

HG277/HG2277/HG4277 High Precision Operational Amplifiers

Features

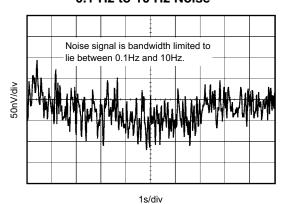
Ultralow Offset Voltage: 10 μV
 Ultralow Drift: ±0.1 μV/°C
 High Open-Loop Gain: 134 dB

High Common-Mode Rejection: 140 dB
High Power Supply Rejection: 130 dB
Low Bias Current: 1-nA maximum
Wide Supply Range: ±2 V to ±18 V
Low Quiescent Current: 800 µA/amplifier

Single, Dual, and Quad Versions

Applications

- Transducer Amplifiers
- Bridge Amplifiers
- Temperature Measurements
- Strain Gage Amplifiers
- Precision Integrators
- Battery-Powered Instruments
- Test Equipment

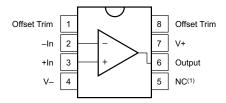

Description

The HGx277 series precision operational amplifiers replace the industry standard HG-177. They offer improved noise, wider output voltage swing, and are twice as fast with half the quiescent current. Features include ultralow offset voltage and drift, low bias current, high common-mode rejection, and high power supply rejection. Single, dual, and quad versions have identical specifications, for maximum design flexibility.

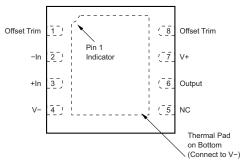
HGx277 series operational amplifiers operate from $\pm 2\text{-V}$ to $\pm 18\text{-V}$ supplies with excellent performance. Unlike most operational amplifiers which are specified at only one supply voltage, the HGx277 series is specified for real-world applications; a single limit applies over the $\pm 5\text{-V}$ to $\pm 15\text{-V}$ supply range. High performance is maintained as the amplifiers swing to their specified limits. Because the initial offset voltage ($\pm 20~\mu\text{V}$ maximum) is so low, user adjustment is usually not required. However, the single version (HG277) provides external trim pins for special applications.

HG277 operational amplifiers are easy to use and free from phase inversion and the overload problems found in some other operational amplifiers. They are stable in unity gain and provide excellent dynamic behavior over a wide range of load conditions. Dual and quad versions feature completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.

0.1 Hz to 10 Hz Noise

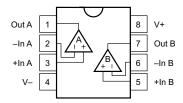

ORDERING INFORMATION

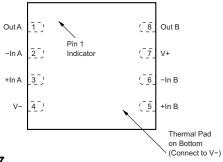
DEVICE	Package Type	MARKING	Packing	Packing Qty
HG277N	DIP8L	HG277	TUBE	2000pcs/box
HG2277N	DIP8L	HG2277	TUBE	2000pcs/box
HG4277N	DIP14L	HG4277	TUBE	1000pcs/box
HG277M/TR	SOP8L	HG277	REEL	2500pcs/reel
HG2277M/TR	SOP8L	HG2277	REEL	2500pcs/reel
HG4277M/TR	SOP14L	HG4277	REEL	2500pcs/reel
HG277DQ/TR	DFN-8	HG277	REEL	3000pcs/reel
HG2277DQ/TR	DFN-8	HG2277	REEL	3000pcs/reel



Pin Configuration and Functions

HG277 N and M Packages 8-Pin PDIP and SOIC Top View

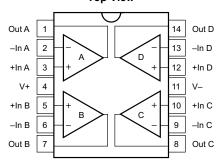

HG277 DQ Package 8-Pin DFN Top View


Pin Functions: HG277

	PIN		DESCRIPTION			
NO.	NAME	I/O	DESCRIPTION			
1	Offset Trim	I	Input offset voltage trim (leave floating if not used)			
2	–In	I	Inverting input			
3	+In	I	Noninverting input			
4	V-	_	Negative (lowest) power supply			
5	NC	_	No internal connection (can be left floating)			
6	Output	0	Output			
7	V+	_	Positive (highest) power supply			
8	Offset Trim	_	Input offset voltage trim (leave floating if not used)			

HG2277 N and M Packages 8-Pin PDIP and SOIC Top View

HG2277 DQ Package 8-Pin DFN Top View



Pin Functions: HG2277

PIN					
NAME	PDIP, SOIC NO.	DFN NO.	I/O	DESCRIPTION	
Out A	1	1	0	Output channel A	
–In A	2	2	1	Inverting input channel A	
+In A	3	3	1	Noninverting input channel A	
V-	4	4	-	Negative (lowest) power supply	
+In B	5	5	1	Noninverting input channel B	
–In B	6	6	-	Inverting input channel B	
Out B	7	8	0	Output channel B	
V+	8	7	_	Positive (highest) power supply	

HG4277 N and M Packages 14 Pins PDIP and SOIC Top View

Pin Functions: HG4277

PIN		1/0	DESCRIPTION
NO.	NAME	1/0	DESCRIPTION
1	Out A	0	Output channel A
2	−In A	1	Inverting input channel A
3	+In A	1	Noninverting input channel A
4	V+	_	Positive (highest) power supply
5	+In B	1	Noninverting input channel B
6	−In B	1	Inverting input channel B
7	Out B	0	Output channel B
8	Out C	0	Output channel C
9	–In C	1	Inverting input channel C
10	+In C	1	Noninverting input channel C
11	V-	_	Negative (lowest) power supply
12	+In D	1	Noninverting input channel D
13	–In D	ı	Inverting input channel D
14	Out D	0	Output channel D

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

	MIN	MAX	UNIT
Supply voltage, $Vs = (V+) - (V-)$		36	V
Input voltage	(V-) -0.7	(V+) +0.7	V
Output short-circuit ⁽²⁾	Conti	nuous	
Operating temperature	0	70	°C
Junction temperature		150	°C
Lead temperature		300	°C
Storage temperature, T _{stg}	0	70	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾		
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

