

Micro power Voltage Reference Diodes

Features

- Operating Current from 10 μA to 20 mA
- 1.5% and 3.0% Initial Tolerance Grades
- Low Temperature Coefficient
- 1.0Ω Dynamic Impedance
- Surface Mount Package Available
- Pb-Free Packages are Available

Ordering Information

DEVICE	Package Type	MARKING	Packing	Packing Qty
LM385Z-1.2	TO-92	LM385-1.2	BAG	1000pcs/box
LM385Z-2.5	TO-92	LM385-2.5	BAG	1000pcs/box
LM385M-1.2/TR	SOP-8	385-1.2	REEL	2500pcs/reel
LM385M-2.5/TR	SOP-8	385-2.5	REEL	2500pcs/reel
LM385M3-1.2/TR	SOT-23	R11	REEL	3000pcs/reel
LM385M3-2.5/TR	SOT-23	R12	REEL	3000pcs/reel

General Description

The LM385 series are micropower two-terminal bandgap voltage regulator diodes. Designed to operate over a wide current range of 10 μ A to 20 mA, these devices feature exceptionally low dynamic impedance, low noise and stable operation over time and temperature. Tight voltage tolerances are achieved by on-chip trimming. The large dynamic operating range enables these devices to be used in applications with widely varying supplies with excellent regulation. Extremely low operating current make these devices ideal for micropower circuitry like portable instrumentation, regulators and other analog circuitry where extended battery life is required.

The LM385 is also available in a surface mount plastic package in voltages of 1.235 V and 2.500 V.

Functional Diagram

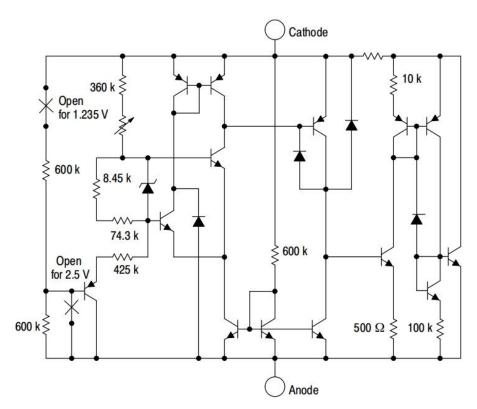
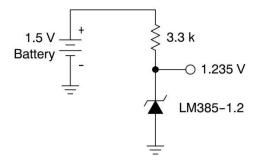



Figure 1. Representative Schematic Diagram

Standard Application

Maximum Ratings

(T_A = 25°C, unless otherwise noted)

Ratin	Symbol	Value	Unit	
Reverse Current	Reverse Current			
Forward Current	I _F	10	mA	
Operating Ambient Temperature Rar	T _A	0 to +70	°C	
Operating Junction Temperature	TJ	+150	°C	
Lead Temperature (Soldering, 10 sec	TL	+245	°C	
Storage Temperature Range		T _{stg}	-65 to + 150	°C
Floatroatatic Discharge Canaitivity	Human Body Model (HBM)		4000	
Electrostatic Discharge Sensitivity	Machine Model (MM)	ESD	400	V
(ESD)	Charged Device Model (CDM)		2000	

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability

Electrical Characteristics

LM385-1.2, $T_A = 25$ °C, unless otherwise noted

Characteristic	Cumbal		Unit		
Characteristic	Symbol	Min	Тур	Max	Ullit
Reverse Breakdown Voltage	V _{(BR)R}	1.210 1.192	1.235 -	1.260 1.273	V
Minimum Operating Current $T_A = 25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	I_{Rmin}	-	8.0 -	15 20	μА
Reverse Breakdown Voltage Change with Current $I_{Rmin} \le I_R \le 1.0$ mA, $T_A = +25$ °C $T_A = T_{low}$ to T_{high} (Note 1) 1.0 mA $\le I_R \le 20$ mA, $T_A = +25$ °C TA = T_{low} to T_{high} (Note 1)	$\Delta V_{(BR)R}$	- - -		1.0 1.5 20 25	mV
Reverse Dynamic Impedance $I_R = 100 \mu A, T_A = +25^{\circ}C$	Z	-	0.6	-	Ω
Average Temperature Coefficient $10 \mu A \le I_R \le 20 \text{ mA}, T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	$\Delta V_{(BR)}/\Delta T$	-	80	-	ppm/℃
Wideband Noise (RMS) $I_R = 100 \mu A, 10 Hz \le f \le 10 \text{ kHz}$	n	-	60	-	μV
Long Term Stability $I_R = 100 \mu A, T_A = +25^{\circ}C \pm 0.1^{\circ}C$	S	-	20	-	ppm/kHR


LM385-2.5, T_A = 25°C, unless otherwise noted

2					
Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage $(I_{Rmin} \le I_R \le 20 \text{ mA})$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	V _{(BR)R}	2.46 2.42	2.5 -	2.54 2.60	V
Minimum Operating Current $T_A = 25^{\circ}C$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 1)}$	I _{Rmin}	1 1	13 -	20 30	μА
Reverse Breakdown Voltage Change with Current $I_{Rmin} \le I_R \le 1.0 \text{ mA}, T_A = +25 ^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 2)}$ $1.0 \text{ mA} \le I_R \le 20 \text{ mA}, T_A = +25 ^{\circ}\text{C}$ $T_A = T_{low} \text{ to } T_{high} \text{ (Note 2)}$	$\Delta V_{(BR)R}$			2.0 2.5 20 25	mV
Reverse Dynamic Impedance I_R = 100 μ A, T_A = +25 $^{\circ}$ C	Z	-	0.6	-	Ω
Average Temperature Coefficient 20 μ A \leq I _R \leq 20 mA, T _A = T _{low} to T _{high} (Note 1)	$\Delta V_{(BR)}/\Delta T$	ı	80	-	ppm/℃
Wideband Noise (RMS) I _R = 100 μA, 10 Hz ≤ f ≤ 10 kHz	n	-	120	-	μV
Long Term Stability $I_R = 100 \mu A, T_A = +25 \degree \pm 0.1 \degree $	S	-	20	-	ppm/kHR

