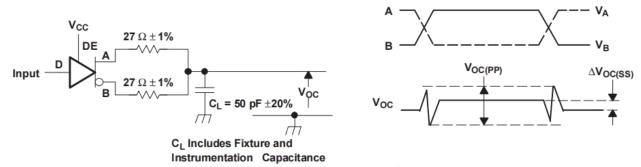
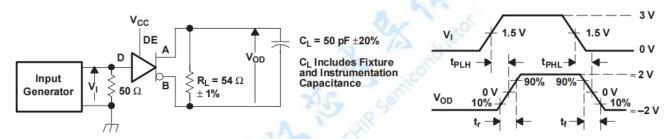




Figure 2. Driver VOD With Common-Mode Loading Test Circuit

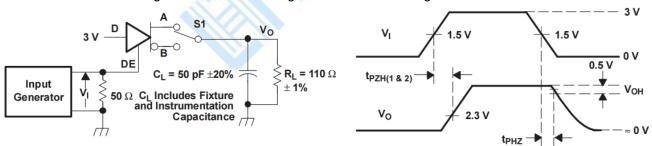
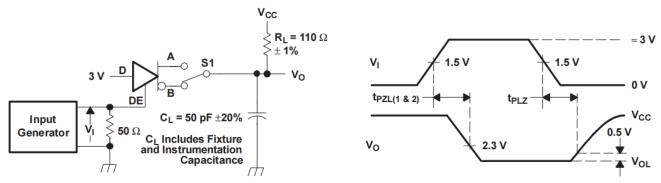

Input: PRR = 500 kHz, 50% Duty Cycle, $t_{\rm f}$ <6ns, $t_{\rm f}$ <6ns, Z_O = 50 Ω

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

Generator: PRR = 500 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω


Figure 4. Driver Switching Test Circuit and Voltage Waveforms

Generator: PRR = 100 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms

Generator: PRR = 100 kHz, 50% Duty Cycle, t_r <6 ns, t_f <6 ns, Z_o = 50 Ω

Figure 6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms

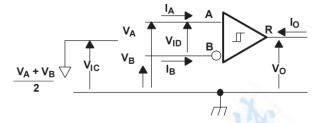


Figure 7. Receiver Voltage and Current Definitions

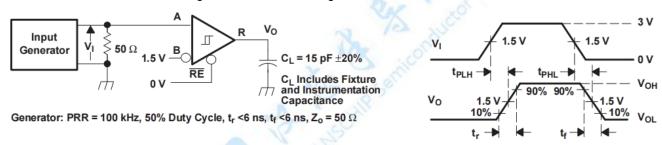


Figure 8. Receiver Switching Test Circuit and Voltage Waveforms

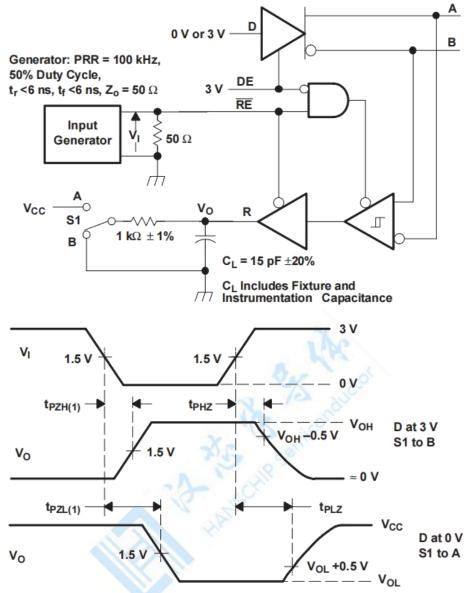


Figure 9. Receiver Enable and Disable Time Test Circuit and Voltage Waveforms With Drivers Enabled

