

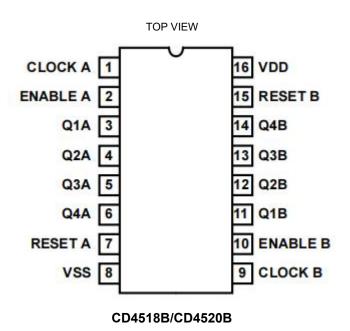
Features

- High Voltage Types (20V Rating)
- CD4518B Dual BCD Up Counter
- CD4520B Dual Binary Up Counter
- Medium Speed Operation: 6MHz Typical Clock Frequency at 10V
- Positive or Negative Edge Triggering
- Synchronous Internal Carry Propagation
- 100% Tested for Quiescent Current at 20V
- 5V, 10V and 15V Parametric Ratings
- Maximum Input Current of 1µA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Noise Margin (Over Full Package/Temperature Range)
 - 1V at VDD = 5V
 - 2V at VDD = 10V
 - 2.5V at VDD = 15V
- Standardized Symmetrical Output Characteristics
- Meets All Requirements of JEDEC Tentative Standard No. 13B, "Standard Specififications for Description of 'B' Series CMOS Devices"

Ordering Information

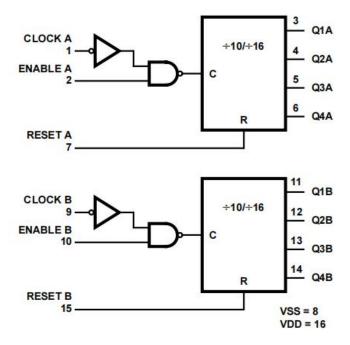
DEVICE	Package Type	MARKING	Packing	Packing Qty
CD4518BE/	DIP-16	CD4518B	TUBE	1000pcs/box
CD4518BN	Bil -10	0D4010D	TOBL	10000007000
CD4520BE/	DIP-16	CD4520B	TUBE	1000===/h==
CD4520BN	DIP-10	CD4520B	TUBE	1000pcs/box
CD4518BM/TR	SOP-16	CD4518B	REEL	2500pcs/reel
CD4520BM/TR	SOP-16	CD4520B	REEL	2500pcs/reel
CD4518BMT/TR	TSSOP-16	CD4518B	REEL	2500pcs/reel
CD4520BMT/TR	TSSOP-16	CD4520B	REEL	2500pcs/reel

Description


CD4518B Dual BCD Up Counter and CD4520B Dual Binary Up Counter each consist of two identical, internally synchronous 4-stage counters. The counter stages are D-type flflip-flflops having interchangeable CLOCK and ENABLE lines for incrementing on either the positive-going or negative-going transition. For single unit operation the ENABLE input is maintained high and the counter advances on each positive-going transition of the CLOCK. The counters are cleared by high levels on their RESET lines.

The counter can be cascaded in the ripple mode by connecting Q4 to the enable input of the subsequent counter while the CLOCK input of the latter is held low.

Applications


- Multistage Synchronous Counting
- Multistage Ripple Counting
- Frequency Dividers

Pinout

Functional Diagram

Absolute Maximum Ratings

Condition	Min	Max	UNITS
DC Supply Voltage Range, (VDD)	0.5	0.0	.,,
(Voltage Referenced to VSS Terminals)	-0.5	+20	V
Input Voltage Range, All Inputs	-0.5	Vdd+0.5	V
DC Input Current, Any One Input	-10	+10	mA
Operating Temperature Range	-40	+85	°C
Storage Temperature Range (TSTG)	-65	+150	°C
Lead Temperature (During Soldering) At Distance (1.59mm ±		.045	°C
0.79mm) from case for 10s Maximum	-	+245	