	MIN	NOM	MAX	UNIT
Supply voltage, $Vs = (V+) - (V-)$	4 (±2)	30 (±15)	36 (±18)	V
Specified temperature	0		+70	°C

Thermal Information for HG277

		HG277						
THERMAL METRIC ⁽¹⁾		THERMAL METRIC ⁽¹⁾ N (PDIP) M (SOIC) DQ (DFN						
		8 PINS						
$R_{\theta JA}$	Junction-to-ambient thermal resistance	49.2	110.1	40.7	°C/W			
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	39.4	52.2	41.3	°C/W			
$R_{\theta JB}$	Junction-to-board thermal resistance	26.4	52.3	16.7	°C/W			
ΨЈТ	Junction-to-top characterization parameter	15.4	10.4	0.6	°C/W			
Ψ_{JB}	Junction-to-board characterization parameter	26.3	51.5	16.9	°C/W			
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	3.3	°C/W			

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Thermal Information for HG2277

			HG2277				
THERMAL METRIC ⁽¹⁾		THERMAL METRIC ⁽¹⁾ N (PDIP) M (SOIC) DQ (DFN)					
		8 PINS					
$R_{\theta JA}$	Junction-to-ambient thermal resistance	47.2	107.4	39.3	°C/W		
R ₀ JC(top)	Junction-to-case (top) thermal resistance	36.0	45.8	36.9	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Short-circuit to ground, one amplifier per package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information for HG2277 (continued)

		HG2277					
THERMAL METRIC ⁽¹⁾		THERMAL METRIC ⁽¹⁾ N (PDIP) M (SOIC)					
		8 PINS					
$R_{\theta JB}$	Junction-to-board thermal resistance	24.4	47.9	15.4	°C/W		
ΨЈТ	Junction-to-top characterization parameter	13.4	5.7	0.4	°C/W		
ΨЈВ	Junction-to-board characterization parameter	24.3	47.3	15.6	°C/W		
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	_	_	2.2	°C/W		

Thermal Information for HG4277

		HG4			
	THERMAL METRIC ⁽¹⁾	N (SOIC)	M (PDIP)	UNIT	
		14	14 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	67.0	66.3	°C/W	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	24.1	20.5	°C/W	
$R_{\theta JB}$	Junction-to-board thermal resistance	22.5	26.8	°C/W	
ΨЈТ	Junction-to-top characterization parameter	2.2	2.1	°C/W	
Ψ_{JB}	Junction-to-board characterization parameter	22.1	26.2	°C/W	
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	_	_	°C/W	

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

Electrical Characteristics for HGx277N, HGx277M, and HGx277x

At $T_A = 25$ °C, and $R_L = 2 \text{ k}\Omega$, unless otherwise noted

PARAMETER		TEST HG277N, M CONDITIONS		HG277x HG2277x HG4277x			UNIT			
				MIN	TYP ⁽¹⁾	MAX	MIN	TYP (1)	MAX	
OFFSET VOLTAGE										
V _{0S}	Input Offset Vol	tage			±10	±20		±20	±50	μV
		HG277N, M (high-grade, single)				±30				
	Input Offset Voltage Over Temperature	HG2277N, M (high-grade, dual)	$T_A = 0$ °C to 65°C			±50				μV
	remperature	All Versions							±100	
		AIDRM Versions								
		HG277N, M (high-grade, single)	$T_A = 0$ °C to 65°C		±0.1	±0.15				
dV _{0S} /dT	Input Offset Voltage Drift	HG2277N, M (high-grade, dual)			±0.1	±0.25				μV/°C
		All AIDRM Versions						±0.15	±1	
		vs Time			0.2			See (2)		μV/mo
	Input Offset Voltage: (all	vs Power Supply	V _S = ±2 V to ±18 V		±0.3	±0.5		See (2)	±1	μV/V
models)	models)	(PSRR)	$T_A = 0$ °C to 65°C			±0.5			±1	μν/ν
	Channel Separa	ation (dual, quad)	DC		0.1			See (2)		μV/V

⁽¹⁾ $V_S = \pm 15 \text{ V}$

⁽²⁾ Specifications are the same as HG277N,M

Electrical Characteristics for HGx277N, HGx277M, and HGx277x (continued)