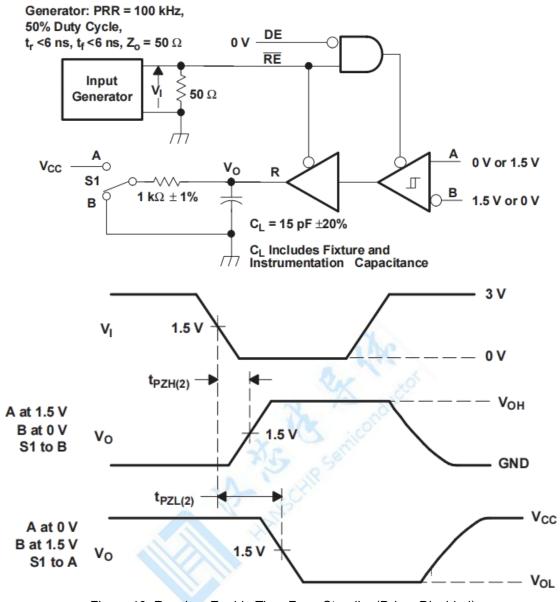
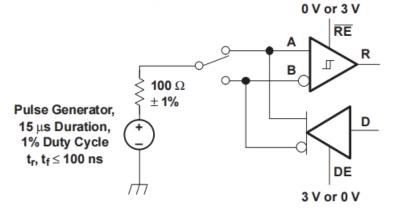



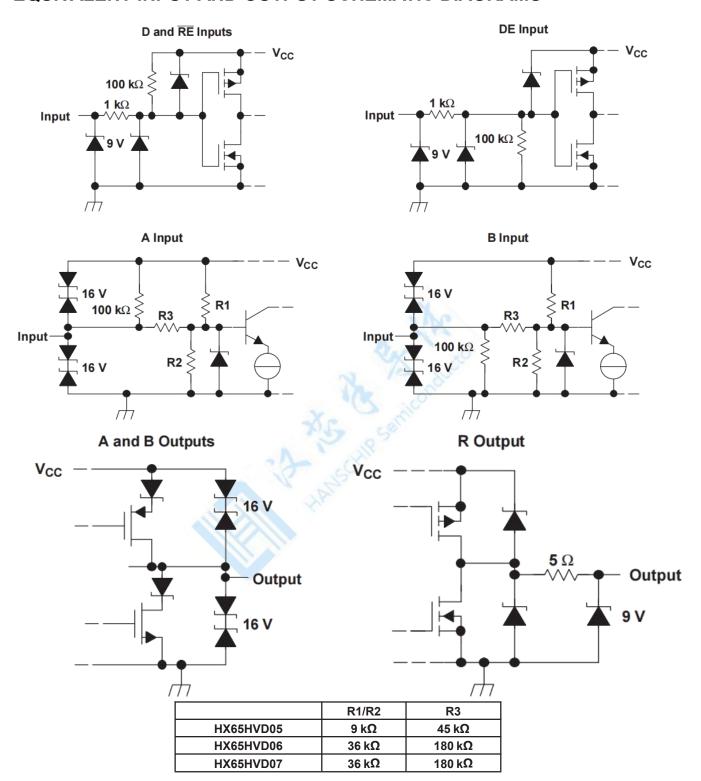
Figure 10. Receiver Enable Time From Standby (Driver Disabled)

NOTE: This test is conducted to test survivability only. Data stability at the R output is not specified.

