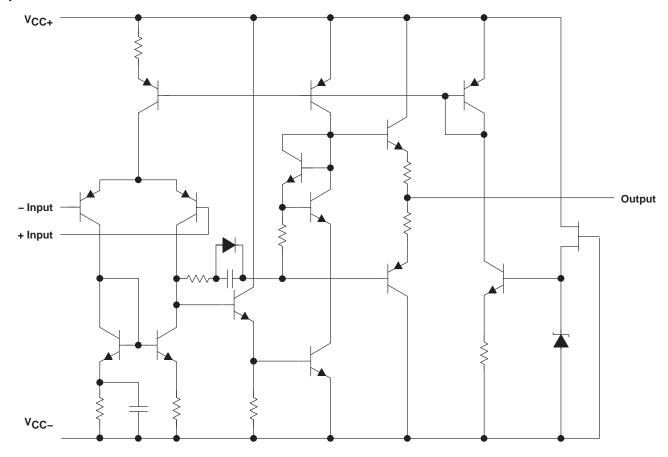


DUAL AUDIO OPERATIONAL AMPLIFIER

Operating Voltage . . . ± 2 V to ± 18 V Low Noise Voltage . . . $1.2~\mu$ Vrms (Typ) Wide GBW . . . 15~MHz (Typ) Low THD . . . 0.05% (Typ) Slew Rate . . . $5.5\text{V}/\mu$ sec (Typ) Suitable for Applications Such as Audio Preamplifier, Active Filter, Headphone Amplifier, Industrial Measurement Equipment



description/ordering information

The RC4560 is a high-gain, wide-bandwidth, dual operational amplifier capable of driving 20 V peak-to-peak into $400-\Omega$ loads. The RC4560 combines many of the features of the RC4558, but with wider bandwidth and higher slew rate, making this device ideal for active filters, data and telecommunications, and many instrumentation applications.

equivalent circuit

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC±}		±18 V
Input voltage (any input)		±15 V
Output current		±50 mA
Package thermal impedance, θ_{JA} (see Notes 1 and 2): D package		97°C/W
-	DGK package	172°C/W
	P package	85°C/W
	PW package	149°C/W
Operating virtual junction temperature, T ₁		150°C
Storage temperature range, T _{stg}		–60°C to 125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

		MIN	MAX	UNIT
V _{CC+}	Supply voltage	2	16	V
VCC-		-2	-16	\ \ \ \ \
VID	Differential input voltage		±30	V
VICR	Input common mode range	-14	14	V
TA	Operating free-air temperature range	-40	85	°C

electrical characteristics, $V_{CC\pm}\!=\,\pm15$ V, T_{A} = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	$R_S \le 10 \text{ k}\Omega$		0.5	6	mV
liO	Input offset current			5	200	nA
I _{IB}	Input bias current			40	500	nA
AVD	Large-signal differential voltage amplification	$R_L \ge 2 \text{ k}\Omega$, $V_O = \pm 10 \text{ V}$	86	100		dB
rį	Input resistance		0.3	5		MΩ
V _O Output v		$R_L \ge 2 k\Omega$	±12	±14		V
	Output voltage swing	$I_O = 25 \text{ mA}$	±10	±12.5		
VICR	Common-mode input voltage range		±12	±14		V
CMRR	Common-mode rejection ratio	R _S ≤ 10 kΩ	70	90		dB
k _{SVR} †	Supply-voltage rejection ratio	R _S ≤ 10 kΩ	76.5	90		dB
Icc	Supply current (all amplifiers)			4.3	5.7	mA

 $^{^{\}dagger}$ Measured with VCC± differentially varied simultaneously from ±4 V to ±15 V

operating characteristics, $V_{CC\pm}$ = ± 15 V, T_A = $25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain			5.5		V/μs
GBW	Gain bandwidth product			15		MHz
THD	Total harmonic distortion	$V_0 = 5 \text{ V}, R_L = 2 \text{ k}\Omega, f = 1 \text{ kHz}, A_{VD} = 20 \text{ dB}$		0.05		%
V _n	Equivalent input noise voltage	RIAA, $R_S \le 2 \text{ k}\Omega$, 30 kHz LPF		1.2	·	μVrms

Important statement:

Huaguan Semiconductor Co,Ltd. reserves the right to change the products and services provided without notice. Customers should obtain the latest relevant information before ordering, and verify the timeliness and accuracy of this information.

Customers are responsible for complying with safety standards and taking safety measures when using our products for system design and machine manufacturing to avoid potential risks that may result in personal injury or property damage.

Our products are not licensed for applications in life support, military, aerospace, etc., so we do not bear the consequences of the application of these products in these fields.

Our documentation is only permitted to be copied without any tampering with the content, so we do not accept any responsibility or liability for the altered documents.

单击下面可查看定价,库存,交付和生命周期等信息

>>HGSEMI (华冠)