At $T_A = 25^{\circ}C$, and $R_L = 2~k\Omega$, unless otherwise noted

	PARAMETER		TEST CONDITIONS		G277N, M G2277N, M		H	HG277x IG2277x IG4277x		UNIT
				MIN	TYP ⁽¹⁾	MAX	MIN	TYP (1)	MAX	
INPUT BI	AS CURRENT									
I_	Input Bias Curre	int	$T_A = 0$ °C to		±0.5	±1		See (2)	±2.8	nA
I _B	input bias curre	ii it	65°C			±2			±4	ПА
laa	Input Offset Current		$T_A = 0$ °C to		±0.5	±1		See (2)	±2.8	nA
I _{OS}	mpat eneet earrein		65°C			±2			±4	ш
NOISE										
	Input Voltage No	oise, f = 0.1 to 10 Hz			0.22			See (2)		μV_{PP}
		f = 10 Hz			12			See (2)		
e _n	Input Voltage	f = 100 Hz			8			See (2)		nV/√Hz
o _{li}	Noise Density	f = 1 kHz			8			See (2)		,
		f = 10 kHz			8			See (2)		
i _n	Current Noise Density, f = 1 kHz				0.2			See (2)		pA/√Hz
	LTAGE RANGE		1							
V _{CM}	Common-Mode	Voltage Range		(V-)+2		(V+)-2	See (2)		See (2)	V
CMRR	Common-Mode	Rejection	V _{CM} = (V-) +2 V to (V+) -2 V	130	140		115	See (2)		dB
OWNER	Similar mode regional		T _A = 0 °C to 65°C	128			115			·
INPUT IM	PEDANCE									
	Differential				100 3			See (2)		MΩ pF
	Common-Mode		$V_{CM} = (V-) +2 V$ to $(V+) -2 V$		250 3			See (2)		$G\Omega \parallel pF$
OPEN-LO	OP GAIN									
			$V_{O} = (V-)+0.5 V$ to $(V+)-1.2 V$, $R_{L} = 10 k\Omega$		140			See (2)		
A _{OL}	Open-Loop Volta	age Gain	$V_{O} = (V-)+1.5 V$ to (V+)-1.5 V, $R_{L} = 2 k\Omega$	126	134		See (2)	See (2)		dB
			$V_{O} = (V-)+1.5 V$ to (V+)-1.5 V, $R_{L} = 2 k\Omega$	126			See (2)			dB
			T _A = 0 °C to 65°C							
	NCY RESPONSE		T					- (0)		
GBW	Gain-Bandwidth	Product			1			See (2)		MHz
SR	Slew Rate	T			8.0			See (2)		V/µs
	Settling Time	0.1%	$V_S = \pm 15 \text{ V},$ G = 1,		14			See (2)		He
	Settling Time	0.01%	10-V Step		16			See (2)		μs
	Overload Recov	ery Time	V _{IN} × G = V _S		3			See (2)		μs
THD+N	Total Harmonic	Distortion + Noise	1 kHz, G = 1, V _O = 3.5 Vrms		0.002%			See (2)		

Electrical Characteristics for HGx277N, HGx277M, and HGx277x (continued)

At $T_A = 25^{\circ}C$, and $R_L = 2~k\Omega$, unless otherwise noted

				HG277x HG2277x HG4277x			UNIT	
		MIN	TYP ⁽¹⁾	MAX	MIN	TYP (1)	MAX	
	$R_L = 10 \text{ k}\Omega$	(V-)+0.5		(V+)-1.2	See (2)		See (2)	V
V. 1	$T_A = 0$ °C to +65°C	(V-)+0.5		(V+)-1.2	See (2)		See (2)	
Voltage Output	$R_L = 2 k\Omega$	(V-)+1.5		(V+)-1.5	See (2)		See (2)	
	$T_A = 0$ °C to +65°C	(V-)+1.5		(V+)-1.5	See (2)		See (2)	
Short-Circuit Current			±35			See (2)		mA
Capacitive Load Drive			See (3)					
Open-loop output impedance	f = 1 MHz		40			See (2)		Ω
SUPPLY								
Specified Voltage Range		±5		±15	See (2)		See (2)	V
Operating Voltage Range		±2		±18	See (2)		See (2)	V
	I _O = 0		±790	±825		See (2)	See (2)	
Quiescent Current (per amplifier)	$T_A = 0$ °C to 65°C			±900			See (2)	μΑ
ATURE RANGE	,			1				
Specified Range		0		65	See (2)		See (2)	°C
Operating Range		0		70	See (2)		See (2)	°C
	Voltage Output Short-Circuit Current Capacitive Load Drive Open-loop output impedance SUPPLY Specified Voltage Range Operating Voltage Range Quiescent Current (per amplifier) ATURE RANGE Specified Range	$Voltage \ Output \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{tabular}{ c c c c c } \hline PARAMETER & $TEST$ \\ \hline CONDITIONS & MIN \\ \hline \hline MIN \\ \hline \hline MIN \\ \hline \hline $R_L = 10 \text{ k}\Omega$ & $(V-)+0.5$ \\ \hline $T_A = 0 \text{ °C to}$ & $(V-)+0.5$ \\ \hline $T_A = 0 \text{ °C to}$ & $(V-)+1.5$ \\ \hline $T_A = 0 \text{ °C to}$ & $(V-)+1.5$ \\ \hline $T_A = 0 \text{ °C to}$ & $(V-)+1.5$ \\ \hline \hline $Short-Circuit Current$ & $(V-)+1.5$ \\ \hline \hline $Capacitive Load Drive$ & $(V-)+1.5$ \\ \hline $Capacitive Load Drive$ & $(V-)+$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \textbf{PARAMETER} & \textbf{TEST} \\ \hline \textbf{CONDITIONS} & \textbf{HG2277N,M} & \textbf{HG2277X} \\ \hline \textbf{MIN} & \textbf{TYP}^{(1)} & \textbf{MAX} & \textbf{MIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \hline \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} & \textbf{MIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} & \textbf{MIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{TYP}^{(1)} & \textbf{MAX} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN} \\ \hline \textbf{NIN} & \textbf{NIN}$

⁽³⁾ See Typical Characteristics

Electrical Characteristics for HGx277DQ

At $T_A = 25^{\circ}C$, and $R_L = 2~k\Omega$, unless otherwise noted

PARAMETER			TEST CONDITIONS	HG277DQ TEST CONDITIONS HG2277DQ			UNIT
			MIN	TYP ⁽¹⁾	MAX		
OFFSET VO	DLTAGE						
V _{0S}	Input Offset Voltage				±35	±100	μV
		HG277N, M (high-grade, single)					
	Input Offset Voltage Over Temperature	HG2277N,M (high-grade, dual)	T _A = 0°C to 65°C				μV
	·	All Versions					
		AIDRM Versions				±165	
		HG277N,M (high-grade, single)	T _A = 0°C to 65°C				
dV _{0S} /dT	Input Offset Voltage Drift	HG2277N,M (high-grade, dual)					μV/°C
		All AIDRM Versions			±0.15	±1	
		vs Time			See (2)		μV/mo
	Input Offset Voltage: (all models)	vs Power Supply (PSRR)	V _S = ±2 V to ±18 V		See (2)	±1	μV/V
		vs rowel supply (rokk)	$T_A = 0$ °C to 65°C			±1	μν/ν
	Channel Separation (d	ual, quad)	DC	-	See (2)		μV/V