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

Dc Electrical Performance Characteristics

				GROUP A		LIN	IITS	
PARAMETER	SYMBOL	CONDITIONS (N	IOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
		\(\(\text{D}\) \(\text{O}\) \(\text{O}\)	2 0115	1	+25°C	-	10	μA
Supply Current	IDD	VDD = 20V, VIN = VDI	or GND	2	+85°C	-	1000	μA
		VDD = 18V, VIN = VDI	O or GND	3	-40°C	-	10	μA
			VDD 00	1	+25°C	-100	-	nA
Input Leakage Current	IIL	VIN = VDD or GND	VDD = 20	2	+85°C	-1000	-	nA
			VDD = 18V	3	-40°C	-100	-	nA
			\/DD 00	1	+25°C	-	100	nA
Input Leakage Current	IIH	VIN = VDD or GND	VDD = 20	2	+85°C	-	1000	nA
			VDD = 18V	3	-40°C	-	100	nA
Output Voltage	VOL15	VDD = 15V, No Load	1	1, 2, 3	+25°C, +85°C, -40°C	-	50	mV
Output Voltage	VOH15	VDD = 15V, No Load (Note 3)	1, 2, 3	+25°C, +85°C, -40°C	14.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4	IV.	1	+25°C	0.53	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0	.5V	1	+25°C	1.4	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1	.5V	1	+25°C	3.5	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6	SV V	1	+25°C	-	-0.53	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5	5V	1	+25°C	-	-1.8	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9	.5V	1	+25°C	-	-1.4	mA
Output Current (Source)	IOH15	VDD = 15V, VOUT = 1	3.5V	1	+25°C	-	-3.5	mA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10µ	AL	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10µA		1	+25°C	0.7	2.8	V
		VDD = 2.8V, VIN = VD	D or GND	7	+25°C			
Ever eti eve el	_	VDD = 20V, VIN = VDI	O or GND	7	+25°C	VOH >	VOL <	.,
Functional	F	VDD = 18V, VIN = VDI	O or GND	8A	+85°C	VDD/2	VDD/2	V
		VDD = 3V, VIN = VDD	or GND	8B	-40°C			
Input Voltage Low	\ /II	VDD = 5V, VOH > 4.5\	/,	4.0.0	.05°C .05°C 40°C		4.5	
(Note 2)	VIL	VOL < 0.5V		1, 2, 3	+25°C, +85°C, -40°C	-	1.5	V
Input Voltage High	VIH	VDD = 5V, VOH > 4.5\	/,	1, 2, 3	+35°C +95°C 40°C	3.5		V
(Note 2)	νіп	VOL < 0.5V		1, 2, 3	+25°C,+85°C, -40°C	3.5	-	v
Input Voltage Low	VIL	VDD = 15V, VOH > 13	.5V,	1, 2, 3	+25°C, +85°C, -40°C		4	V
(Note 2)	VIL	VOL < 1.5V		1, 2, 3	120 C, +00 C, -40 C	-	4	V
Input Voltage High	VIH	VDD = 15V, VOH > 13	.5V,	1, 2, 3	+25°C, +85°C, -40°C	11	_	V
(Note 2)	VIII	VOL < 1.5V		1, 2, 3	120 0, 100 0, -40 0	''	_	٧

NOTES:

- 1. All voltages referenced to device GND, 100% testing being implemented.
- 2. Go/No Go test with limits applied to inputs.
- 3. For accuracy, voltage is measured differentially to VDD. Limit is 0.050V max.

Ac Electrical Performance Characteristics

PARAMETER	SYMBOL	CONDITIONS (NOTE 1, 2)	GROUP A	TEMPERATURE	LIM	ITS	UNITS
PARAMETER	STIVIBUL	CONDITIONS (NOTE 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 5V, VIN = VDD or GND	9	+25°C	-	560	ns
Clock to Output	TPLH1	VDD = 3V, VIIV = VDD 01 GND	10, 11	+85°C, -40°C	-	756	ns
Propagation Delay	TPHL2	VDD = 5V, VIN = VDD or GND	9	+25°C	-	650	ns
Reset to Ouput	IPHL2	VDD = 5V, VIN = VDD OF GND	10, 11	+85°C, -40°C	-	878	ns
Transition Time (Note 2)	TTHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	200	ns
Transition Time (Note 2)	TTLH	VDD = 5V, VIIN = VDD 01 GND	10, 11	+85°C, -40°C	-	270	ns
Maximum Clock	FCL	VDD = 5V, VIN = VDD or GND	9	+25°C	1.5	-	MHz
Input Frequency	FUL	VDD - 5V, VIIN - VDD OF GND	10, 11	+85°C, -40°C	1.11	-	MHz