Note 1: T_{low} = 0°C for LM385-1.2, LM385-2.5; T_{high} =+70°C for LM385-1.2, LM385-2.5

Typical Performance Curves

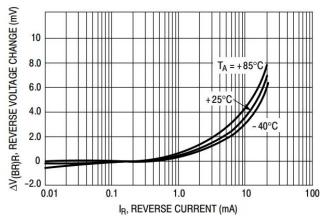
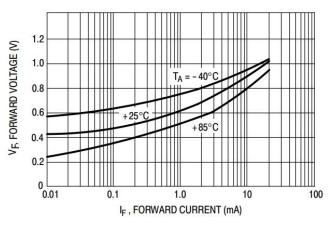



Figure 2. Reverse Characteristics

Figure 3. Reverse Characteristics

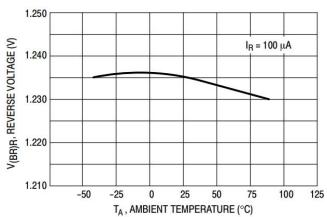
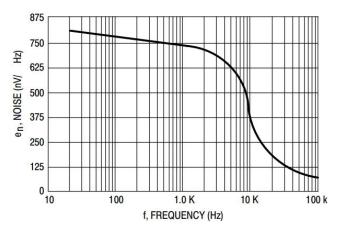



Figure 4. Forward Characteristics

Figure 5. Temperature Drift

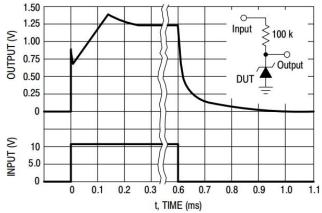
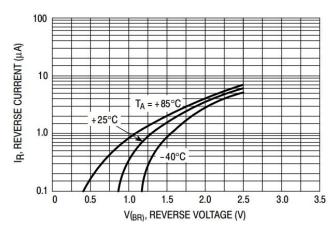



Figure 6. Noise Voltage

Figure 7. Response Time

Typical Performance Curves

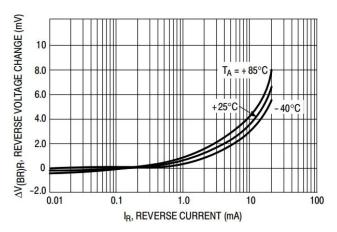
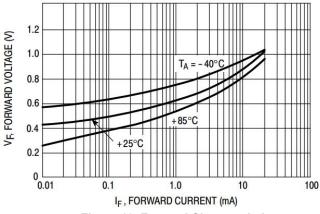



Figure 8. Reverse Characteristics

Figure 9. Reverse Characteristics

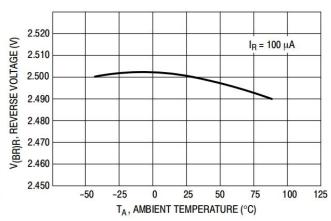


Figure 11. Temperature Drift

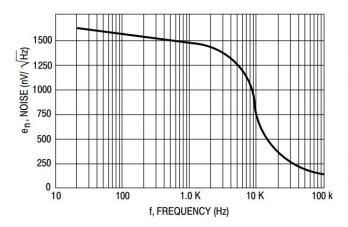


Figure 12. Noise Voltage

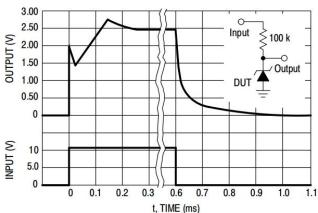
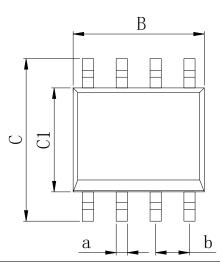
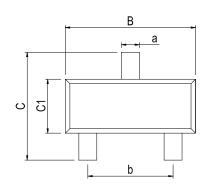
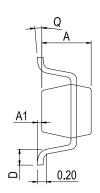



Figure 13. Response Time

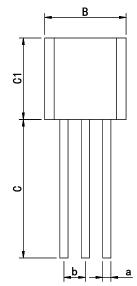
Physical Dimensions

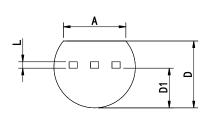

SOP-8 (150mil)



Dimensions In Millimeters(SOP-8)									
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1 27 DSC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC

SOT-23




Dimensions In M	lillimeters(SOT-23)							
Symbol:	Α	A1	В	С	C1	D	Q	а	b
Min:	0.90	0.00	2.80	2.25	1.20	0.13	0°	0.30	1 00 BSC
Max:	1.05	0.15	3.00	2.55	1.40	0.41	8°	0.50	1.90 BSC

Physical Dimensions

TO-92

Dimensions In Millimeters(TO-92)									
Symbol:	Α	В	С	C1	D	D1	L	а	b
Min:	3.43	4.44	13.5	4.32	3.17	2.03	0.33	0.40	1 27DCC
Max:	3.83	5.21	15.3	5.34	4.19	2.67	0.42	0.52	1.27BSC

Revision History

DATE	REVISION	PAGE
2015-10-25	New	1-10
2024-3-13	Document Reformatting	1-10

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)