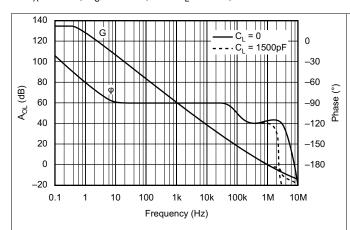
⁽¹⁾ $V_S = \pm 15 \text{ V}$ (2) Specifications are the same as HG277N,M

Electrical Characteristics for HGx277DQ (continued)

At T_A = 25°C, and R_L = 2 k Ω , unless otherwise noted

	PARAMET	ER	TEST CONDITIONS	HG277DQ HG2277DQ			UNIT	
				MIN	TYP ⁽¹⁾	MAX		
NPUT BIAS	CURRENT							
В	Input Bias Current		T _A = 0 °C to 65°C			±2.8	nA	
ь			- A			±4		
os	Input Offset Current		$T_A = 0$ °C to 65°C			±2.8	nA	
			^			±4		
NOISE					- (0)			
	Input Voltage Noise, f				See (2)		μV _{PP}	
		f = 10 Hz			See (2)			
'n	Input Voltage Noise	f = 100 Hz			See (2)		nV/√Hz	
	Density	f = 1 kHz			See (2)			
		f = 10 kHz			See (2)			
n	Current Noise Density	, f = 1 kHz			See (2)		pA/√Hz	
	TAGE RANGE			- (3)		- (2)		
V _{CM}	Common-Mode Voltag	ge Range		See (2)		See (2)	V	
CMRR	IRR Common-Mode Rejection		$V_{CM} = (V-) +2 V \text{ to}$ (V+) -2 V	115	See (2)		dB	
NPI IT IMPE			$T_A = 0$ °C to 65°C	115				
141 01 11111 2	Differential				See (2)		MΩ pF	
	Common-Mode		$V_{CM} = (V-) + 2 V \text{ to}$ (V+) -2 V		See (2)		$G\Omega \parallel pF$	
OPEN-LOOI	P GAIN							
			$V_O = (V-)+0.5 \text{ V to}$ (V+)-1.2 V, $R_L = 10 \text{ k}\Omega$		See (2)		15	
A _{OL} Open-Loop Voltage (ain	$V_{O} = (V-)+1.5 \text{ V to}$ (V+)-1.5 V, $R_{L} = 2 \text{ k}\Omega$	See (2)	See (2)		dB	
			$V_O = (V-)+1.5 \text{ V to}$ (V+)-1.5 V, $R_L = 2 \text{ k}\Omega$	See (2)			dB	
			$T_A = 0$ °C to 65°C					
REQUENC	Y RESPONSE					Ti-		
BW	Gain-Bandwidth Produ	ıct			See (2)		MHz	
SR	Slew Rate				See (2)		V/µs	
	Sattling Time	0.1%	$V_S = \pm 15 \text{ V},$		See (2)			
	Settling Time	0.01%	G = 1, 10-V Step	See (2)			μs	
	Overload Recovery Ti	me	$V_{IN} \times G = V_{S}$		See (2)		μs	
THD+N			1 kHz, G = 1, V _O = 3.5 Vrms		See (2)			
OUTPUT			ı -					
			$R_L = 10 \text{ k}\Omega$	See (2)		See (2)		
	Voltage Output		$T_A = 0$ °C to +65°C	See (2)		See (2)		
/ ₀			$R_L = 2 k\Omega$	See (2)		See (2)	V	
			$T_A = 0$ °C to +65°C	See (2)		See (2)		
SC	Short-Circuit Current		7		See (2)		mA	
CLOAD	Capacitive Load Drive							
Z _O	Open-loop output impe		f = 1 MHz		See (2)		Ω	

Electrical Characteristics for HGx277DQ (continued)


At $T_A = 25^{\circ}C$, and $R_L = 2~k\Omega$, unless otherwise noted

PARAMETER		TEST CONDITIONS	HG277DQ HG2277DQ			UNIT
			MIN	TYP ⁽¹⁾	MAX	
POWER	SUPPLY					
Vs	Specified Voltage Range		See (2)		See (2)	V
	Operating Voltage Range		See (2)		See (2)	V
	Out	I _O = 0		See (2)	See (2)	
IQ	Quiescent Current (per amplifier)	$T_A = 0$ °C to 65°C			See (2)	μΑ
TEMPER	ATURE RANGE				<u>.</u>	
	Specified Range		See (2)		See (2)	°C
	Operating Range		See (2)		See (2)	°C

Typical Characteristics

At $T_A = 25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

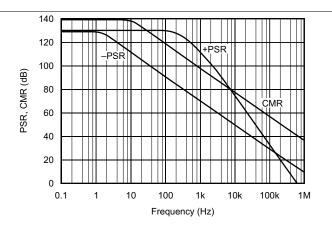
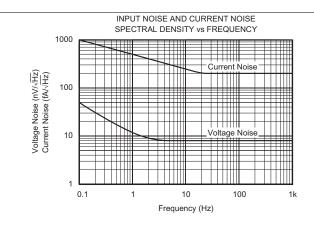



Figure 1. Open-Loop Gain and Phase vs Frequency

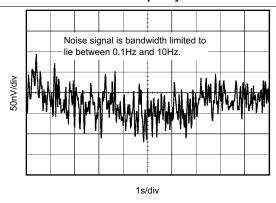
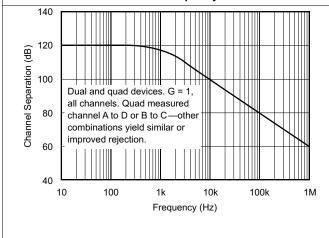