Figure 11. Test Circuit, Transient Over Voltage Test

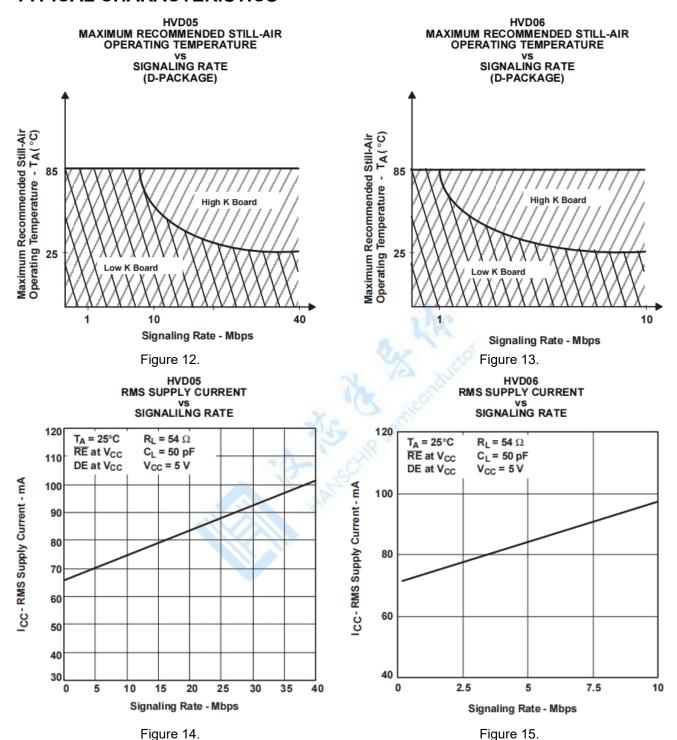
FUNCTION TABLES

INPUT	ENABLE	OUTPUTS			
D	DE	A B			
Н	Н	Н	L		
L	Н	L	Н		
X	L	Z	Z		
Open	Н	Н	L		
X	Open	Z	Z		


RECEIVER(1)

DIFFERENTIAL INPUTS	ENABLE	OUTPUT
$V_{ID} = V_A - V_B$	RE	R
V _{ID≤} -0.2 V	L	L
-0.2 V < V _{ID} < -0.01 V	L	?
-0.01 V≤V _{ID}	L	Н
X	Н	Z
Open Circuit	L	Н
Short Circuit	L	Н
X	Open	Z

⁽¹⁾ H = high level; L = low level; Z = high impedance; X = irrelevant; ? = indeterminate



EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS

TYPICAL CHARACTERISTICS

HVD07 RMS SUPPLY CURRENT VS SIGNALING RATE

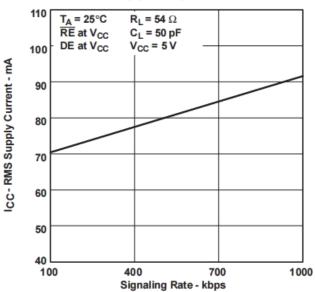
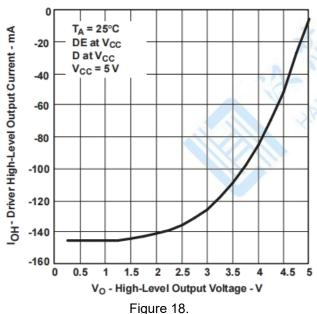
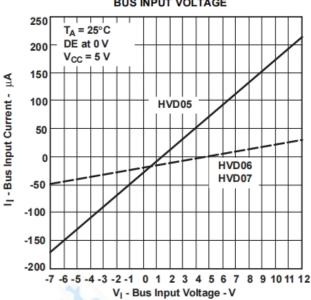
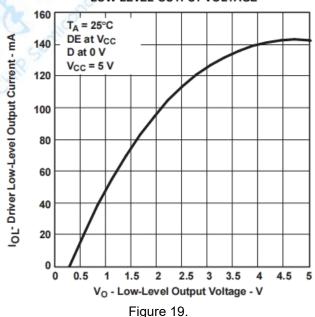
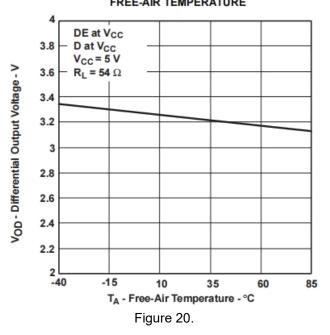



Figure 16.

DRIVER HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE

BUS INPUT CURRENT VS BUS INPUT VOLTAGE


Figure 17.

