

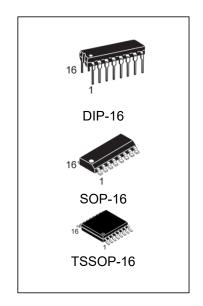
CD4017B Decade Counter/Divider with 10 Decoded Outputs

CD4022B Divide-by-8 Counter/Divider with 8 Decoded Outputs

Features

Wide supply voltage range: 3.0V to 15V

• High noise immunity: 0.45 VDD (typ.)


• Low power: Fan out of 2 driving 74L

• TTL compatibility or 1 driving 74LS

Medium speed operation 5.0 MHz (typ.): with 10V VDD

• Low power: 10 μW (typ.)

Fully static operation

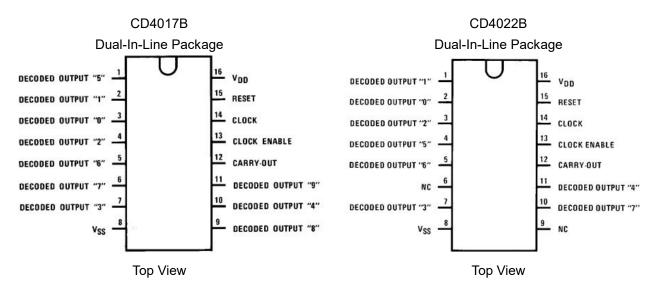
Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
CD4017BE/	DIP-16	CD4017B	TUBE	1000pcs/box
CD4017BN	DII -10	CD4017B	TOBL	1000pcs/box
CD4017BM/TR	SOP-16	CD4017B	REEL	2500pcs/reel
CD4017BMT/TR	TSSOP-16	CD4017B	REEL	2500pcs/reel
CD4022BE/	DIP-16	CD4022B	TUBE	1000pcs/box
CD4022BN	DII -10	OD4022D	TOBL	TOOOpcs/box
CD4022BM/TR	SOP-16	CD4022B	REEL	2500pcs/reel
CD4022BMT/TR	TSSOP-16	CD4022B	REEL	2500pcs/reel

General Description

The CD4017B is a 5-stage divide-by-10 Johnson counter with 10 decoded outputs and a carry out bit. The CD4022B is a 4-stage divide-by-8 Johnson counter with 8 decoded outputs and a carry-out bit. These counters are cleared to their zero count by a logical "1" on their reset line. These counters are advanced on the positive edge of the clock signal when the clock enable signal is in the logical "0" state.

The configuration of the CD4017B and CD4022B permits medium speed operation and assures a hazard free counting sequence. The 10/8 decoded outputs are normally in the logical "0" state and go to the logical "1" state only at their respective time slot. Each decoded output remains high for 1 full clock cycle.


The carry-out signal completes a full cycle for every 10/8 clock input cycles and is used as a ripple carry signal to any succeeding stages.

Applications

- Automotive
- Instrumentation
- Medical electronics
- Alarm systems
- Industrial electronics
- Remote metering

Connection Diagrams

Absolute Maximum Ratings (Notes 1 & 2)

Condition	Min	Max	UNITS
DC Supply Voltage (V _{DD})	-0.5	+18	V
Input Voltage (V _{IN})	-0.5	+0.5	V
Storage Temperature (Ts)	-65	150	°C
Power Dissipation (P _D)			
Dual-In-Line	-	700	mW
Small Outline	-	500	mW
Lead Temperature (T _L) (Soldering, 10 seconds)	-	245	°C

Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

Recommended Operating Conditions (Note 2)

Condition	Min	Max	UNITS
DC Supply Voltage (V _{DD})	+3	+15	V
Input Voltage (V _{IN})	0 to \	/ _{DD}	-
Operating Temperature Range (T _A)	-40	+85	°C

DC Electrical Characteristics CD4017B, CD4022B (Note 2)

0 11		0 !!!!	-40)°C		+25°		+85	5°C	11.24
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
	Quiggaant	$V_{DD} = 5V$		20		0.5	20		150	mA
I _{DD}	Quiescent	V _{DD} = 10V		40		1.0	40		300	mA
	Device Current	V _{DD} = 15V		80		5.0	80		600	mA
		II _O I < 1.0 μA								
.,	Low Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
V _{OL}	Output Voltage	V _{DD} = 10V		0.05		0	0.05		0.05	V
		V _{DD} = 15V		0.05		0	0.05		0.05	V
		II ₀ I < 1.0 μA								
	High Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
V _{OH}	Output Voltage	V _{DD} = 10V	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		V
		II _O I < 1.0 mA								
	Low Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	V
VIL	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_0 = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	V
		II _O I < 1.0 mA								
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	High Level	V _{DD} =5V, V _O =0.5V or 4.5V	3.5		3.5			3.5		V
V _{IH}	Input Voltage	V _{DD} =10V, V _O =1.0V or 9.0V	7.0		7.0			7.0		V
		V _{DD} =15V, V _O =1.5V or 13.5V	11.0		11.0			11.0		V
	Lavelaval Outrot	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
I _{OL}	Low Level Output	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
	Current (Note 3)	$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
	High Lovel Outsut	$V_{DD} = 5V, V_{O} = 4.6V$	-0.2		-0.16	-0.36		-0.12		mA
Іон	High Level Output	$V_{DD} = 10V, V_{O} = 9.5V$	-0.5		-0.4	-0.9		-0.3		mA
	Current (Note 3)	$V_{DD} = 15V, V_{O} = 13.5V$	-1.4		-1.2	-3.5		-1.0		mA
	Innut Courset	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
I _{IN}	Input Current	V _{DD} =15V, V _{IN} = 15V		0.3		10 ⁻⁵	0.3		1.0	μΑ