Figure 3. Input Noise and Current Noise Spectral Density vs Frequency

Figure 4. Input Noise Voltage vs Time

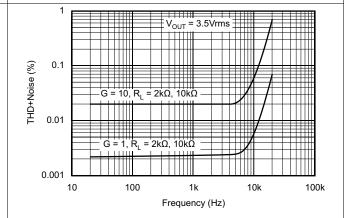
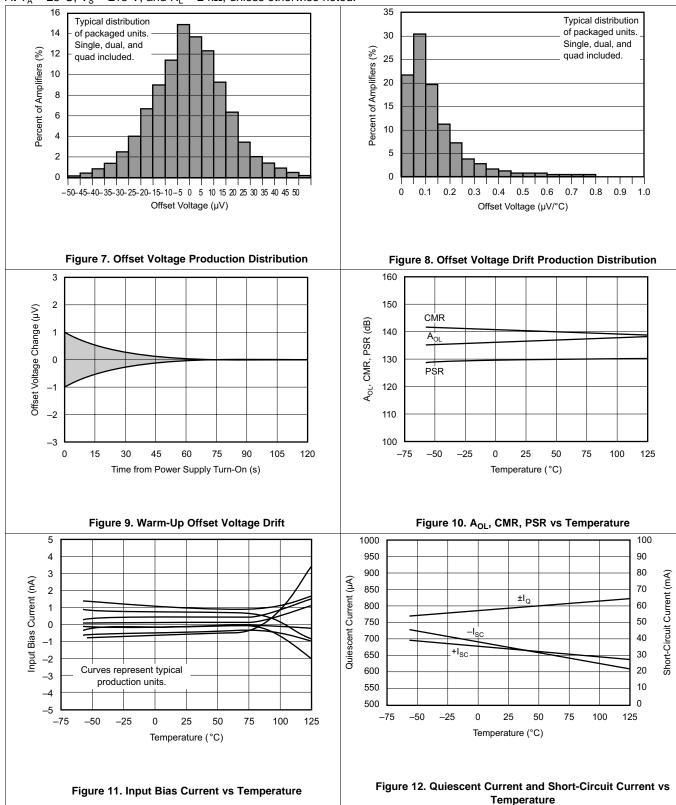
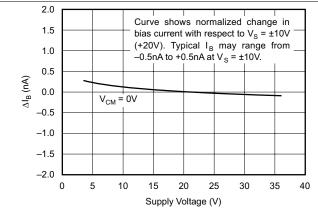


Figure 5. Channel Separation vs Frequency


Figure 6. Total Harmonic Distortion + Noise vs Frequency

2018 AUG

Typical Characteristics (continued)


At $T_A = 25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

Typical Characteristics (continued)

At $T_A = 25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

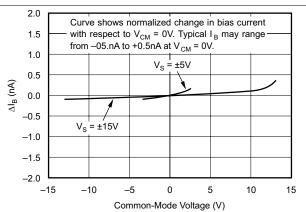
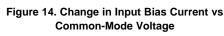
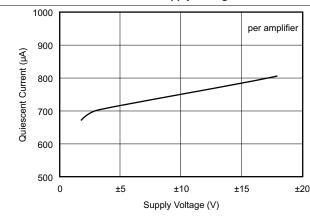




Figure 13. Change in Input Bias Current vs Power Supply Voltage

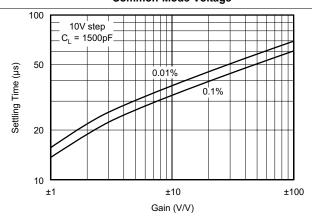
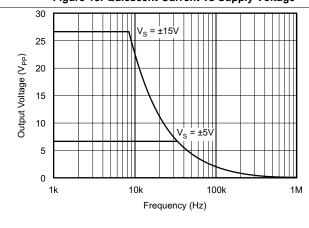
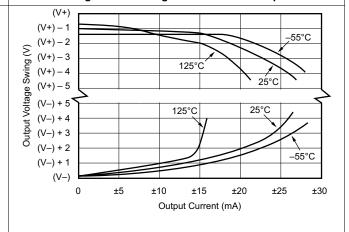



Figure 15. Quiescent Current vs Supply Voltage

Figure 16. Settling Time vs Closed-Loop Gain



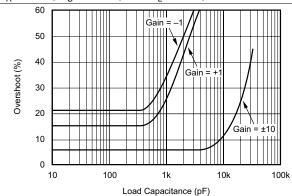

Figure 17. Maximum Output Voltage vs Frequency

Figure 18. Output Voltage Swing vs Output Current

Typical Characteristics (continued)

At $T_A = 25$ °C, $V_S = \pm 15$ V, and $R_L = 2$ k Ω , unless otherwise noted.

New York Topics (1997)

Figure 19. Small-Signal Overshoot vs Load Capacitance

Figure 20. Large-Signal Step Response G = 1, $C_L = 1500$ pF, $V_S = \pm 15$ V

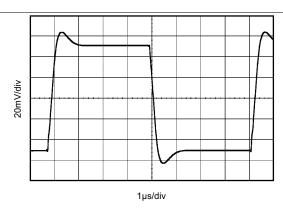


Figure 21. Small-Signal Step Response $G= +1, C_L = 0, V_S = \pm 15 V$

Figure 22. Small-Signal Step Response G=1, $C_L=1500$ pF, $V_S=\pm15$ V

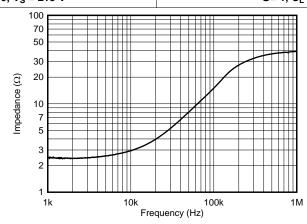
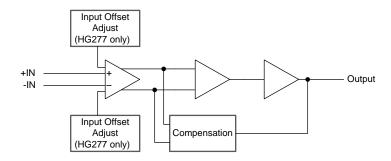


Figure 23. Open-Loop Output Impedance $V_S = \pm 15 \text{ V}$



Detailed Description

Overview

The HGx277 series precision operational amplifiers replace the industry standard HG-177. They offer improved noise, wider output voltage swing, and are twice as fast with half the quiescent current. Features include ultralow offset voltage and drift, low bias current, high common-mode rejection, and high power supply rejection. Single, dual, and quad versions have identical specifications, for maximum design flexibility.