NOTES:

- 1. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 2. -40°C and +85°C limits guaranteed, 100% testing being implemented.

Electrical Performance Characteristics

DADAMETED	0)/4501	COMPITIONS	NOTES		LIN	IITS	UNITS
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
		VDD = 5V, VIN = VDD or GND	1, 2	-40°C, +25°C	-	5	μA
		VDD = 5V, VIN = VDD 01 GND	1, 2	+85°C	-	150	μA
Cumply Current	IDD	VDD = 10\/ \/IN = \/DD 05 CND	1.0	-40°C, +25°C	-	10	μA
Supply Current	טטו	VDD = 10V, VIN = VDD or GND	1, 2	+85°C	-	300	μA
		VDD = 15V, VIN = VDD or GND	1, 2	-40°C, +25°C	-	10	μA
		VDD = 13V, VIIN = VDD 01 GND	1, 2	+85°C	-	600	μA
Output Voltage	VOL	VDD = 5V, No Load	1, 2	+25°C, +85°C,-40°C	-	50	mV
Output Voltage	VOL	VDD = 10V, No Load	1, 2	+25°C, +85°C,-40°C	-	50	mV
Output Voltage	VOH	VDD = 5V, No Load	1, 2	+25°C, +85°C,-40°C	4.95	-	V
Output Voltage	VOH	VDD = 10V, No Load	1, 2	+25°C, +85°C,-40°C	9.95	-	V
Output Current (Sink)	IOL5	VDD = 5V, VOUT = 0.4V	1, 2 +85°C -40°C	+85°C	0.36	-	mA
Output Current (Sink)	IOLS	VDD = 5V, VOOT = 0.4V		-40°C	0.64	-	mA
Output Current (Sink)	IOL10	VDD = 10V, VOUT = 0.5V	1, 2	+85°C	0.9	-	mA
Output Current (Sirik)	IOLIU	VDD = 10V, VOO1 = 0:5V	1, 2	-40°C	1.6	-	mA
Output Current (Sink)	IOL15	VDD = 15V, VOUT = 1.5V	1, 2	+85°C	2.4	-	mA
Output Current (Sirik)	IOLIS	VDD = 15V, VOO1 = 1:5V	1, 2	-40°C	4.2	-	mA
Output Current (Source)	IOH5A	VDD = 5V, VOUT = 4.6V	1, 2	+85°C	-	-0.36	mA
Output Current (Source)	IOIIJA	VDD = 3V, VOO1 = 4.0V	1, 2	-40°C	-	-0.64	mA
Output Current (Source)	IOH5B	VDD = 5V, VOUT = 2.5V	1, 2	+85°C	-	-1.15	mA
Output Current (Source)	101136	VDD = 3V, VOO1 = 2.3V	1, 2	-40°C	-	-2.0	mA
Output Current (Source)	IOH10	VDD = 10V, VOUT = 9.5V	1, 2	+85°C	-	-0.9	mA
Output Current (Source)	101110	VDD = 10V, VOO1 = 9.5V	1, 2	-40°C	-	-1.6	mA
Output Current (Source)	IOH15	VDD =15V, VOUT = 13.5V	1, 2	+85°C	-	-2.4	mA
Output Outrent (Ooutce)	101113	VDD -13V, VOO1 - 13.3V	1, 4	-40°C	-	-4.2	mA
Input Voltage Low	VIL	VDD=10V, VOH>9V, VOL<1V	1, 2	+25°C, +85°C,-40°C	-	3	V
Input Voltage High	VIH	VDD=10V, VOH>9V, VOL<1V	1, 2	+25°C, +85°C,-40°C	+7	-	V