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides condtions for actual device operation.

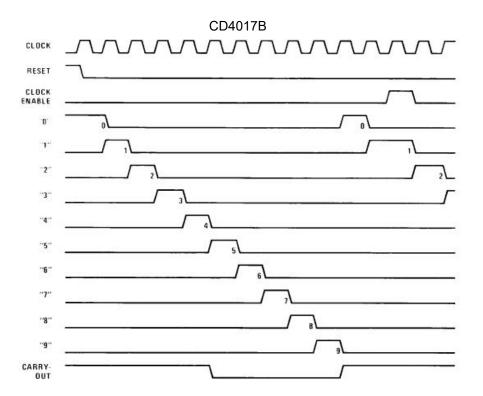
Note 2: VSS e 0V unless otherwise specified.

Note 3: I_{OL} and I_{OH} are tested one output at a time

AC Electrical Characteristics*

 T_A = 25°C, C_L = 50 pF, R_L = 200k, trCL and tfCL = 20 ns, unless otherwise specified

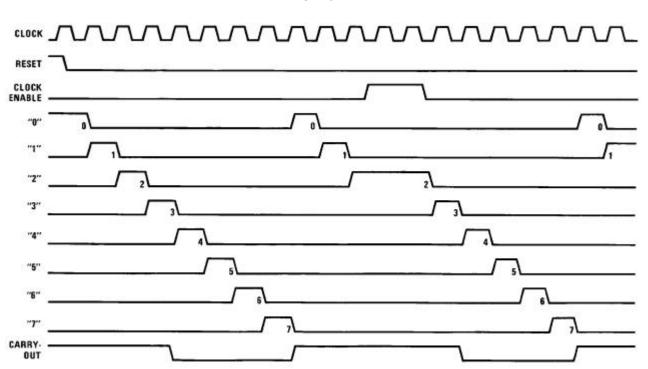
Symbol	Parameter	Cond	Min	Тур	Max	Units	
		CLOCK OPE	RATION				
	Propagation Delay	V_{DD} :	= 5V		415	800	ns
	Time Carry Out Line	V _{DD} =	=10V		160	320	ns
	Time Carry Out Line	V _{DD} =	= 15V		130	250	ns
		VDD = 5V)		240	480	ns
$t_{\text{PHL}},t_{\text{PLH}}$	Carry Out Line	VDD = 10V	{C _L = 15 pF		85	170	ns
		VDD = 15\	()		70	140	ns
		V_{DD} :	= 5V		500	1000	ns
	Decode Out Lines	V _{DD} =	= 10V		200	400	ns
		V _{DD} =	= 15V		160	320	ns
	Transition Time Carry Out and	V_{DD} :	= 5V		200	360	ns
	Transition Time Carry Out and Decode Out Lines t _{TLH}	V _{DD} =	= 10V		100	180	ns
4 4	Decode Out Lines ITLH	V _{DD} =	= 15V		80	130	ns
t _{TLH} , t _{THL}		V_{DD} :		100	200	ns	
	t _{THL}	$V_{DD} =$	= 10V		50	100	ns
		V _{DD} =	= 15V		40	80	ns
				4.0			
(0)		VDD = 5V	Measured with	1.0	2		MHz
fCL	Maximum Clock Frequency	VDD = 10V $VDD = 15V$	Respect to Carry		5		MHz
		VDD - 10V/	Output Line	3.0	6		MHz
		V _{DD} :	= 5V		125	250	Ns
twL, twh	Minimum Clock Pulse Width	V _{DD} =	= 10V		45	90	Ns
		V _{DD} =	= 15V		35	70	ns
		V _{DD} :	V _{DD} = 5V			20	μs
t_{rCL} , t_{fCL}	Clock Rise and Fall Time	V _{DD} =	= 10V			15	μs
		V _{DD} =15V				5	μs
	Minimum Ol I I I I I I I	V _{DD} :	= 5V		120	240	Ns
t _{su}	Minimum Clock Inhibit	V _{DD} =	= 10V		40	80	Ns
	Data Setup Time	V _{DD} =	= 15V		32	65	ns
C _{IN}	Average Input Capacitance				5	7.5	pF