Functional Block Diagram

Feature Description

The HGx277 series is unity-gain stable and free from unexpected output phase reversal, making it easy to use in a wide range of applications. Applications with noisy or high-impedance power supplies may require decoupling capacitors close to the device pins. In most cases 0.1-µF capacitors are adequate.

The HGx277 series has low offset voltage and drift. To achieve highest performance, the circuit layout and mechanical conditions should be optimized. Offset voltage and drift can be degraded by small thermoelectric potentials at the operational amplifier inputs. Connections of dissimilar metals generate thermal potential, which can degrade the ultimate performance of the HGx277 series. These thermal potentials can be made to cancel by assuring that they are equal in both input terminals.

- Keep the thermal mass of the connections to the two input terminals similar
- Locate heat sources as far as possible from the critical input circuitry
- Shield operational amplifier and input circuitry from air currents, such as cooling fans

Operating Voltage

HGx277 series operational amplifiers operate from $\pm 2\text{-V}$ to $\pm 18\text{-V}$ supplies with excellent performance. Unlike most operational amplifiers, which are specified at only one supply voltage, the HG277 series is specified for real-world applications; a single limit applies over the $\pm 5\text{-V}$ to $\pm 15\text{-V}$ supply range. This allows a customer operating at $V_S = \pm 10$ V to have the same assured performance as a customer using $\pm 15\text{-V}$ supplies. In addition, key parameters are assured over the specified temperature range, 0 °C to 65°C. Most behavior remains unchanged through the full operating voltage range (± 2 V to ± 18 V). Parameters which vary significantly with operating voltage or temperature are shown in *Typical Characteristics*.

Offset Voltage Adjustment

The HGx277 series is laser-trimmed for low offset voltage and drift, so most circuits do not require external adjustment. However, offset voltage trim connections are provided on pins 1 and 8. Offset voltage can be adjusted by connecting a potentiometer, as shown in Figure 24. Only use this adjustment to null the offset of the operational amplifier. This adjustment should not be used to compensate for offsets created elsewhere in a system, because this can introduce additional temperature drift.

http://www.hgsemi.com.cn 14 2018 AUG

Feature Description (continued)

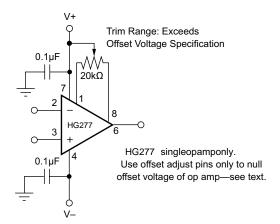


Figure 24. HG277 Offset Voltage Trim Circuit

Input Protection

The inputs of the HGx277 series are protected with $1-k\Omega$ series input resistors and diode clamps. The inputs can withstand ± 30 -V differential inputs without damage. The protection diodes conduct current when the inputs are over-driven. This may disturb the slewing behavior of unity-gain follower applications, but will not damage the operational amplifier.

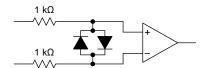


Figure 25. HGx277 Input Protection

Input Bias Current Cancellation

The input stage base current of the HGx277 series is internally compensated with an equal and opposite cancellation circuit. The resulting input bias current is the difference between the input stage base current and the cancellation current. This residual input bias current can be positive or negative.

When the bias current is canceled in this manner, the input bias current and input offset current are approximately the same magnitude. As a result, it is not necessary to use a bias current cancellation resistor, as is often done with other operational amplifiers (see Figure 26). A resistor added to cancel input bias current errors may actually increase offset voltage and noise.

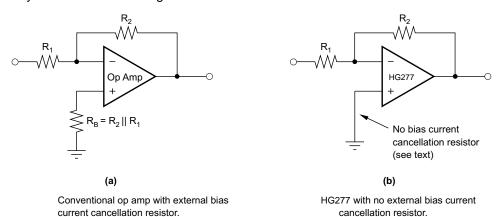


Figure 26. Input Bias Current Cancellation

Feature Description (continued)

EMI Rejection Ratio (EMIRR)

The electromagnetic interference (EMI) rejection ratio, or EMIRR, describes the EMI immunity of operational amplifiers. An adverse effect that is common to many operational amplifiers is a change in the offset voltage as a result of RF signal rectification. An operational amplifier that is more efficient at rejecting this change in offset as a result of EMI has a higher EMIRR and is quantified by a decibel value. Measuring EMIRR can be performed in many ways, but this report provides the EMIRR IN+, which specifically describes the EMIRR performance when the RF signal is applied to the noninverting input pin of the operational amplifier. In general, only the noninverting input is tested for EMIRR for the following three reasons:

- 1. Operational amplifier input pins are known to be the most sensitive to EMI, and typically rectify RF signals better than the supply or output pins.
- 2. The noninverting and inverting operational amplifier inputs have symmetrical physical layouts and exhibit nearly matching EMIRR performance.
- 3. EMIRR is easier to measure on noninverting pins than on other pins because the noninverting input terminal can be isolated on a printed circuit board (PCB). This isolation allows the RF signal to be applied directly to the noninverting input terminal with no complex interactions from other components or connecting PCB traces.

