Powerdip (12+2+2)

L293D

PUSH-PULL FOUR CHANNEL DRIVER WITH DIODES

SOP(12+4+4)

L293DD

gether and used for heatsinking

gether and used for heatsinking.

ORDERING NUMBERS:

The L293D is assembled in a 16 lead plastic

packaage which has 4 center pins connected to-

The L293DD is assembled in a 20 lead surface mount which has 8 center pins connected to-

600mA OUTPUT CURRENT CAPABILITY PER CHANNEL 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL ENABLE FACILITY OVERTEMPERATURE PROTECTION LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY) INTERNAL CLAMP DIODES

DESCRIPTION

The Device is a monolithic integrated high voltage, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power transistors.

To simplify use as two bridges each pair of channels is equipped with an enable input. A separate supply input is provided for the logic, allowing operation at a lower voltage and internal clamp diodes are included.

This device is suitable for use in switching applications at frequencies up to 5 kHz.

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
L293DN	DIP16	L293D	TUBE	1000/box
L293DDM/TR	SOP20	L293DD	REEL	2000/reel

BLOCK DIAGRAM

L293D/L293DD

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	36	V
V _{SS}	Logic Supply Voltage	36	V
Vi	Input Voltage	7	V
V _{en}	Enable Voltage	7	V
l _o	Peak Output Current (100 μs non repetitive)	1.2	А
P _{tot}	Total Power Dissipation at T _{pins} = 90 °C	4	W
T _{stg} , T _j	Storage and Junction Temperature	– 40 to 150	°C

PIN CONNECTIONS (Top view)

THERMAL DATA

Symbol	Decription	DIP	SOP	Unit
R _{th j-pins}	Thermal Resistance Junction-pins max.	_	14	°C/W
R _{th j-amb}	Thermal Resistance junction-ambient max.	80	50 (*)	°C/W
R _{th j-case}	Thermal Resistance Junction-case max.	14	-	

(*) With 6sq. cm on board heatsink.

L293D/L293DD

ELECTRICAL CHARACTERISTICS (for each channel, $V_S = 24$ V, $V_{SS} = 5$ V, $T_{amb} = 25$ °C, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 10)		V _{SS}		36	V
V _{SS}	Logic Supply Voltage (pin 20)		4.5		36	V
Is Total Quiescent Supply Current	$V_i = L$; $I_O = 0$; $V_{en} = H$		2	6	mA	
	(pin 10)	$V_i = H$; $I_O = 0$; $V_{en} = H$		16	24	mA
		Ven = L			4	mA
I _{SS}	Total Quiescent Logic Supply	$V_i = L$; $I_O = 0$; $V_{en} = H$		44	60	mA
	Current (pin 20)	$V_i = H$; $I_O = 0$; $V_{en} = H$		16	22	mA
		$V_{en} = L$		16	24	mA
V _{IL}	Input Low Voltage (pin 2, 9, 12, 19)		- 0.3		1.5	V
V _{IH}	Input High Voltage (pin 2, 9,	$V_{SS} \le 7 V$	2.3		V _{SS}	V
	12, 19)	V _{SS} > 7 V	2.3		7	V
I _{IL}	Low Voltage Input Current (pin 2, 9, 12, 19)	V _{IL} = 1.5 V			- 10	μΑ
Ін	High Voltage Input Current (pin 2, 9, 12, 19)	$2.3~V \leq V_{IH} \leq V_{SS} - 0.6~V$		30	100	μΑ
V _{en L}	Enable Low Voltage (pin 1, 11)		- 0.3		1.5	V
V _{en H}	Enable High Voltage	$V_{SS} \le 7 V$	2.3		V _{SS}	V
	(pin 1, 11)	V _{SS} > 7 V	2.3		7	V
I _{en L}	Low Voltage Enable Current (pin 1, 11)	V _{en L} = 1.5 V		- 30	- 100	μΑ
l _{en H}	High Voltage Enable Current (pin 1, 11)	$2.3 \text{ V} \leq \text{V}_{en \text{ H}} \leq \text{V}_{SS} - 0.6 \text{ V}$			± 10	μΑ
V _{CE(sat)H}	Source Output Saturation Voltage (pins 3, 8, 13, 18)	I _O = - 0.6 A		1.4	1.8	V
V _{CE(sat)L}	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	I _O = + 0.6 A		1.2	1.8	V
VF	Clamp Diode Forward Voltage	I _O = 600nA		1.3		V
tr	Rise Time (*)	0.1 to 0.9 V _O		250		ns
t _f	Fall Time (*)	0.9 to 0.1 V _O		250		ns
t _{on}	Turn-on Delay (*)	0.5 V _i to 0.5 V _O		750		ns
t _{off}	Turn-off Delay (*)	0.5 V _i to 0.5 V ₀		200		ns

(*) See fig. 1.

TRUTH TABLE (one channel)

Input	Enable (*)	Output
Н	Н	Н
L	Н	L
Н	L	Z
L	L	Z

Z = High output impedance

(*) Relative to the considered channel

Figure 1: Switching Times

Figure 2: Junction to ambient thermal resistance vs. area on board heatsink (SOP12+4+4 package)

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents. 单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI(华冠)