Electrical Performance Characteristics (Continued)

DADAMETED	0.44001	COMPITIONS	NOTES	TEMPED ATURE	LIN	IITS	LIMITS
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL1	VDD = 10V	1, 2, 3	+25°C	1	230	ns
Clock to Output	TPLH1	VDD = 15V	1, 2, 3	+25°C	ı	160	ns
Propagation Delay	TDUILO	VDD = 10V	1, 2, 3	+25°C	ı	225	ns
Reset to Output	TPHL2	VDD = 15V	1, 2, 3	+25°C	-	170	ns
Too a sittle or Time o	TTHL	VDD = 10V	1, 2, 3	+25°C	-	100	ns
Transition Time	TTLH	VDD = 15V	1, 2, 3	+25°C	ı	80	ns
Maximum Clock Input	FOL	VDD = 10V	1, 2, 3	+25°C	3	-	MHz
Frequency	FCL	VDD = 15V	1, 2, 3	+25°C	4	-	MHz
Marriagona Olarek Diag	TRCL	VDD = 5V	1, 2, 3, 4	+25°C	ı	15	μs
Maximum Clock Rise		VDD = 10V	1, 2, 3, 4	+25°C	1	5	μs
and Fall Time	TFCL	VDD = 15V	1, 2, 3, 4	+25°C	ı	5	μs
		VDD = 5V	1, 2, 3	+25°C	ı	400	ns
Minimum Enable	TW	VDD = 10V	1, 2, 3	+25°C	-	200	ns
Pulse Width		VDD = 15V	1, 2, 3	+25°C	ı	140	ns
Minimum Danet		VDD = 5V	1, 2, 3	+25°C	ı	250	ns
Minimum Reset	TW	VDD = 10V	1, 2, 3	+25°C	-	110	ns
Pulse Width		VDD = 15V	1, 2, 3	+25°C	-	80	ns
		VDD = 5V	1, 2, 3	+25°C	ı	200	ns
Minimum Clock	TW	VDD = 10V	1, 2, 3	+25°C	-	100	ns
Pulse Width		VDD = 15V	1, 2, 3	+25°C	-	70	ns
Input Capacitance	CIN	Any Input	1, 2	+25°C	-	7.5	pF

NOTES:

- 1. All voltages referenced to device GND.
- 2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.
- 3. CL = 50pF, RL = 200K, Input TR, TF < 20ns.
- 4. If more than one unit is cascaded, TRCL should be made less than or equal to the sumof the transition time and the fixed propagation delay of the output of the driving stage for the estimated capacitive load.

Post Irradiation Electrical Performance Characteristics

DADAMETED	COMPUTIONS		NOTES		LIM	UNITS	
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	UNIIS
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	i	25	μA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10μA 1, 4 +25°C			-2.8	-0.2	V
N Threshold Voltage Delta	ΔVΤΝ	VDD = 10V, ISS = -10μA	1, 4	+25°C	-	1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10μA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVΤΡ	VSS = 0V, IDD = 10μA	1, 4	+25°C	-	1	V
F atia mal	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
Functional	F	VDD = 3V, VIN = VDD or GND	1	+25°C	VDD/2	VDD/2	V
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25°C Limit	ns

