

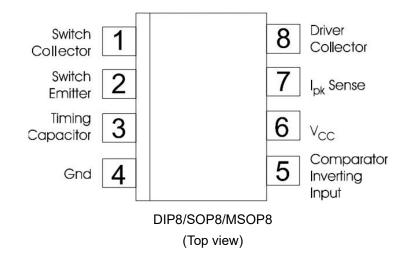
DC-to- DC Converter Control Circuits

FEATURES

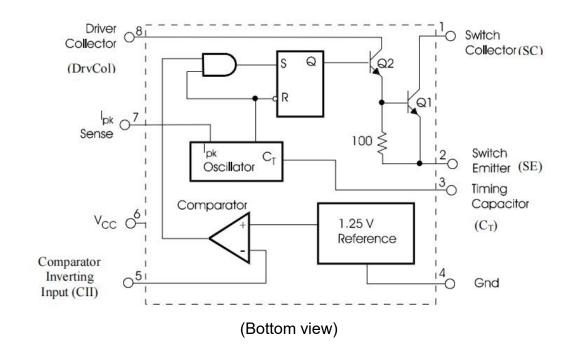
- Operation from 3.0V to 40V input
- Low standby current
- Current limiting
- Output switch current up to 1.5A
- Adjustable output voltage
- Operation at frequencies up to 100kHz
- Precision reference (2%)

ORDERING INFORMATION

DEVICE	Package Type	MARKING	Packing	Packing Qty
MC33063N	DIP-8	MC33063	TUBE	2000pcs/box
MC33063M/TR	SOP-8	MC33063	REEL	2500pcs/reel
MC33063MM/TR	MSOP-8	33063	REEL	2500pcs/reel


DESCRIPTION

The MC33063 series is a monolithic control circuit containing primary functions required for DC-to-DC converters.


These devices consist of an internal temperature-compensated reference, comparator, controlled duty cycle oscillator withan active current limit circuit, driver and high current output switch. This series was specifically designed to be incorporated in step-down and step-up and voltage-inverting applications with a minimum number of external components.

PIN CONNECTIONS

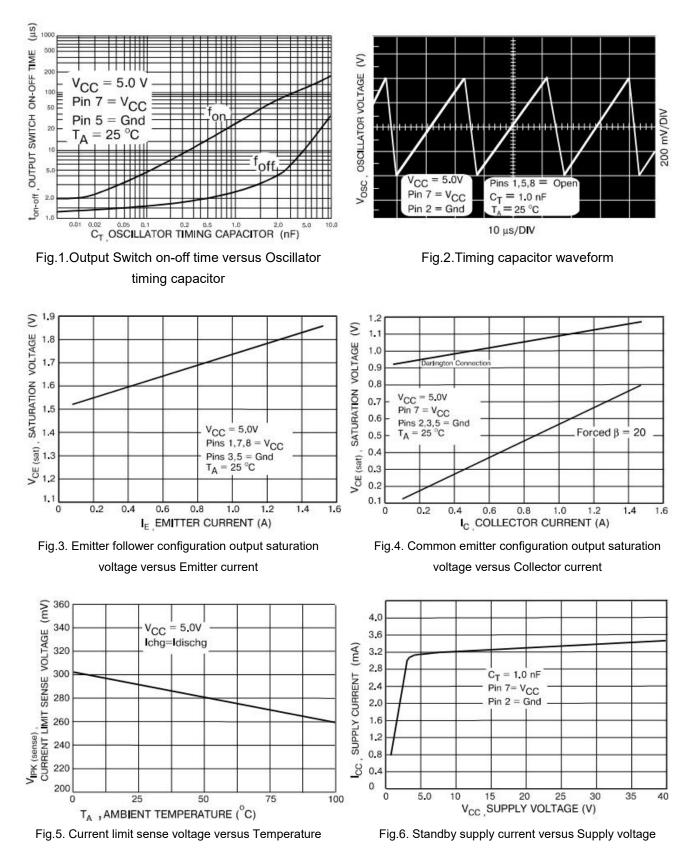
SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power supply voltage	Vcc	40	V
Comparator input voltage range	V _{IR}	-0.3 to +40	V
Switch collector voltage	V _{C(Switch)}	40	V
Switch emitter voltage (VPin1=40V)	V _{E(Switch)}	40	V
Switch collector-to-emitter voltage	V _{CE(Switch)}	40	V
Driver collector voltage	V _{C(Driver)}	40	V
Driver collector current (Note 1)	I _{C(Driver)}	100	mA
Switch current	I _{Sw}	1.5	А
Operating junction temperature	TJ	+150	°C
Operating ambient temperature range	T _A	-40 to +85	°C
Storage temperature range	T _{STG}	-65 to + 150	°C
ESD (HBM)		2500	V

ELECTRICAL CHARACTERISTICS (Vcc=5.0V, TA=TLow to THigh, unless otherwise specified.)