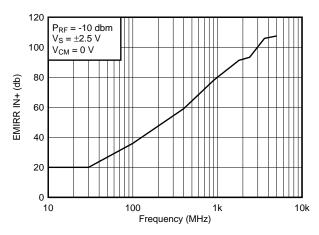


Figure 27. HG277 EMIRR IN+ vs Frequency

If available, any dual and quad operational amplifier device versions have nearly similar EMIRR IN+ performance. The HG277 unity-gain bandwidth is 1 MHz. EMIRR performance below this frequency denotes interfering signals that fall within the operational amplifier bandwidth.

http://www.hgsemi.com.cn 16 2018 AUG

Feature Description (continued)

Table 1 shows the EMIRR IN+ values for the HG277 at particular frequencies commonly encountered in real-world applications. Applications listed in Table 1 may be centered on or operated near the particular frequency shown. This information may be of special interest to designers working with these types of applications, or working in other fields likely to encounter RF interference from broad sources, such as the industrial, scientific, and medical (ISM) radio band.

FREQUENCY	APPLICATION/ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite/space operation, weather, radar, UHF	59.1 dB
900 MHz	GSM, radio com/nav./GPS (to 1.6 GHz), ISM, aeronautical mobile, UHF	77.9 dB
1.8 GHz	GSM, mobile personal comm. broadband, satellite, L-band	91.3 dB
2.4 GHz	802.11b/g/n, Bluetooth™, mobile personal comm., ISM, amateur radio/satellite, S-band	93.3 dB
3.6 GHz	Radiolocation, aero comm./nav., satellite, mobile, S-band	105.9 dB
5.0 GHz	802.11a/n, aero comm./nav., mobile comm., space/satellite operation, C-band	107.5 dB

Table 1. HG277 EMIRR IN+ for Frequencies of Interest

EMIRR IN+ Test Configuration

Figure 28 shows the circuit configuration for testing the EMIRR IN+. An RF source is connected to the operational amplifier noninverting input terminal using a transmission line. The operational amplifier is configured in a unity gain buffer topology with the output connected to a low-pass filter (LPF) and a digital multimeter (DMM). Note that a large impedance mismatch at the operational amplifier input causes a voltage reflection; however, this effect is characterized and accounted for when determining the EMIRR IN+. The resulting dc offset voltage is sampled and measured by the multimeter. The LPF isolates the multimeter from residual RF signals that may interfere with multimeter accuracy.

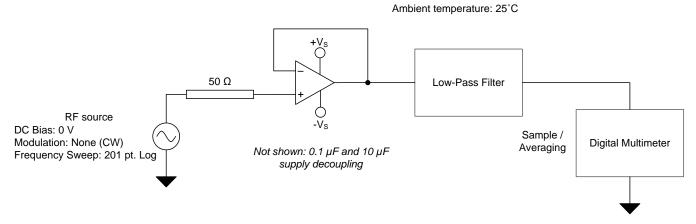


Figure 28. EMIRR IN+ Test Configuration Schematic

Device Functional Modes

The HGx277 has a single functional mode and is operational when the power-supply voltage is greater than 4 V (±2 V). The maximum power supply voltage for the HGx277 is 36 V (±18 V).

http://www.hgsemi.com.cn 17 2018 AUG

Application and Implementation

Application Information

The HGx277 family offers outstanding dc precision and ac performance. These devices operate up to 36-V supply rails and offer ultralow offset voltage and offset voltage drift, as well as 1-MHz bandwidth and high capacitive load drive. These features make the HGx277 a robust, high-performance operational amplifier for high-voltage industrial applications.

Typical Applications

Second-Order Lowpass Filter

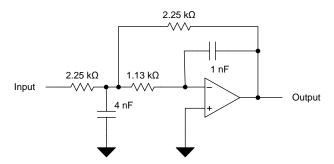


Figure 29. Second-Order Lowpass Filter

Design Requirements

- Gain = 1 V/V
- Lowpass cutoff frequency = 50 kHz
- -40 db/dec filter response
- Maintain less than 3-dB gain peaking in the gain versus frequency response

Typical Applications (continued)

Application Curve

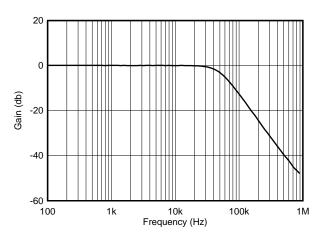


Figure 30. HG277 Second-Order 50-kHz, Lowpass Filter

Load Cell Amplifier

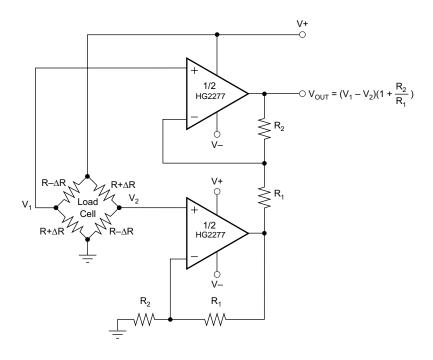


Figure 31. Load Cell Amplifier

http://www.hgsemi.com.cn ¹⁹ 2018 AUG

Typical Applications (continued)

Thermocouple Low-Offset, Low-Drift Loop Measurement With Diode Cold Junction Compensation

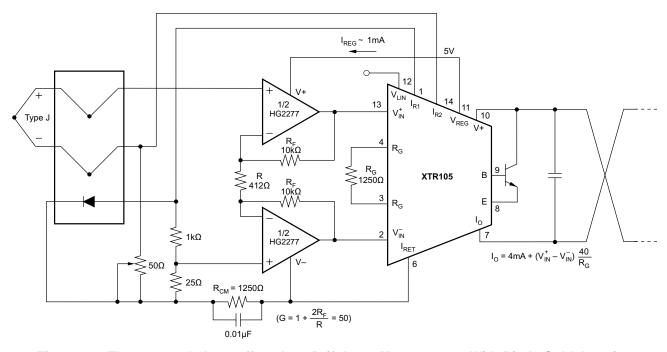
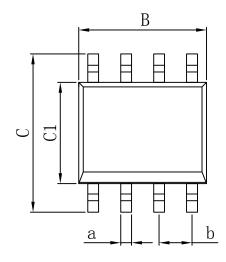
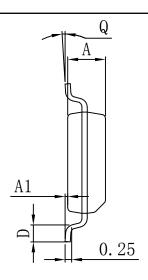