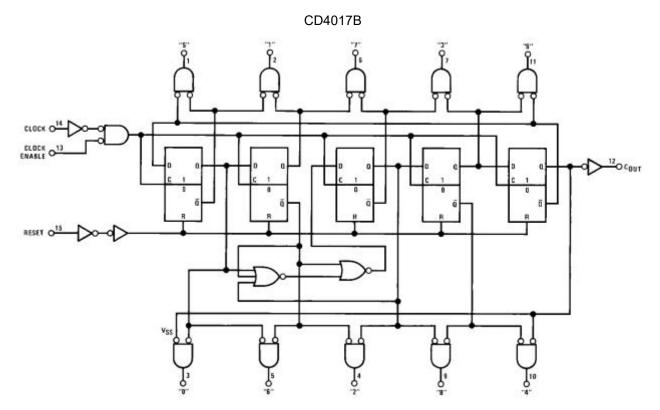

AC Electrical Characteristics

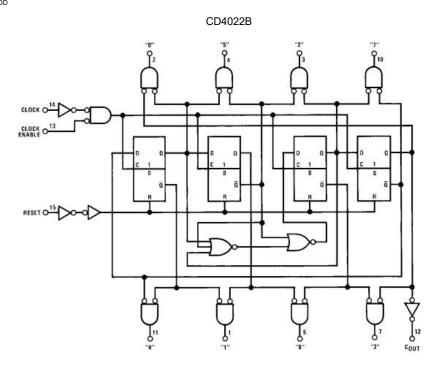
 T_A = 25°C, C_L = 50 pF, RL = 200k, trCL and tf CL = 20 ns, unless otherwise specified

Symbol	Parameter	Conditions	Тур	Max	Units	
	Door on the Delevi Time	V _{DD} = 5V		415	800	ns
	Propagation Delay Time	V _{DD} = 10V		160	320	ns
	Carry Out Line	V _{DD} = 15V		130	250	ns
				240	480	ns
t_{PHL},t_{PLH}	Carry Out Line	VDD = 5V		85	170	ns
		VDD = 15V)		70	140	ns
		V _{DD} = 5V		500	1000	ns
	Decode Out Lines	V _{DD} = 10V		200	400	ns
		V _{DD} = 15V		160	320	ns
	Minimum Reset	V _{DD} = 5V		200	400	ns
t_W		V _{DD} = 10V		70	140	ns
	Pulse Width	V _{DD} = 15V		55	110	ns
	M: : D :	V _{DD} = 5V		75	150	ns
t _{REM}	Minimum Reset Removal Time	V _{DD} = 10V		30	60	ns
	Nemoval fille	V _{DD} = 15V		25	50	ns

^{*}AC Parameters are guaranteed by DC correlated testing.

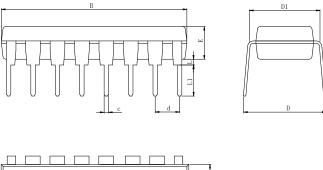

Timing Diagrams

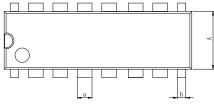

Timing Diagrams (Continued)



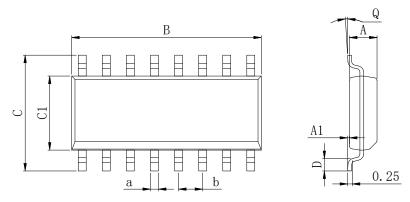
Logic Diagrams

Terminal No. 8 = GND Terminal No. 16 = V_{DD}



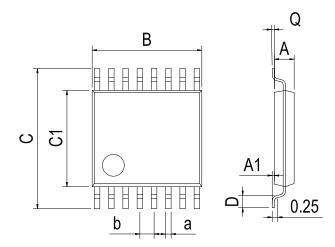

Terminal No. 16 = V_{DD} Terminal No. 8 = GND

Physical Dimensions


DIP-16

Dimensions In	Dimensions In Millimeters(DIP-16)													
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d			
Min:	6.10	18.94	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC			
Max:	6.68	19.56	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 650			

SOP-16



Dimensions In Millimeters(SOP-16)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	1.35	0.05	9.80	5.80	3.80	0.40	0°	0.35	1.27 BSC			
Max:	1.55	0.20	10.0	6.20	4.00	0.80	8°	0.45	1.27 650			

Physical Dimensions

TSSOP-16

Dimensions In Millimeters(TSSOP-16)												
Symbol:	Α	A1	В	С	C1	D	Q	а	b			
Min:	0.85	0.05	4.90	6.20	4.30	0.40	0°	0.20	0.65 BSC			
Max:	0.95	0.20	5.10	6.60	4.50	0.80	8°	0.25	0.00 BSC			

Revision History

DATE	REVISION	PAGE
2014-6-7	New	1-12
2023-11-13	Modify the package dimension diagram SSOP-16、Update encapsulation type、Update Lead Temperature、Updated DIP-16 dimension、Add annotation for Maximum Ratings、Update DIP Package New Model	1、3、9、11

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)