Characteristics	Symbol	Min	Тур	Max	Unit
OSCILLATOR					
Frequency (VPin5=0V, C _T =1.0nF, T _A =25°C)	fosc	24	33	42	kHz
Charge current (V _{CC} =5.0V to 40V, T_A =25°C)	Ichg	24	35	42	μA
Discharge current (V _{CC} =5.0V to 40V, T_A =25°C)	Idischg	140	220	260	μA
Discharge-to-charge current ratio (Pin7 to V_{CC} , $T_A=25^{\circ}C$)	ldischg/lchg	5.2	6.5	7.5	-
Current limit sense voltage (Ichg=Idischg, $T_A=25^{\circ}C$)	Vlpk(sense)	250	300	350	mV
OUTPUT SWITCH (Note 2)					
Saturation voltage, Darlington connection	N		1.0	1.3	V
ISw=1.0A, Pins1, 8 connected	V _{CE(sat)}	-			V
Saturation voltage, Darlington connection	V _{CE(sat)}	-	0.45	0.7	V
(ISw=1.0A, R _{Pin8} =82 Ω to V _{CC} , forced β =20)					
DC current gain (ISw=1.0A, V _{CE} =5.0, T _A =25°C)	h _{FE}	50	75	-	-
Collector off-state current (V _{CE} =40V)	I _{C(off)}	-	1.0	100	μA
COMPARATOR					
Threshold voltage		1.225	1.25	1.275	V
Threshold voltage	V _{th}	1.21	-	1.29	v
Threshold voltage line regulation(V_{CC} =3.0V to 40V)	Regline	-	1.4	5.0	mV
Input bias current(Vin=0V)	I _{IB}	-	-20	-400	nA
TOTAL DEVICE					
Supply current					
(V _{CC} =5.0V to 40V, C _T =1.0nF, Pin7=V _{CC} ,	Icc	-	-	4.0	mA
VPin5>Vth, Pin2 =Gnd, remaining pins - open					


Notes:

1. Maximum package power dissipation limits must be observed.

2. Low duty cycle pulse techniques are used during the test to maintain the junction temperature as close to the ambient temperature as possible.

TYPICAL PERFORMANCE CHARACTERISTICS

APPLICATION INFORMATION

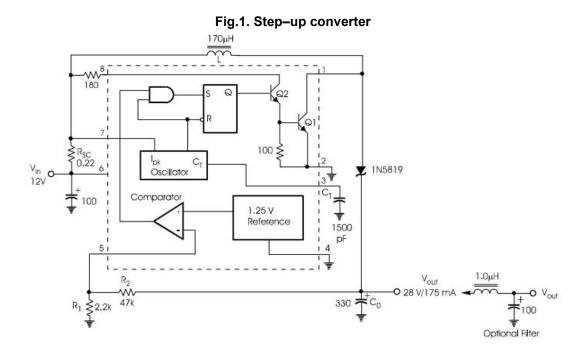
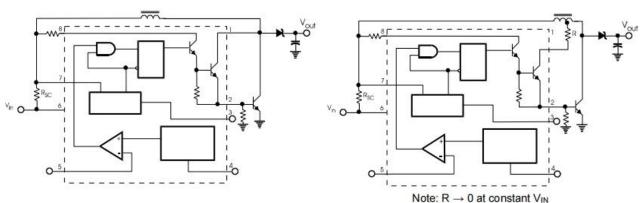
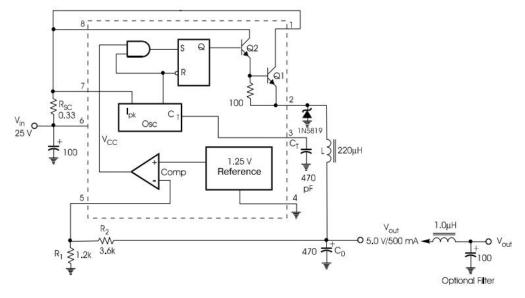
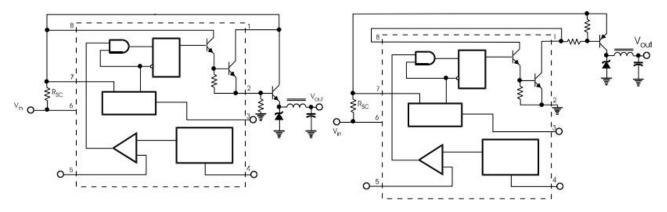




Fig.2. External current boost connections for IC Peak greater than 1.5A2a. External NPN switch2b. External NPN saturated switch