Logic Diagrams

FIGURE 1. DECADE COUNTER (CD4518B) LOGIC DIAGRAM FOR ONE OF TWO IDENTICAL COUNTERS

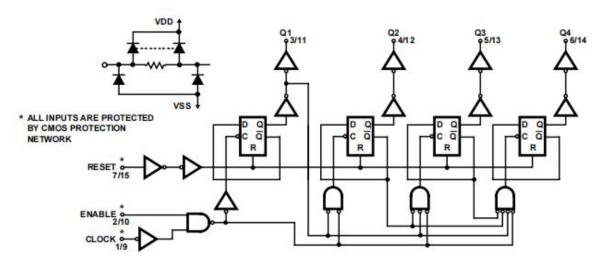


FIGURE 2. BINARY COUNTER (CD4520B) LOGIC DIAGRAM FOR ONE OF TWO IDENTICAL COUNTERS

TRUTH TABLE

CLOCK	ENABLE	RESET	ACTION
_	1	0	Increment Counter
0		0	Increment Counter
\neg	Х	0	No Change
Х	_	0	No Change
_	0	0	No Change
1	\neg	0	No Change
Х	Х	1	Q1 thru Q4 = 0

Typical Performance Curves

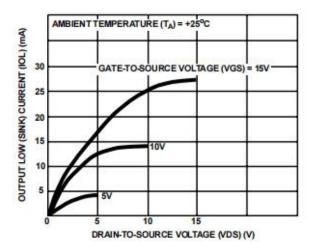


FIGURE 3. TYPICAL OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

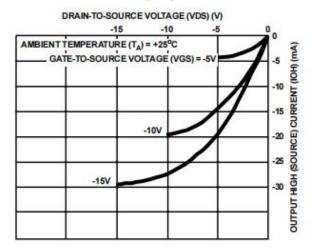


FIGURE 5. TYPICAL OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

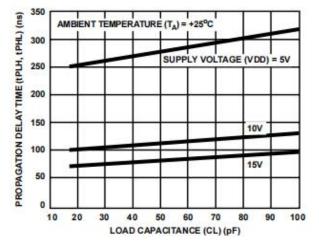


FIGURE 7. TYPICAL PROPAGATION DELAY vs LOAD CAPACITANCE, CLOCK OR ENABLE TO OUTPUT

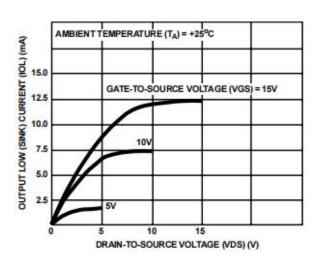


FIGURE 4. MINIMUM OUTPUT LOW (SINK) CURRENT CHARACTERISTICS

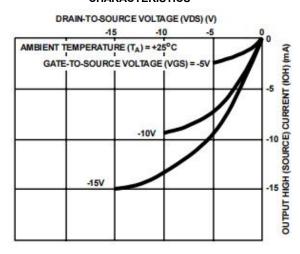


FIGURE 6. MINIMUM OUTPUT HIGH (SOURCE) CURRENT CHARACTERISTICS

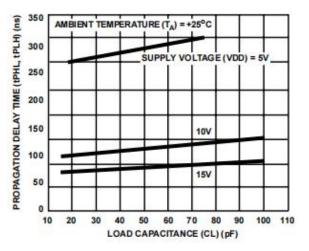


FIGURE 8. TYPICAL PROPAGATION DELAY TIME vs LOAD CAPACITANCE, RESET TO OUTPUT

Typical Performance Curves

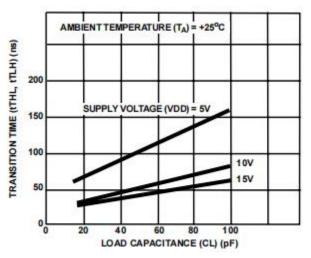


FIGURE 9. TYPICAL TRANSITION TIME vs LOAD

CAPACITANCE

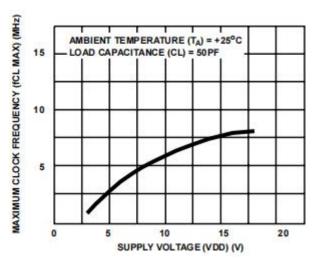


FIGURE 10. TYPICAL MAXIMUM CLOCK FREQUENCY vs SUPPLY VOLTAGE

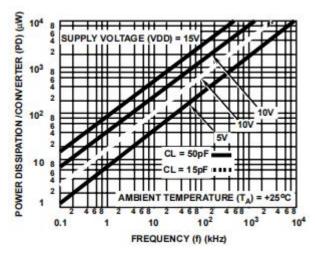


FIGURE 11. TYPICAL POWER DISSIPATION CHARACTERISTICS

Timing Diagrams