Figure 32. Thermocouple Low-Offset, Low-Drift Loop Measurement With Diode Cold Junction Compensation

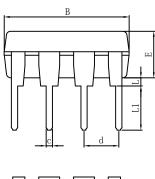
DFN Package

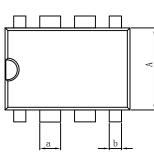
The HGx277 series uses the 8-lead DFN (also known as SON), a QFN package with contacts on only two sides of the package bottom. This leadless, near-chip-scale package maximizes board space and enhances thermal and electrical characteristics through an exposed pad.


DFN packages are physically small, have a smaller routing area, improved thermal performance, and improved electrical parasitics, with a pinout scheme that is consistent with other commonly-used packages, such as SO and MSOP. Additionally, the absence of external leads eliminates bent-lead issues.


The exposed leadframe die pad on the bottom of the package should be connected to V-.

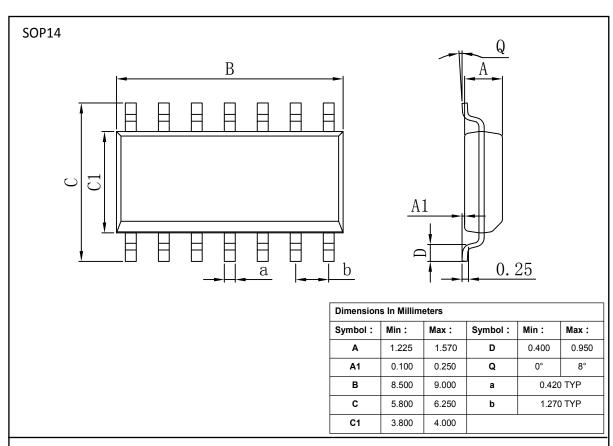
PACKAGE

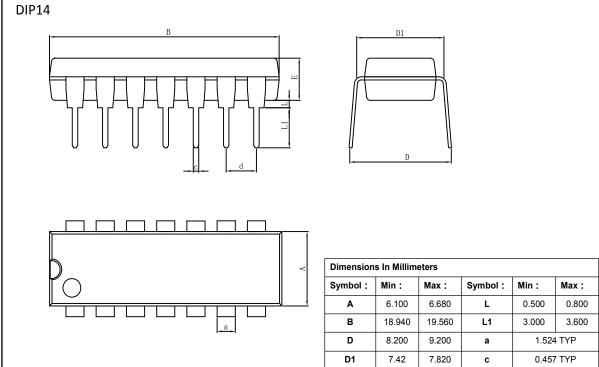




Dimensions In Millimeters								
Symbol:	Min:	Max:	Symbol:	Min:	Max:			
Α	1.225	1.570	D	0.400	0.950			
A1	0.100	0.250	Q	0°	8°			
В	4.800	5.100	а	0.420 TYP				
С	5.800	6.250	b	1.270 TYP				
C1	3.800	4.000		•				

DIP8



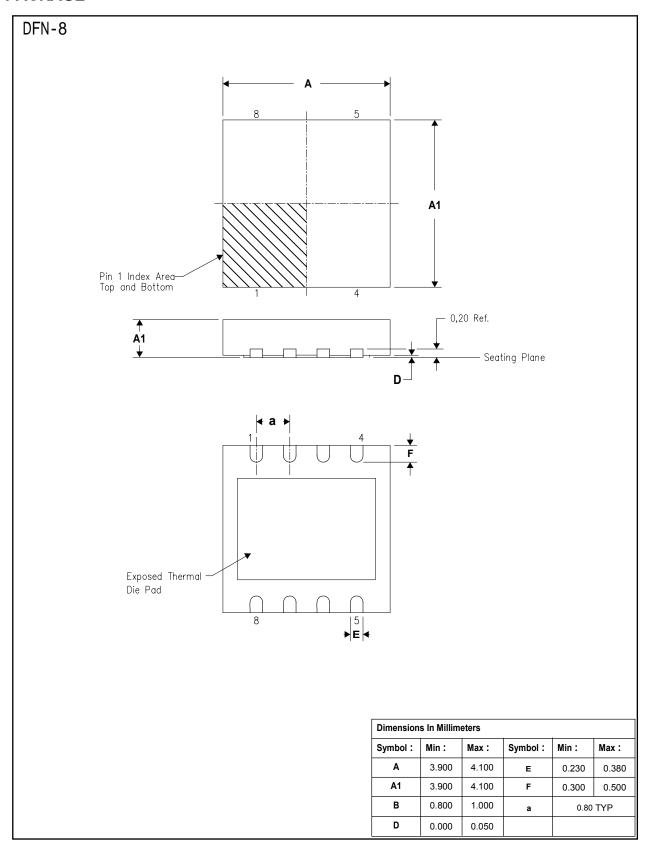


Dimensions In Millimeters								
Symbol:	Min :	Max:	Symbol :	ol: Min: Max				
Α	6.100	6.680	L1	3.000	3.600			
В	9.000	9.500	а	1.524 TYP				
D	8.400	9.000	b	0.889 TYP				
D1	7.420	7.820	С	0.457 TYP				
E	3.100	3.550	d	2.540 TYP				
L	0.500	0.700						

PACKAGE

2.540 TYP

Е


3.100

3.550

d

PACKAGE

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)