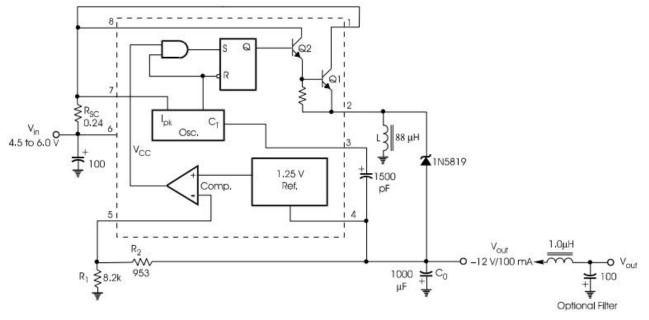

Fig.3. Step-down Converter

Fig.4. External current boost connections for Ic Peak greater than 1.5A4a. External NPN switch4b. External PNP saturated switch

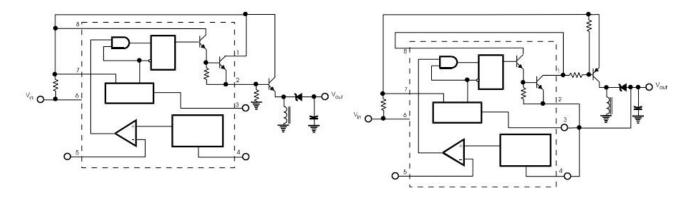


Fig.5. Voltage inverting converter

Fig.6. External current boost connections for Ic Peak greater than 1.5A6a. External NPN switch6b. External PNP saturated switch

DESIGN FORMULA

Calculation	Step-up	Step-down	Voltage-inverting		
ton	Vout + VF – Vin(min) Vin(min) – Vsat	Vout + VF Vin(min) — Vsat — Vout	Vout + VF Vin + Vsat		
(ton + toff)max	1 fmin	1 fmin	1 fmin		
Ст	4.0 x 10⁻⁵ ton	4.0 x 10 ⁻⁵ ton	4.0 x 10 ⁻⁵ ton		
I _{pk(switch)}	$2I_{out (max)} \left(\frac{ton}{toff} + 1\right)$	21 _{out(max)}	$2I_{out (max)} \left(\frac{ton}{toff} + 1\right)$		
Rsc	0.3/Ipk(Switch)	0.3/Ipk(Switch)	0.3/Ipk(Switch)		
L(min)	$\left(\frac{Vin(min)-Vsat}{Ipk (switch)}\right) \times ton(max)$	$\left(\frac{Vin(min)-Vsat-Vout}{Ipk (switch)}\right) \times ton(max)$	$\left(\frac{Vin(min)-Vsat}{Ipk (switch)}\right) \times ton(max)$		
Co	9 loutton Vripple(pp)	lpk(switch)(ton + toff) 8Vripple(pp)	9 loutton Vripple(pp)		

TERMS AND DEFINITIONS

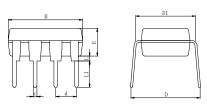
Vsat – Saturation voltage of the output switch.

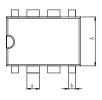
VF-Forward voltage drop of the output rectifier.

The following power supply characteristics must be chosen:

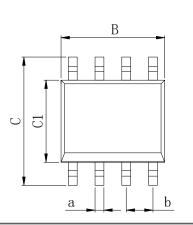
Vin-Nominal input voltage.

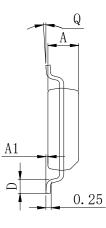
 V_{out} - Desired output voltage, |Vout| = 1.25 $\left(1 + \frac{R^2}{R^1}\right)$


fmin – Minimum desired output switching frequency at the selected values of Vin and Iout.


 $V_{ripple(p-p)}$ – Desired peak-to-peak output ripple voltage. In practice, the calculated capacitor value will need to be increased due to its equivalent series resistance and board layout. The ripple voltage should be kept to a low value since it will directly affect the line and load regulation.

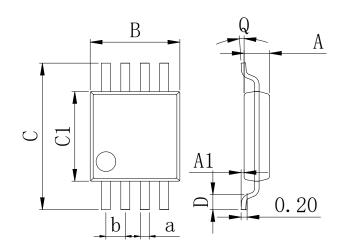
Physical Dimensions


DIP8



Dimensions In Millimeters(DIP8)											
Symbol:	A	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54.000
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

SOP8 (150mil)


Dimensions In Millimeters(SOP8)

Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 030	

Physical Dimensions

MSOP8

Dimensions In Millimeters(MSOP8)									
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65.000
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.65 BSC

IMPORTANT STATEMENT:

Huaguan Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Huaguan Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Huaguan Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: Select the appropriate Huaguan Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Huaguan Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Huaguan Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Huaguan Semiconductor, and the user shall not claim any compensation liability against Huaguan Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Huaguan Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Huaguan Semiconductor. Not all parameters of each device need to be tested.

The documentation of Huaguan Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Huaguan Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Huaguan Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Huaguan Semiconductor accepts no liability for any loss or damage caused by infringement.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI(华冠)