DRIVER LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE

DIFFERENTIAL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

DIFFERENTIAL OUTPUT VOLTAGE VS DIFFERENTIAL OUTPUT CURRENT

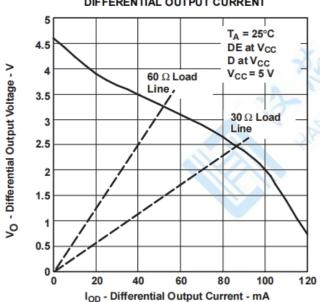


Figure 22.

DRIVER OUTPUT CURRENT vs SUPPLY VOLTAGE

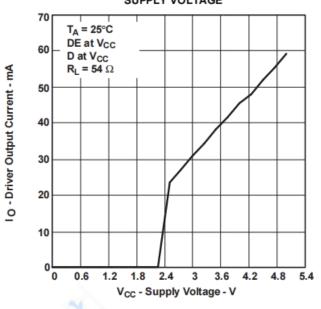


Figure 21.

ENABLE TIME vs COMMON-MODE VOLTAGE (SEE Figure 24)

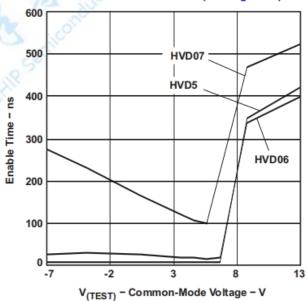


Figure 23.

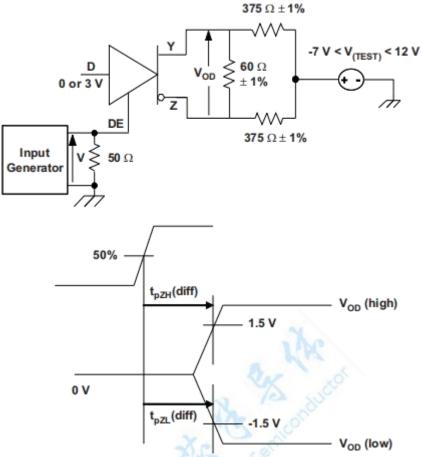
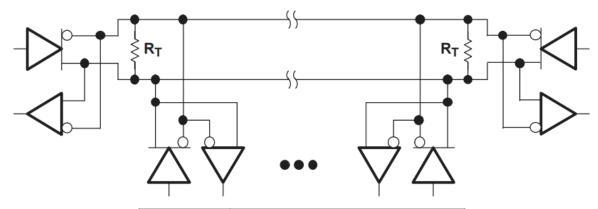
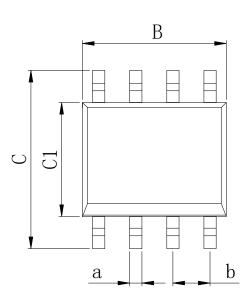



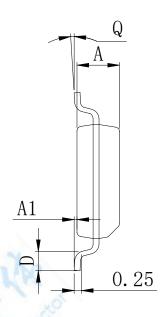
Figure 24. Driver Enable Time From DE to VOD

The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V.

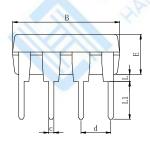
APPLICATION INFORMATION

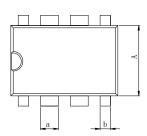
Device	Number of Devices on Bus
HVD05	64
HVD06	256
HVD07	256


NOTE: The line should be terminated at both ends with its characteristic impedance (RT = ZO). Stub lengths off the main line should be kept as short as possible.


Figure 25. Typical Application Circuit

Physical Dimensions


SOP8 (150mil)



Dimensions In Millimeters(SOP8)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC	

DIP8

Dimensions In Millimeters(DIP8)											
Symbol:	Α	В	D	D1	Е	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	

IMPORTANT STATEMENT:

Shenzhen Hanschip semiconductor co., Itd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGC(深圳汉芯)