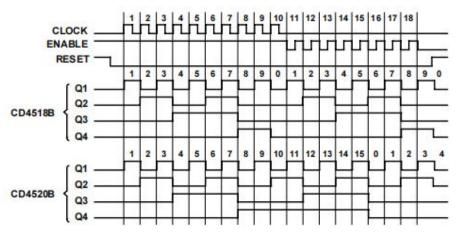


FIGURE 12. TIMING DIAGRAMS FOR CD4518B AND CD4520B

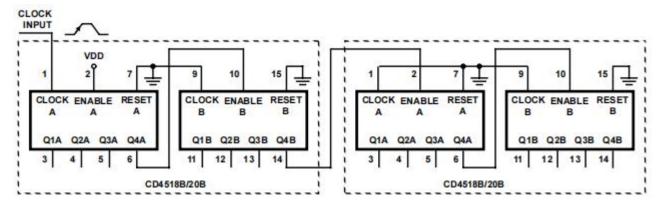
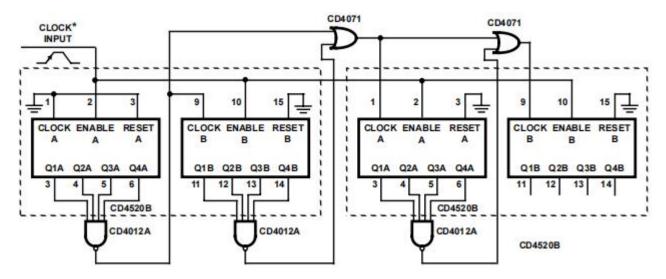



FIGURE 13. RIPPLE CASCADING OF FOUR COUNTERS WITH POSITIVE EDGE TRIGGERING

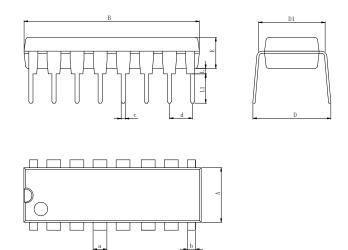
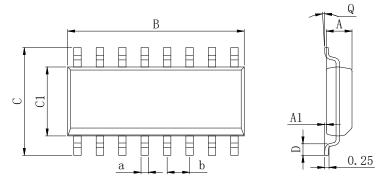

^{*}For synchronous cascading, the clock transition time should be made less than or equal to the sum of the fifixed propagation delay at 15pF and the transition time of the output driver stage for the estimated capacitive load.

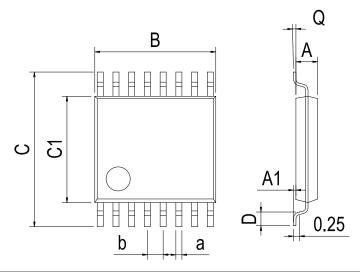
FIGURE 14. SYNCHRONOUS CASCADING OF FOUR BINARY COUNTERS WITH NEGATIVE EDGE TRIGGERING


Physical Dimensions

DIP-16

Dimensions In Millimeters(DIP-16)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

SOP-16



Dimensions In Millimeters(SOP-16)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.21 030	

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)										
Symbol:	Α	A1	В	С	C1	D	Q	а	b	
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65.000	
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.65 BSC	

Revision History

DATE	REVISION	PAGE
2014-6-8	New	1-14
2023-11-15	Modify the package dimension diagram TSSOP-16、Update encapsulation type、Update Lead Temperature、Updated DIP-16dimension、Add annotation for Maximum Ratings、Update DIP Package New Model	1、3、11、12

CD4518B/CD4520B

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)